EXAMPLE SHEET 1

- 1. Let *X* be a topological *n*-manifold and let \mathbb{A} and \mathbb{B} be smooth atlases on *X*.
 - (a) Show that if \mathbb{A} and \mathbb{B} are smoothly equivalent then they have the same smooth functions, in the following sense: for any open $U \subset X$, a function $f : U \to \mathbb{R}$ is smooth with respect to \mathbb{A} if and only if it's smooth with respect to \mathbb{B} .
 - (b) Prove the converse. [*Hint: Consider local coordinate functions.*]
- 2. Show that the homogeneous coordinate maps on \mathbb{RP}^n and \mathbb{CP}^n define smooth pseudo-atlases. Show that resulting spaces are Hausdorff and second-countable, and hence are smooth manifolds.
- 3. Suppose X and Y are smooth manifolds with respective atlases

 $\{\varphi_{\alpha}: U_{\alpha} \xrightarrow{\sim} V_{\alpha}\}_{\alpha \in \mathcal{A}} \text{ and } \{\psi_{\beta}: S_{\beta} \to T_{\beta}\}_{\beta \in \mathcal{B}}.$

Show that a map $F : X \to Y$ is smooth if and only if there exists a cover $\{W_{\gamma}\}_{\gamma \in \mathcal{C}}$ of X, and for each $\gamma \in \mathcal{C}$ there exist elements $\alpha(\gamma) \in \mathcal{A}$ and $\beta(\gamma) \in \mathcal{B}$, such that for all γ we have:

- (a) W_{γ} is contained in $U_{\alpha(\gamma)}$ and $F(W_{\gamma})$ is contained in $S_{\beta(\gamma)}$.
- (b) $\varphi_{\alpha(\gamma)}(W_{\gamma})$ is open in $V_{\alpha(\gamma)}$. (This is equivalent to W_{γ} being open in *X*, but we have phrased it this way so as not to mention the topology on *X* explicitly.)
- (c) The map

$$\psi_{\beta(\gamma)} \circ F \circ \varphi_{\alpha(\gamma)}|_{W_{\gamma}}^{-1} : \varphi_{\alpha(\gamma)}(W_{\gamma}) \to T_{\beta(\gamma)}$$

is smooth.

- 4. Using Q3. show that the Hopf map $H: S^{2n+1} \to \mathbb{CP}^n$ is smooth.
- 5. About which points in \mathbb{R}^2 do the functions x and $r = \sqrt{x^2 + y^2}$ provide local coordinates? (I.e. about which points can we use (x, r) as a chart?) Draw the corresponding basis vectors ∂_x and ∂_r at a representative selection of points.
- 6. Write down a smooth homeomorphism $\mathbb{R} \to \mathbb{R}$ that is not a diffeomorphism.
- 7.[†] Let $\iota: S^2 \to \mathbb{R}^3$ be the inclusion, and let $F: \mathbb{CP}^1 \to S^2$ be the map defined by

$$[z_0:z_1]\mapsto \frac{1}{\|\mathbf{z}\|^2}\left(2\overline{z}_0z_1,|z_1|^2-|z_0|^2\right)\in S^2\subset\mathbb{C}\oplus\mathbb{R}=\mathbb{R}^3.$$

Let (x, y, z) be the standard coordinates on \mathbb{R}^3 and let (u, v) be coordinates parametrising $U_0 = \{z_0 \neq 0\} \subset \mathbb{CP}^1$ via $(u, v) \mapsto [1 : u + iv]$.

- (a) Compute the derivative of $\iota \circ F$ on U_0 in terms of these coordinates.
- (b) Show that *F* is a diffeomorphism, so \mathbb{CP}^1 is a sphere (the Riemann sphere).
- 8.[†] Define the *Möbius bundle* $M \to S^1$ to be the line bundle trivialised over $U_{\pm} = S^1 \setminus \{(0, \pm 1)\}$ with transition function

$$g_{+-}: S^1 \setminus \{(0, \pm 1)\} \to \operatorname{GL}(1, \mathbb{R}) = \mathbb{R}^*$$

given by 1 on the left-hand semicircle and -1 on the right-hand semicircle.

- (a) Show that \mathbb{RP}^1 is diffeomorphic to S^1 .
- (b) Using this diffeomorphism to identify \mathbb{RP}^1 with S^1 , show that M is isomorphic to the tautological bundle $\mathcal{O}_{\mathbb{RP}^1}(-1)$.
- 9. Using the two standard stereographic projection charts, trivialise TS^2 over $U_{\pm} = S^2 \setminus \{0, 0, \pm 1\}$, and calculate the transition function $g_{+-} : U_+ \cap U_- \to \operatorname{GL}(2, \mathbb{R})$. Deduce that TS^2 is isomorphic to $\mathcal{O}_{\mathbb{CP}^1}(2)$ as rank-2 real vector bundles (i.e. viewing the fibres of $\mathcal{O}_{\mathbb{CP}^1}(2)$ as \mathbb{R}^2 instead of \mathbb{C}).
- 10.* Fix a manifold X and a point p in X. Let $\mathcal{O}_{X,p}$ be the space of germs of smooth functions about p; this is an \mathbb{R} -vector space by scalar multiplication. An \mathbb{R} -linear derivation $\mathcal{O}_{X,p} \to \mathbb{R}$ is an \mathbb{R} -linear map $d : \mathcal{O}_{X,p} \to \mathbb{R}$ such that d(fg) = d(f)g(p) + f(p)d(g) for all f and g. These form an \mathbb{R} -vector space denoted by $\text{Der}_{\mathbb{R}}(\mathcal{O}_{X,p},\mathbb{R})$. Show that this vector space is naturally isomorphic to T_pX .

j.smith@dpmms.cam.ac.uk