SYMPLECTIC GEOMETRY EXAMPLES 1

G.P. Paternain Michaelmas 2021

Comments on and/or corrections to the questions on this sheet are always welcome, and may be e-mailed to me at g.p.paternain@dpmms.cam.ac.uk. Most of the exercises are taken from the text by A. Cannas da Silva that we are following. The two questions with a * are intended for marking.

1^{*}. Given a linear subspace Y of a symplectic vector space (V, Ω) , its symplectic orthogonal Y^{Ω} is the linear subspace defined by

$$Y^{\Omega} := \{ v \in V : \ \Omega(v, u) = 0 \text{ for all } u \in Y \}.$$

- (a) Show that $\dim Y + \dim Y^{\Omega} = \dim V$.
- (b) Show that $(Y^{\Omega})^{\Omega} = Y$.
- (c) Show that, if Y and W are subspaces, then $Y \subseteq W$ iff $W^{\Omega} \subseteq Y^{\Omega}$.

2. We call Y *isotropic* when $Y \subseteq Y^{\Omega}$. Show that, if Y is isotropic, then dim $Y \leq \frac{1}{2} \dim V$. We call Y *coisotropic* when $Y^{\Omega} \subseteq Y$. Check that every codimension 1 subspace is coisotropic.

3. An isotropic subspace Y of (V, Ω) is called *Lagrangian* when dim $Y = \frac{1}{2} \dim V$. Check that Y is Lagrangian iff Y is both isotropic and coisotropic iff $Y = Y^{\Omega}$. Show that, if Y is a Lagrangian subspace, then any basis $\{e_1, \ldots, e_n\}$ of Y can be extended to a symplectic basis $\{e_1, \ldots, e_n, f_1, \ldots, f_n\}$ of V.

4. Let E be a (finite dimensional) real vector space. Consider the bilinear form on $V = E \oplus E^*$ given by

$$\Omega(u + \alpha, v + \beta) = \beta(u) - \alpha(v).$$

Is Ω symplectic?

5*. Let V be a 2n-dimensional real vector space and $\Omega \in \Lambda^2(V^*)$ (the set of skewsymmetric bilinear forms on V). Show that Ω is symplectic iff the *n*th exterior power $\Omega^n = \underbrace{\Omega \wedge \cdots \wedge \Omega}_{n}$ is not zero.

6. Show that if n > 1 there are no symplectic structures on the sphere S^{2n} .

7. Let (M, ω) be a symplectic manifold, and let α be a 1-form such that $\omega = -d\alpha$. Show that there exists a unique vector field ν such that its interior product with ω is α , i.e. $\iota_{\nu}\omega = -\alpha$. Prove that, if g is a symplectomorphism which preserves α (that is, $g^*\alpha = \alpha$), then g commutes with the flow of ν .

Let X be an arbitrary *n*-dimensional manifold and let $M = T^*X$. Let (x_1, \ldots, x_n) be coordinates defined on a neighbourhood U, and let $(x_1, \ldots, x_n, \xi_1, \ldots, \xi_n)$ be

corresponding coordinates on T^*U . Show that when α is the canonical (or Liouville/tautological) 1-form on M, the vector field ν in the previous exercise is $\sum \xi_i \frac{\partial}{\partial \xi_i}$. Moreover, show that the flow ϕ_t of ν is given by $\phi_t(x,\xi) = (x, e^t\xi)$.

8. Let $M = T^*X$ and α the canonical 1-form. Show that if g is a symplectomorphism of M which preserves α , then $g(x,\xi) = (y,\eta)$ implies $g(x,\lambda\xi) = (y,\lambda\eta)$ for all $(x,\xi) \in$ M and $\lambda \in [0,\infty)$. Conclude that g preserves the cotangent fibration, i.e. show that there exists a diffeomorphism $f: X \to X$ such that $\pi \circ g = f \circ \pi$, where $\pi: M \to X$ is the projection map $\pi(x,\xi) = x$. Finally prove that $g = f_{\#}$, where $f_{\#}$ is the symplectomorphism of M lifting f.

9. Let $M = T^*X$ and α the canonical 1-form. Let θ be a 1-form on X. Define $\tau_{\theta}: M \to M$ by setting

$$\tau_{\theta}(x,\xi) := (x,\xi + \theta_x).$$

Compute $\tau_{\theta}^* \alpha$. Give a necessary and sufficient condition on θ so that τ_{θ} is a symplectomorphism. Give an example of a symplectomorphism of M which does not preserve the canonical 1-form α .

10. Let X be a manifold and consider the cotangent bundle $\pi : T^*X \to X$ equipped with its canonical symplectic form $\omega = -d\alpha$, where α is the Liouville 1-form. Let σ be a closed 2-form on X and define

$$\omega_{\sigma} := \omega + \pi^* \sigma.$$

Show that ω_{σ} is a symplectic form.

Let θ be a 1-form on X which we also regard as a section $\theta: X \to T^*X$. Show that $\theta(X)$ is a Lagrangian submanifold of (T^*X, ω_{σ}) if and only if $\sigma = d\theta$. Conclude that if the cohomology class of σ is not zero, then there are no Lagrangian submanifolds L in (T^*X, ω_{σ}) for which $\pi|_L: L \to X$ is a diffeomorphism. Assume that σ is exact, is it true that (T^*X, ω) and (T^*X, ω) are symplectomorphic?