DIFFERENTIAL GEOMETRY (PART III)

EXAMPLE SHEET 4

- 1. Show that the following Lie group actions are proper.
 - (a) The action of \mathbb{K}^* on $\mathbb{K}^{n+1} \setminus \{0\}$ by rescaling, where \mathbb{K} is \mathbb{R} or \mathbb{C} .
 - (b) The right- (or left-) translation action of an embedded Lie subgroup $H \subset G$ on G.
 - (c) Any action of a compact group.
- 2. (a) Given a vector bundle $\pi : E \to B$ and a collection of local $\mathfrak{gl}(k,\mathbb{R})$ -valued 1-forms A_{α} satisfying the preliminary definition of a connection, show that the $\mathfrak{gl}(k,\mathbb{R})$ -valued 1-form \mathcal{A} constructed in lectures from the A_{α} is well-defined (i.e. consistent on overlaps) and satisfies the two conditions on a connection. [*Hint: Show that* $D_b f_{\beta} = (R_{g_{\beta\alpha}^{-1}})_* D_b f_{\alpha} + f_{\beta}(b) \cdot \eta$, where $\eta = g_{\beta\alpha} dg_{\beta\alpha}^{-1} \in \mathfrak{gl}(k,\mathbb{R})$.]
 - (b) Conversely show that if A is a connection then the f_{α}^*A satisfy the preliminary definition.
- 3.[†] Let \mathcal{A} be a connection on a vector bundle E.
 - (a) Prove the Leibniz rule $d^{\mathcal{A}}(fs) = f d^{\mathcal{A}}s + s \otimes df$ for sections *s* and functions *f*.
 - (b) Conversely, show that every \mathbb{R} -linear map \mathcal{D} : {sections of E} \rightarrow {E-valued 1-forms} satisfying $\mathcal{D}(fs) = f \mathcal{D}s + s \otimes df$ is given by $d^{\mathcal{A}}$ for a unique connection \mathcal{A} on E.
 - (c) Show that $(d^{\mathcal{A}})^2 \sigma = F \wedge \sigma$ for any *E*-valued *p*-form σ .
- 4. Fix a *G*-bundle $\pi : P \to B$ with a connection \mathcal{A} .
 - (a) Given vector fields v and w on *B*, let \hat{v} and \hat{w} denote their (unique) lifts to horizontal vector fields on *P*. Show that the vertical component of $[\hat{v}, \hat{w}]$ at a point *p* is $p \cdot -\mathcal{F}(\hat{v}, \hat{w})$.
 - (b) Now take local coordinates on *B* around $\pi(p)$, and define $\gamma(t)$ to be the result of parallel transporting *p* for time *t* in the x^i -direction, then time *t* in the x^j -direction, then back round the other two sides of the square. Show that $\dot{\gamma}(0) = 0$ and $\ddot{\gamma}(0) = p \cdot -2\mathcal{F}(u_i, u_j)$, where u_i and u_j are any lifts of ∂_{x^i} and ∂_{x^j} to *p*. [*Hint: First do it for time u in the* x^j -direction.]
- 5. Recall the connection we defined on the Hopf bundle $S^{2n+1} \to \mathbb{CP}^n$ via its horizontal distribution $H_p = T_p S^{2n+1} \cap i \cdot T_p S^{2n+1}$. Trivialise the bundle over $U_0 \subset \mathbb{CP}^n$, and compute the local connection 1-form A and curvature F in this trivialisation.
- 6. Let $E \to B$ be a vector bundle of rank k, and G a Lie group equipped with a representation $\rho: G \to \operatorname{GL}(k, \mathbb{R})$. A *reduction of the structure group* of E to G comprises a G-bundle $P \to B$ and an isomorphism between E and the associated vector bundle $P \times_G \mathbb{R}^k$.
 - (a) Show that a reduction of the structure group to O(k) is equivalent to a choice of inner product on *E*, via the orthogonal frame bundle $F_O(E)$.
 - (b) Show that a connection \mathcal{A} on E is compatible with a given inner product iff it's induced from a connection on $F_{\mathcal{O}}(E)$.
- 7.[†] Let (X, g) be a Riemannian manifold, equipped with an arbitrary connection whose local connection 1-forms have components Γ^i_{ik} .
 - (a) Find coordinate expressions for ∇g and the torsion *T*, and deduce that the Christoffel symbols are given by $\Gamma_{kij} = \frac{1}{2}(\partial_i g_{kj} + \partial_j g_{ik} \partial_k g_{ij}).$

Now assume that the connection is the Levi-Civita connection.

(b) Given a vector field v on X, show that in coordinates we have

$$(\mathcal{L}_{\mathsf{v}}g)_{ij} = \partial_i(g_{kj}v^k) + \partial_j(g_{ik}v^k) - v^k\Gamma_{kij}.$$

(c) For points p and q in X, let \mathcal{P} be the space of smooth paths $[0,1] \to X$ from p to q, and define the energy functional $E : \mathcal{P} \to \mathbb{R}$ by

$$E(\gamma) = \int_0^1 g(\dot{\gamma}(t), \dot{\gamma}(t)) \,\mathrm{d}t.$$

Suppose $\gamma \in \mathcal{P}$ is a stationary point of *E*. By considering perturbations of γ given by flowing along a vector field vanishing at *p* and *q*, show that γ must satisfy the *geodesic equation*

$$\ddot{\gamma}^k + \Gamma^k_{\ ij} \dot{\gamma}^i \dot{\gamma}^j = 0$$

- 2
- 8. (a) Show that for vector fields v and w on a manifold *X*, equipped with a connection, we have

$$\nabla_{\mathbf{v}}\mathbf{w} - \nabla_{\mathbf{w}}\mathbf{v} = [\mathbf{v}, \mathbf{w}] + T(\mathbf{v}, \mathbf{w}),$$

where T is the torsion of the connection.

- (b) Show that the Riemann tensor of a Riemannian manifold (X, g) vanishes iff X can be covered by coordinate patches on which g = ∑_i(dxⁱ)². Such a metric is called *flat*. [*Hint: Use the fact (proved in the third Examples Class) that a fibrewise basis of vector field* v_i *arises as coordinate vector fields* ∂_{xⁱ} *iff* [v_i, v_j] = 0 *for all i and j.*]
- 9. Let (X, g) be a compact oriented Riemannian *n*-manifold.
 - (a) Show that a *p*-form α is harmonic if and only if it is closed and coclosed. [*Hint: for one direction consider* $\langle \alpha, \Delta \alpha \rangle_X$.]
 - (b) By considering harmonic representatives, construct an isomorphism $H^p_{dR}(X) \to H^{n-p}_{dR}(X)$ for each *p*.
- 10.* Let (X, g_X) be a Riemannian manifold and $\iota : Y \to X$ an embedded submanifold equipped with the metric $g_Y = \iota^* g_X$. Let \mathcal{A}_X be the Levi-Civita connection on X, and let \mathcal{A}_Y be the connection on Y induced from \mathcal{A}_X by the splitting $\iota^* TX = TY \oplus TY^{\perp}$. Show that \mathcal{A}_Y is torsion-free and compatible with g_Y , and hence is the Levi-Civita connection on Y.
- 11.* Consider \mathbb{R}^3 with its standard metric and orientation. Express div, grad, and curl in terms of: the exterior derivative, the Hodge star operator, and raising and lowering indices.

j.smith@dpmms.cam.ac.uk