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This is not the five minute argument version for Randall; it’s rather the full
half hour version for Alice and Adam.

Let’s abbreviate this proposition to ‘SCU’. That was Alice Vidrine’s sugges-
tion. It’s pronounced scum or screw or perhaps skew.

SCU crops up naturally in the analysis of NF from a category theoretic
perspective. Consider the (conjectural) category of small sets and small maps,
where ‘small’ means ‘strongly cantorian’, and a small map is a map whose
every fibre is strongly cantorian. For this gadget to be a category we need a
composition of small maps to be small and this is equivalent to SCU.

The status of SCU is unclear at the time of writing. As Holmes points
out, it’s a theorem of NFU+AC. Let X be a strongly cantorian set of strongly
cantorian sets. AC implies that every strongly cantorian set is the same size as
an initial segment of the ordinals (and all the ordinals in that inital segment
will be cantorian). Use AC to pick one such bijection for each x ∈ X and fix
such a bijection for X itself. Thus everything in

⋃
X has an address that is

an ordered pair of cantorian ordinals, so
⋃
X now injects into a set of ordered

pairs of cantorian ordinals. Any such set is strongly cantorian, so
⋃
X must be

strongly cantorian too. SCU doesn’t appear to be a theorem of NF, but nor
does it appear to be strong: i tried to deduce the Axiom of Counting from it
but without success. It’s clearly unstratified, so one might hope that it could
be proved consistent relative to NF by means of Rieger-Bernays permutation
models, but i have found what i hope is a correct proof that SCU is invariant.

REMARK 1 SCU is invariant

Proof:
SCUσ is

(∀x)(stcan(x) ∧ (∀y)(y ∈ x→ stcan(y)).→ (∀z)(z =
⋃
x→ stcan(z)))σ

Now (stcan(x))σ is stcan(σ(x)) or equivalently stcan(σ“σ(x)), and (z =⋃
x)σ is σ(z) =

⋃
σ“σ(x) giving
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(∀x)(stcan(σ(x))∧(∀y)(y ∈ σ(x)→ stcan(σ(y))).→ (∀z)(σ(z) =
⋃
σ“σ(x)→ stcan(σ(z))))

reletter ‘z’

(∀x)(stcan(σ(x))∧(∀y)(y ∈ σ(x)→ stcan(σ(y))).→ (∀z)(z =
⋃
σ“σ(x)→ stcan(z)))

and simplify

(∀x)(stcan(σ(x)) ∧ (∀y)(y ∈ σ(x)→ stcan(σ(y))).→ stcan(
⋃
σ“σ(x))))

reletter ‘x’

(∀x)(stcan(x) ∧ (∀y)(y ∈ x→ stcan(σ(y))).→ stcan(
⋃
σ“x)))

Now this last is equivalent to

(∀x)(stcan(x) ∧ (∀y)(y ∈ x→ stcan(y)).→ stcan(
⋃
x)))

. . . beco’s we can just substitute ‘σ−12 (x)’ for ‘x’.

Early in the morning of 6/xi/2014 i had a flash of insight with which i will
now regale you.

We start with a banal observation. Let F1 be the function that sends each
strongly cantorian set x to ι�x. F1 cannot be a set: if it were then F1“(ι“V ) =
{ι�{x} : x ∈ V } would be a set (beco’s the image of a set in a set is a set) and⋃
F1“(ι“V ) would be the graph of the singleton function, and that cannot be a

set. However this line of talk leaves open the possibility that F1 �x might be a
set whenever x is strongly cantorian. In fact we have the following.

REMARK 2
SCU is equivalent to the assertion that, for all strongly cantorian sets x of
strongly cantorian sets, F1 �x is a set.

Proof:

L → R
Assume SCU and let X be a strongly cantorian set of strongly cantorian

sets. Then ι�
⋃
X is a set. Let’s call it F . Consider now the function that sends

each x ∈ X to F �x. This is a set, since it is the extension of a stratified set
abstract. But X was an arbitrary strongly cantorian set of strongly cantorian
sets. So SCU implies that F1 is locally a set, in the sense that, for any strongly
cantorian set X [the graph of] its restriction to X is a set.

R → L
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Let X be a strongly cantorian set of strongly cantorian sets. Then F1 �X =
λx ∈ X.ι�x is a set and so too is the image of X in it, namely {ι�x : x ∈ X}.
But then

⋃
{ι�x : x ∈ X} is a set, and is ι�

⋃
X making

⋃
X strongly cantorian

as desired.

