DIFFERENTIAL GEOMETRY (PART III)

EXAMPLE SHEET 2

- 1. Let *T*, *U*, and *V* be finite-dimensional vector spaces over a field \mathbb{K} . Let e_1, \ldots, e_m be a basis for *U*, with dual basis $\varepsilon_1, \ldots, \varepsilon_m$, and let f_1, \ldots, f_n be a basis for *V*.
 - (a) Show that there is a canonical isomorphism $V \otimes U^{\vee} \cong \mathcal{L}(U, V)$.
 - (b) Given $\alpha \in \mathcal{L}(U, V)$, viewed as an element of $V \otimes U^{\vee}$, what is the meaning of its components with respect to the basis $f_j \otimes \varepsilon_i$?
 - (c) Show that contraction $V \otimes U^{\vee} \otimes U \otimes T^{\vee} \to V \otimes T^{\vee}$ corresponds to the composition map $\mathcal{L}(U,V) \otimes \mathcal{L}(T,U) \to \mathcal{L}(T,V)$.
- 2. (a) Recall the Möbius bundle $M \to S^1$ from Sheet 1. Show that $M \oplus M$ is trivial.
 - (b) Show that for all *n* we have $TS^n \oplus \mathbb{R} \cong \mathbb{R}^{n+1}$ over S^n . [*Hint: View* \mathbb{R}^{n+1} as $\iota^*T\mathbb{R}^{n+1}$, where $\iota: S^n \to \mathbb{R}^{n+1}$ is the inclusion.]
- 3. Show that $H^*\mathcal{O}_{\mathbb{CP}^n}(-1) \cong \underline{\mathbb{C}}$, where $H: S^{2n+1} \to \mathbb{CP}^n$ is the Hopf map.
- 4.[†] Let α be a nowhere-zero 1-form on a manifold *X*, and let β be a *p*-form.
 - (a) Show that if $\beta = \alpha \wedge \gamma$ for some (p-1)-form γ then $\alpha \wedge \beta = 0$.
 - (b) Conversely, show that if $\alpha \wedge \beta = 0$ then there exists a (p 1)-form γ with $\beta = \alpha \wedge \gamma$. [*Hint:* work locally in a coordinate patch, then use a partition of unity.]
 - (c) Must we have $\beta \wedge \beta = 0$?
- 5.[†] (a) Show that $H^1_{dR}(S^n) = 0$ for $n \ge 2$ by taking a closed 1-form α and considering its restrictions to $U_{\pm} = S^n \setminus \{(0, \dots, 0, \pm 1)\}.$
 - (b) For $n \ge 1$ use a similar idea to prove by induction that

$$H^r_{\mathrm{dR}}(S^n) \cong \begin{cases} \mathbb{R} & \text{if } r = 0 \text{ or } n \\ 0 & \text{otherwise.} \end{cases}$$

Recall that we did n = 1 in lectures. [Hint: $U_+ \cap U_-$ is homotopy equivalent to S^{n-1} .]

- 6. Show that the tautological bundle $\mathcal{O}_{\mathbb{RP}^1}(-1)$ is non-orientable. By considering a suitable map $F : \mathbb{RP}^1 \to \mathbb{RP}^n$, show that $\mathcal{O}_{\mathbb{RP}^n}(-1)$ is also non-orientable.
- 7. Let *X* be a connected orientable *n*-manifold.
 - (a) Show that *X* has exactly two orientations, and hence define what it means for a diffeomorphism $F : X \to X$ to be orientation-preserving or orientation-reversing.
 - (b) For a compactly-supported *n*-form ω on *X*, show that

$$\int_X F^* \omega = \pm \int_X \omega,$$

where the \pm is the *orientation sign* of *F* (+ if orientation-preserving, - if orientation-reversing).

- 8. (a) For which *n* is the antipodal map $\alpha : S^n \to S^n$ orientation-preserving?
 - (b) By considering a natural $2: 1 \max \pi : S^n \to \mathbb{RP}^n$, deduce the values of n for which \mathbb{RP}^n is orientable. You may assume without proof that π is locally a diffeomorphism.
 - (c) By combining these ideas with Q5. and Q7. compute $H^n_{dR}(\mathbb{RP}^n)$ for all *n*.
- 9. Let Σ be a compact 2-manifold-with-boundary, let $F : \Sigma \to \mathbb{R}^2$ be a smooth map, and let α be the 1-form Pdx + Qdy on \mathbb{R}^2 (where P and Q are smooth functions). Prove a version of Green's theorem by applying Stokes to $F^*\alpha$.
- 10.* The *hairy ball theorem* states that for even $n \ge 2$ there is no nowhere-zero vector field on S^n (this implies that TS^n is non-trivial). Fix such an n and prove the theorem as follows.
 - (a) Show directly that a nowhere-zero vector field on S^n induces a homotopy from the identity to the antipodal map.
 - (b) Use de Rham cohomology to prove that no such homotopy exists.

j.smith@dpmms.cam.ac.uk