SYMPLECTIC GEOMETRY EXAMPLES 3

G.P. Paternain Michaelmas 2021

Comments on and/or corrections to the questions on this sheet are always welcome, and may be e-mailed to me at g.p.paternain@dpmms.cam.ac.uk. Most of the exercises are taken from the text by A. Cannas da Silva that we are following. The two questions with a * are intended for marking.

1^{*}. Let (V, Ω) be a symplectic vector space. Recall that a complex structure J on V is a linear map $J : V \to V$ with $J^2 = -id$. The complex structure J is said to be *compatible* with Ω if $J^*\Omega = \Omega$ and $\Omega(u, Ju) > 0$ for all $u \neq 0$. Show that there is always a compatible complex structure J on (V, Ω) .

2. Let M be a compact k-dimensional submanifold of \mathbb{R}^n . Suppose that at each $p \in X$ we are given a linear isomorphism $L_p : \mathbb{R}^n \to \mathbb{R}^n$ such that $L_p|_{T_pX} = \text{id}$ and L_p depends smoothly on p. Show that there exists an embedding $h : N \to \mathbb{R}^n$ of some neighbourhood N of X such that $h|_X = \text{id}$ and $dh_p = L_p$ for all $p \in X$.

3. Let (M, H) be a contact manifold with a contact form α . Let $N = M \times \mathbb{R}$ and let $\pi : N \to M$ be the projection $\pi(x, s) = x$. Show that $\omega = d(e^s \pi^* \alpha)$ is a symplectic form on N.

4^{*}. Let (M, H) be a contact manifold and $p \in M$. Show that there exists a coordinate system $(U, x_1, \ldots, x_n, y_1, \ldots, y_n, z)$ centered at p such that on U

$$\alpha = dz + \sum_{i=1}^{n} x_i dy_i$$

is a local contact form for H.

5. (Gray stability) Let M be a compact manifold without boundary. Assume that $\alpha_t, t \in [0, 1]$, is a smooth family of contact forms on M. Show that there exists an isotopy $\rho_t : M \to M$ and a family of smooth nowhere vanishing functions $u_t : M \to \mathbb{R}$, $t \in [0, 1]$, such that $\rho_t^* \alpha_t = u_t \alpha_0$ for all $t \in [0, 1]$ (hint: search for a time dependent vector field which belongs to the kernel of α_t).

6. The manifold of contact elements of an n-dimensional manifold X is

$$\mathcal{C} = \{(x, \chi_x) : x \in X \text{ and } \chi_x \text{ is a hyperplane in } T_x X\}.$$

On the other hand, the projectivization of the cotangent bundle of X is

$$\mathbb{P}^*X = (T^*X \setminus \text{zero section}) / \sim$$

where $(x,\xi) \sim (x,\xi')$ whenever $\xi = \lambda \xi'$ for some $\lambda \in \mathbb{R} \setminus \{0\}$ (here $x \in X$ and $\xi, \xi' \in T_x^*X \setminus \{0\}$). We denote the elements of \mathbb{P}^*X by $(x, [\xi])$, where $[\xi]$ is the equivalence class of ξ . Show that \mathcal{C} is naturally isomorphic to \mathbb{P}^*X as a bundle over

X, in other words, exhibit a diffeomorphism $\varphi : \mathcal{C} \to \mathbb{P}^* X$ such that $\pi_{\mathbb{P}^* X} \circ \varphi = \pi_{\mathcal{C}}$, where $\pi_{\mathbb{P}^* X}(x, [\xi]) = x$ and $\pi_{\mathcal{C}}(x, \chi_x) = x$.

The manifold \mathcal{C} carries a natural field of hyperplanes \mathcal{H} , where

$$\mathcal{H}_{(x,\chi_x)} = (d\pi_{\mathcal{C}})^{-1}_{(x,\chi_x)}(\chi_x)$$

Via φ , \mathcal{H} induces a field of hyperplanes \mathbb{H} on \mathbb{P}^*X . Describe \mathbb{H} .

7. Prove that $(\mathbb{P}^*X, \mathbb{H})$ is a contact manifold (and hence so is $(\mathcal{C}, \mathcal{H})$).

8. What is the symplectization of C? What is the manifold C when $X = \mathbb{R}^3$ and when $X = S^1 \times S^1$?

9. Let $X = \mathbb{R}^2$, $\sigma = dx \wedge dy$ and let $H : T^*X \to \mathbb{R}$ be given by $H(x,\xi) = |\xi|^2/2$. Describe the orbits of the Hamiltonian vector field of H with respect to the twisted symplectic form ω_{σ} on T^*X . What happens to the orbits if we consider instead $\omega_{-\sigma}$?

10. Let (V, Ω) be a symplectic vector space and let $\mathcal{J}(V, \Omega)$ denote the set of all compatible complex structures. Show that $\mathcal{J}(V, \Omega)$ is contractible.