DIFFERENTIAL GEOMETRY (PART III)

EXAMPLE SHEET 3

- 1. Let *U* be a flow domain and let $\Phi : U \to X$ be a smooth map satisfying $\Phi^s \circ \Phi^t = \Phi^{s+t}$ wherever this makes sense. Show that Φ is a local flow of a vector field v on *X*, which you should define.
- 2.[†] (a) Compute the coordinate expression for the Lie derivative of a 1-form S_a and of a tensor $T_a^{\ b}$, along a vector field v.
 - (b) Write down the flow of the vector field $v = x \partial_y y \partial_x$ on \mathbb{R}^2 , and hence compute the Lie derivative \mathcal{L}_v of the 1-form $x \, dy$ directly from the definition.
- 3. Prove Cartan's magic formula $\mathcal{L}_{\mathbf{v}}\alpha = d(\iota_{\mathbf{v}}\alpha) + \iota_{\mathbf{v}}(d\alpha)$, for a vector field \mathbf{v} and *r*-form α on a manifold *X*, as follows. Let $\Phi : U \to X$ be a local flow of \mathbf{v} , and consider the map $F : U \to \mathbb{R} \times X$ given by $F(t, p) = (t, \Phi^t(p))$, viewed as a diffeomorphism onto its image *V*.
 - (a) Prove Cartan's formula for an *r*-form β on *U*, and for the vector field ∂_t representing translation in the \mathbb{R} direction, by direct calculation.
 - (b) Use diffeomorphism-invariance under *F* to obtain the result for $\operatorname{pr}_2^* \alpha$ and $\partial_t \oplus \mathsf{v}$ on *V*.
 - (c) Deduce the result for α and v on *X*.
- 4. Let v be a vector field on X with local flow Φ .
 - (a) Show that, for any tensor T, if $\mathcal{L}_{v}T = 0$ then $(\Phi^{t})^{*}T = T$ wherever this makes sense.
 - (b) Let w be another vector field, with local flow Ψ . For small t and u, show that $\Phi^{-t} \circ \Psi^u \circ \Phi^t$ is the time-u flow of $(\Phi^t)^* w$, and deduce that if [v, w] = 0 then Φ^t and Ψ^u commute.
- 5. Let X and Y be manifolds of dimensions n and m, and suppose $F : X \to Y$ is a submersion at p. Construct an open neighbourhood U of p and a smooth map $G : U \to \mathbb{R}^{n-m}$ such that $(F|_U, G) : U \to Y \times \mathbb{R}^{n-m}$ is a local diffeomorphism at p. Deduce that there exist local coordinates on X and Y about p and F(p) in which F is given by projection onto the first m components.
- 6. Show that there is no surjective smooth map $f : X \to Y$ if dim $X < \dim Y$.
- 7. Let $\pi : X \to Y$ be a submersion, and let D be a k-plane distribution on X transverse to the fibres, where $k = \dim X - \dim Y$. A curve in X is *horizontal* if it is everywhere tangent to D. Given a point p in X and a curve $\overline{\gamma} : [0,1] \to Y$ with $\overline{\gamma}(0) = \pi(p)$, show that for small $\varepsilon > 0$ there is a unique horizontal curve $\gamma : [0,\varepsilon] \to X$ satisfying $\gamma(0) = p$ and $\pi \circ \gamma = \overline{\gamma}$. If we can take $\epsilon = 1$ then $\gamma(1)$ is the *parallel transport* of p along $\overline{\gamma}$. Show that D is integrable iff for all p there exists a neighbourhood U of p in $\pi^{-1}(\pi(p))$ and a neighbourhood V of $\pi(p)$ in Y such that for all q in Uand all curves $\overline{\gamma}$ in V with $\overline{\gamma}(0) = \pi(q)$ the parallel transport of q along $\overline{\gamma}$ exists and depends only on q and $\overline{\gamma}(1)$, not on the whole curve $\overline{\gamma}$.
- 8.[†] (a) By considering the map F : GL(n, ℝ) → {symmetric matrices} given by F(A) = A^TA, show that O(n) is an embedded Lie subgroup of GL(n, ℝ). Identify o(n) as a subspace of gl(n, ℝ).
 (b) Show that SU(n) is a Lie subgroup of GL(n, ℂ) and similarly identify its Lie algebra.
- 9. For a Lie group *G* compute the derivatives $D_{(e,e)}m : \mathfrak{g} \oplus \mathfrak{g}$ and $D_ei : \mathfrak{g} \to \mathfrak{g}$ of the multiplication and inversion maps *m* and *i* at the identity. Show that *i*^{*} exchanges left-invariant and right-invariant vector fields, and deduce that the bracket operation on \mathfrak{g} defined using right-invariant (rather than left-invariant) vector fields differs from the usual one by a sign.
- 10. Let $F : H \to G$ be a morphism of Lie groups, i.e. a smooth map which is a group homomorphism. Show that $F(\exp_H(\xi)) = \exp_G(D_eF(\xi))$ for all $\xi \in \mathfrak{h}$, and deduce that D_eF is a Lie algebra homomorphism, i.e. a linear map which respects the bracket operation. This shows, in particular, that if H is an embedded Lie subgroup of G then the exponential map and bracket on \mathfrak{h} are the restrictions of those on \mathfrak{g} .
- 11.* Let *G* be a Lie group. Given an embedded Lie subgroup *H*, show that its left cosets induce a foliation of *G*, with tangent distribution $\{I_{\xi} : \xi \in \mathfrak{h}\}$. Given instead a subspace \mathfrak{h} of \mathfrak{g} , show that the distribution $\{I_{\xi} : \xi \in \mathfrak{h}\}$ on *G* arises from a foliation iff \mathfrak{h} is actually a Lie subalgebra of \mathfrak{g} , i.e. \mathfrak{h} is closed under the Lie bracket on \mathfrak{g} . If this holds, must \mathfrak{h} be the Lie algebra of an embedded subgroup of *G*?

j.smith@dpmms.cam.ac.uk