Analysis I (2008–09)

Example Sheet 2 of 4

- **1.** Define $f : \mathbb{R} \to \mathbb{R}$ by f(x) = x if $x \in \mathbb{Q}$ and f(x) = 1 x otherwise. Find $\{a : f \text{ is continuous at } a\}$.
- **2.** Write down the definition of " $f(x) \to \infty$ as $x \to \infty$ ". Prove that $f(x) \to \infty$ as $x \to \infty$ if, and only if, $f(x_n) \to \infty$ for every sequence such that $x_n \to \infty$.
- **3.** Suppose that $f(x) \to \ell$ as $x \to a$ and $g(y) \to k$ as $y \to \ell$. Must it be true that $g(f(x)) \to k$ as $x \to a$?
- 4. Let $f_n : [0,1] \to [0,1]$ be continuous, $n \in \mathbb{N}$. Let $h_n(x) = \max\{f_1(x), f_2(x), \dots, f_n(x)\}$. Show that h_n is continuous on [0,1] for each $n \in \mathbb{N}$. Must $h(x) = \sup\{f_n(x) : n \in \mathbb{N}\}$ be continuous?
- 5. The unit circle in \mathbb{C} is mapped to \mathbb{R} by a map $e^{i\theta} \mapsto f(\theta)$, where $f[0, 2\pi] \to \mathbb{R}$ is continuous and $f(0) = f(2\pi)$. Show that there exist two diametrically opposite points that have the same image.
- 6. Let $f(x) = \sin^2 x + \sin^2(x + \cos^7 x)$. Assuming the familiar features of sin without justification, prove that there exists k > 0 such that $f(x) \ge k$ for all $x \in \mathbb{R}$.
- 7. Suppose that $f: [0,1] \to \mathbb{R}$ is continuous, that f(0) = f(1) = 0, and that for every $x \in (0,1)$ there exists $0 < \delta < \min\{x, 1-x\}$ with $f(x) = (f(x-\delta) + f(x+\delta))/2$. Show that f(x) = 0 for all x.
- 8. Let $f : [a,b] \to \mathbb{R}$ be bounded. Suppose that $f((x+y)/2) \le (f(x) + f(y))/2$ for all $x, y \in [a,b]$. Prove that f is continuous on (a,b). Must it be continuous at a and b too?
- 9. Prove that $2x^5 + 3x^4 + 2x + 16 = 0$ has no real solutions outside [-2, -1] and exactly one inside.
- 10. Let f: [a, b] → R be continuous on [a, b] and differentiable on (a, b). Which of (i)–(iv) must be true?
 (i) If f is increasing then f'(x) ≥ 0 for all x ∈ (a, b).
 - (ii) If $f'(x) \ge 0$ for all $x \in (a, b)$ then f is increasing.
 - (iii) If f is strictly increasing then f'(x) > 0 for all $x \in (a, b)$.
 - (iv) If f'(x) > 0 for all $x \in (a, b)$ then f is strictly increasing.

[Increasing means $f(x) \le f(y)$ if x < y, and strictly increasing means f(x) < f(y) if x < y.]

- **11.** Let $f : \mathbb{R} \to \mathbb{R}$ be differentiable for all x. Prove that if $f'(x) \to \ell$ as $x \to \infty$ then $f(x)/x \to \ell$. If $f(x)/x \to \ell$ as $x \to \infty$, must f'(x) tend to a limit?
- 12. Let $f(x) = x + 2x^2 \sin(1/x)$ for $x \neq 0$ and f(0) = 0. Show that f is differentiable everywhere and that f'(0) = 1, but that there is no interval around 0 on which f is increasing.
- 13. Define $f_0 : \mathbb{R} \to \mathbb{R}$ by $f_0(x) = |x|$ for $|x| \le 1/2$ and $f_0(x+m) = f_0(x)$ for $m \in \mathbb{Z}$. Draw f_0 . Now define $f_n : \mathbb{R} \to \mathbb{R}$ for $n \in \mathbb{N}$ by $f_n(x) = 4^{-n} f_0(4^n x)$. Draw f_1 and $f_0 + f_1$. Show that, for each $x \in \mathbb{R}$, $\sum_{n \ge 0} f_n(x)$ converges. Define $f : \mathbb{R} \to \mathbb{R}$ by $f(x) = \sum_{n \ge 0} f_n(x)$. Show that f is continuous everywhere. Where is f differentiable?