Very well. So SCU tells us that, for every strongly cantorian set X of strongly
cantorian sets, [the graph of] F1 �x is a set. Consider now the function F2 : X 7→
F1 �X for every strongly cantorian set X of strongly cantorian sets. Can the
graph of F2 be a set? Clearly not: ι2“V is a strongly cantorian set of strongly
cantorian sets, and its image in this function would be the set {ι �{x} : {x} ∈
ι“V }, which is {ι�{x} : x ∈ V }, whose sumset is simply the graph of ι. However,
there seems to be no obvious objection to the existence of [the graph of] the
restriction of F2 to any strongly cantorian set.

A pattern is beginning to emerge! Let us write ‘stcan’ for the class of strongly
cantorian sets, ‘stcan2’ for the class of strongly cantorian sets of strongly can-
torian sets, and so on.

Let F0 be the function ι;
F0 cannot exist globally but F0 �x exists for any x in stcan.

Let F1 be the function λx ∈ stcan.F0 �x;
F1 cannot exist globally but F1 �X can exist for any set in stcan2.

Let F2 be the function λx ∈ stcan2.F1 �x;
F2 cannot exist globally but F2 �X can exist for any set in stcan3.

...

Let Fn+1 be the function λx ∈ stcann.Fn �x;
Fn cannot exist globally but Fn �X can exist for any X in stcann+1.

and so on.

Let SCUn be the assertion that restrictions of Fn exist locally, so that Fn �X
is a set whenever X ∈ stcann. SCU1 is of course SCU. make sure

these super-
scripts are
correct

We record for later use the trivial observation that SCU implies that if x ∈
stcann+1 then

⋃
x ∈ stcann.

The following remark answers the question that was on the Reader’s lips.

REMARK 3 All SCUn for n ∈ IN are equivalent.

Proof:
SCUn+1 implies SCUn.

Suppose x ∈ stcann; we will show that Fn �x exists. Since x ∈ stcann we
have ι“x ∈ stcann+1. So, by SCUn+1, Fn+1 �ι“x exists. This is the function
that, on being given {y} ∈ ι“x, returns Fn �{y}. This value is the singleton
{〈y, Fn(y)〉}. So Fn+1“(ι“x) (which is a set) is {{〈y, Fn(y)〉} : y ∈ x}, and the
sumset of this last object is precisely Fn �x, as desired.
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For the other direction we assume SCUn, and suppose x to be an arbitrary
member of stcann+1; we will show that Fn+1 �x is a set.

Clearly stcann+1 ⊆ stcann so x ∈ stcann, whence—by SCU—
⋃
x ∈ stcann.

SCUn now tells us that Fn �
⋃
x is a set. Let’s call this function H for the

moment. But then the function that takes subsets S of
⋃
x and returns the

restriction H �S is also a set. H is defined on P(
⋃
x) which is a superset of x.

So the restriction of this function to x is a set.

SCU implies that a strongly cantorian product of strongly cantorian sets is
strongly cantorian

THEOREM 1
If SCU then, for all I, if stcan(I) and (∀i ∈ I)(stcan(Ai)) then stcan(

∏
i∈I

Ai)

Proof:
This is easy. The product is a subset of P((

⋃
i∈I

Ai × I)). Assuming SCU the

union
⋃
i∈I

Ai is strongly cantorian because I is and all the Ai are. The cartesian

product of two strongly cantorian sets is strongly cantorian, a power set of
a strongly cantorian set is strongly cantorian, and every subset of a strongly
cantoarian set is strongly cantorian.

We can now prove

THEOREM 2 (SCU)
Let 〈I,≤I〉 be a directed poset with I strongly cantorian, and let {Ai : i ∈ I}

be a family of sets with surjections πi,j : Ai →→ Aj whenever i >I j, and the
surjections all commute. Suppose further that, for every i and j, the fibres of
πi,j are strongly cantorian. Naturally there is a limit object AI , a least thing
that maps onto all the Ai—with maps πI,i : AI →→ Ai for each i ∈ I.

Then all the fibres of fI,i are strongly cantorian.

Proof:
The inverse (projective) limit AI is

{f ∈
∏
i∈I

: (∀j >I i)(πj,i(f(j)) = f(i)}

For x ∈ Ai, the fibre π−1I,i “{x} is

{f ∈
∏
j>i∈I

: (∀j >I i)(πj,i(f(j)) = x)}

So a fibre for x ∈ Ai is set of functions f that, for each j > i ∈ I, pick
something that πj,i sends to x. So it’s a subset of the product of all the subsets
π−1j,i “{x} of Aj . . . and, by assumption, all those sets are strongly cantorian. So
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the fibre is a subset of a direct product of a strongly cantorian family of strongly
cantorian sets, and accordingly by theorem 1 is strongly cantorian.

In plain language, SCU implies that the inverse (projective) limit of a strongly
cantorian family of strongly cantorian structures is strongly cantorian.
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