Send corrections, comments etc. to afb@dpmms.cam.ac.uk

1. The definition $\sum_{n=1}^{\infty} a_n = \lim_{n \to \infty} s_n$, where $s_n = a_1 + \cdots + a_n$, is not the only possible definition for the sum of an infinite series. Another one is

$$\sum_{n=1}^{\infty} a_n = \lim_{n \to \infty} \frac{s_1 + \dots + s_n}{n} \tag{*}$$

(when this limit exists). Let us say that the series is **summable** when the limit (*) exists. Show that if the series $\sum_n a_n$ is convergent then it is summable, and the two limits are the same. Show that if $a_n = (-1)^n$, the corresponding series is summable but not convergent. [You may now ask why we don't always work with summable series.]

2. The theory of infinite products $b_1b_2\cdots$, or $\prod_{n=1}^{\infty}b_n$, is more subtle than the theory of infinite sums. Here is a start to the theory. We suppose throughout that the a_n are positive numbers. Let

$$s_n = a_1 + \dots + a_n, \quad p_n = (1 + a_1) \cdots (1 + a_n).$$

Then $\sum_{n=1}^{\infty} a_n$ converges if and only if the sequence s_n converges, and (by definition) the infinite product $\prod_{n=1}^{\infty} (1+a_n)$ converges if and only if the sequence p_n converges. Use the inequality $1+x\leqslant e^x$ for positive x (and standard properties of the exponential function) to show that $s_n\leqslant p_n\leqslant e^{s_n}$. Hence prove the following

Theorem. Suppose that $a_n \ge 0$ for all n. Then $\sum_{n=1}^{\infty} a_n$ converges if and only if $\prod_{n=1}^{\infty} (1+a_n)$ converges.

According to this result the products

$$\prod_{n=2}^{\infty} \left(1 + \frac{1}{n^2 - 1} \right), \quad \prod_{n=1}^{\infty} \left(1 + \frac{1}{n} \right)$$

converge and diverge, respectively. Give direct proofs of these facts, and find the value of the first of these products.

- **3.** Suppose that E is a subset of \mathbb{R} , and that E has a maximal element e (i.e. $x \leq e$ for every x in E). Show that lub E = e.
- **4.** Let $P(z) = (z a_1)(z a_2)(z a_3)(z a_4)$ and $Q(z) = (z a_1)(z a_2)(z a_3)(z a_4)(z a_5)$, where $a_1 < a_2 < a_3 < a_4 < a_5$. Let $A = \{x \in \mathbb{R} : P(x) < 0\}$, and $B = \{x \in \mathbb{R} : Q(x) < 0\}$. Determine whether A and B are (i) bounded above, (ii) bounded below. When one of these bounds exists, find the least upper bound or greatest lower bound as appropriate.
- **5.** Suppose that $z \in \mathbb{C}$, and R > 0, and let $E = \{|z w| : |w| = R\}$. Give lub E and glb E and prove your results. [Draw a diagram.]
- **6.** Let P be the parabola given by the equation $y = x^2$ (so $x + iy \in P$ if and only if $y = x^2$). How would you obtain a (reasonably good) numerical estimate of glb $\{|\zeta z| : z \in P\}$, where $\zeta = 3 + 7i$? Obtain such an estimate.
- 7. Suppose that A and B are subsets of \mathbb{R} with the property that if $a \in A$ and $b \in B$ then a < b. Prove that $\text{lub}A \leq \text{glb}B$.

8. Suppose that A and B are non-empty sets of real numbers, each bounded above, and define

$$A + B = \{a + b : a \in A, b \in B\}, AB = \{ab : a \in A, b \in B\}.$$

Show that A + B is non-empty and bounded above, and that lub(A + B) = lub(A) + lub(B). Show that AB need not be bounded above. If AB is bounded above, is lub(AB) = lub(A) + lub(B).

- **9.** Let a_n be a real sequence. Show that a_n converges to a if and only if for every pair of real numbers α and β with $\alpha < a < \beta$, there is an n_0 such that $n > n_0$ implies that $\alpha < a_n < \beta$. [This definition of convergence does not need the concept of distance, only order, and it generalizes easily to give the appropriate definitions of $x_n \to +\infty$ and $x_n \to -\infty$].
- 10. Let E be a non-empty subset of \mathbb{C} . Suppose that $a_1, \ldots a_n$ are complex numbers, and that f_1, \ldots, f_n are complex-valued functions that are defined and continuous at every point of E. Show that $a_1f_1+\cdots+a_nf_n$ is continuous at every point of E.

[Question 1, Sheet 1 is an example of a set E, and functions f_1, f_2, \ldots , each continuous at every point of E, such that the convergent series $\sum_{n=1}^{\infty} f_n(z)$ is not continuous at every point of E].

- 11. Let $f(z) = \sum_{m=0}^{p} \sum_{n=0}^{q} a_{m,n} x^m y^n$, where z = x + iy (with x and y real), and the $a_{i,j}$ are real numbers (thus f is the general real polynomial in the two real variables x and y). Prove that f is continuous on \mathbb{C} . [This is easy if you use the appropriate theorems.]
- 12. In each of the following cases decide whether the function f, which is defined on \mathbb{R} and has f(0) = 0, is continuous at 0. Justify your answers.
- (a) $f(x) = x \sin(1/x)$ when $x \neq 0$;
- (b) $f(x) = \sin(1/x)$ when $x \neq 0$;
- (c) $f(x) = (1/x)\sin(1/x)$ when $x \neq 0$;
- (d) f(x) = x if x is rational, and f(x) = -x if x is irrational.
- **13.** Let $E = \{x : 0 \le x < 1\} \cup \{x : 2 \le x \le 3\}$, and let f be defined on E by

$$f(x) = \begin{cases} x & \text{if } x \in [0, 1), \\ x - 1 & \text{if } x \in [2, 3]. \end{cases}$$

Show that f is strictly increasing on E (that is, $x, y \in E$ and x < y implies f(x) < f(y)). Is f continuous on E? Let $f(E) = \{f(x) : x \in E\}$, so that f^{-1} exists on f(E). Is f^{-1} continuous on f(E)?

- **14.** Suppose that $f:[a,b] \to \mathbb{R}$ is strictly increasing, and let E=[a,b] and $f(E)=\{f(x): x \in E\}$. Show that
- (a) $f^{-1}: f(E) \to E$ is continuous on f(E) regardless of whether $f: E \to f(E)$ is continuous or not;
- (b) $f: E \to f(E)$ is continuous on E if and only if f(E) is an interval.
- **15.** Let $f: \mathbb{R} \to [0,1]$ be defined by

$$f(x) = \begin{cases} 1 & \text{if } x \text{ is an integer,} \\ 1/2^n & \text{if } x = p/2^n, \text{ where } p \text{ is an odd integer, and } n = 1, 2, \dots, \\ 0 & \text{otherwise.} \end{cases}$$

This is sometimes called the **ruler function** (compare the the graph of f with the markings on a ruler in inches). At which points is f (i) continuous (ii) discontinuous?