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Brief Notes on Analysis I: Sheet 1

We use the standard notation:

N is {1,2,3,...} (the set of positive integers),

Z is {0,1,—1,2,—2,...} (the set of all integers),
Q is the set of rational numbers,

R is the set of real numbers,

C is the set of complex numbers.

Sequences

Informally, a sequence is a list s1,ss,... of numbers. This is meant to imply that if we choose an integer n
then we know what s, is; thus, formally, a sequence is a function from {1,2,3,...} to R (a real sequence)
or to C (a complex sequence). Obviously we can also consider sequences such as x_1,%g,21,..., Or even
doubly infinite sequences ..., z_1,20.21,.. ..

We want to create a formal definition of the convergence of a sequence to a limit, and we want to be sure
that (for example) 1/n — 0 as n — 0.

Informally, the sequence a,, converges to a if, given an agreed ‘error’, all but a finite number of the terms
a, are within this agreed error of a. It is customary to denote the error by &, so we arrive at the following
formal definition (for a complex sequence):

the sequence a, converges to a if, given any positive £, there is an integer no (which will depend on
€) such that if n > ng then |a, —a| <e. If a, converges to a we write a,, = a, and also lim, , a, = a.
We call a the limit of the sequence a,,. Any sequence can have at most one limit.

The existence and values of the limits of sequences interacts with the algebra of real and complex numbers
in the natural way:
if a, = a and b, — b then (with appropriate modifications in the case of the quotient)

Aan, + pby, = Aa+ pb,  apb, — ab,i  an/b, — a/b.

To make further progess we need something more substantial. We now introduce the following AXIOM:
if a, is a real sequence such that (i) a; < ay < ---, and (ii) for some M, and all n, a, < M,
then the sequence a, converges to some a.

It is easy to see that necessarily, a < M (and possibly a < M).

The following terminology is helpful:

(1) the real sequence x,2,... is increasing if z, < x,41 for all n;

(2) the real sequence x;,x2,... is decreasing if x, > x,41 for all n;

(3) a real sequence is monotonic if it is either increasing or decreasing;

(4) the real sequence zi, 2, ... is strictly increasing if =, < z,41 for all n;

(5) the real sequence xy, 2, ... is strictly decreasing if z, > z,,1 for all n;

(6) the real sequence x, 2, ... is bounded above if there is an M such that z, < M for all n;
(7) the real sequence x;,x2,... is bounded below if there is an M such that z, > M for all n;
(8) the COMPLEX sequence 21,22, ... is bounded if there is an M such that |z,| < M for all n.

Our AXIOM now states that any real monotonic bounded sequence converges.

Infinite series
An infinite series is an expression of either of the forms

S n, @t

n=1

We write s, = a1 + as + - - + a,; these are the partial sums of the infinite series. The series 2211 an
converges if and only if the sequence s, converges, and then we give Y >° | a, the value lim, o s,. If &
series does not converge it is said to diverge.
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Note that we can add, or delete, any FINITE number of terms to, or from, the series without affecting its
convergence/divergence. We would, of course, affect the actual value of the series (when it converges) but
this is less important.

It is clear (from the corresponding result for sequences) that if -, a, and > o2 | b, converge then so does

> (Aap + pb,) and
Z()\an + pbn) = )\Z an + “Z by,.
n=1 n=1

n=1

We need tests for convergence, and the most powerful test of all comes directly from our AXIOM:
if an =0 for all n, and if there exists M such that a1 +---+a, < M for all n, then Y > | a, converges.
This leads directly to

The Comparison Test: if 0 < an < by for all n, and if Y ,° | b, converges then so does Y.~ | an.

Proof Suppose that ), b, converges to B, Then for all n, by +---+ b, < B (prove this). Thus for all
n, a; +---+ ap, < B so by the result above, }°  a, converges.

The series ), 2z, is said to absolutely convergent if ) |z,| is convergent.
Theorem. If ) z, is absolutely convergent then it is convergent.

Proof Write 2z, = n + iyn. As 0 < |z5| £ 25 < 2|2n| < 2|2,|, we see that the two series - (|zn| + 2n)
and Y (|zn| — n) both converge. Thus so does their difference, namely ) 2z,, and hence so too does
> Zn. A similar argument shows that )y, converges; hence so does ), (z,+iyy). Despite this simple
proof, this is a fundamental and important result; it applies to complex sequences.

If we combine some of these tests we have the following powerful test for complex series:
Suppose that for some M, and all n, |z;|+---+ |2, < M. Then )z, converges.

The Ratio test: suppose that z, # 0 for any n.
(i) If there is some k with 0 < k < 1 such that for all n, |zp41/2n| < k, then ) |2,| converges
(ii) If |2n41/2n| > 1 then ) |2,| diverges.

The proof of (ii) is easy. As |zp| = |#n—1| = --- = |2z1] > 0 we see that the sequence z, does NOT
converge to 0. On the other hand if the series ) z,, converges, then s, = 21 +---+ 2, — s, say and then
Zn=8p,—8n1—>85—5=0.

If a series ), 2z, converges but ) |z,| diverges, we say that the series is conditionally convergent.
Tests for these series are usually much more delicate, but there is one elementary test.

The Alternating Series Test. Suppose that a; > ay > --- > 0 and that a, — 0 as n — oo. Then the
series a1 — az + az — a4 + a5 — - - - converges.

Here are some limits/series that you should be familiar with.

e Y, zF is convergent if |2| < 1, and divergent if |z ;

2
e > 1/nF is convergent if k > 1, and divergent if k <
e 1-1/24+1/3-1/4+1/5—-1/6+--- is convergent, but not absolutely convergent.

1
1;

e The series expz = 1 + 2z + 22/2! 4+ 23/3! + - -- is absolutely convergent for every complex number z.
Thus exp z is now a function defined everywhere on C.

e n'/" 51 as n— oo; thus if 1 <a, <7, then ay/™ — 1 as n — co. In particular, for any positive a,

a'/" 51 as n — o0.



