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0.1 Summary

This thesis examines the interaction between two ideas. The first is the concept of

hereditarily symmetric sets introduced in [Forster 1] as a model of stratified fragment of

Zermelo-Fraenkel (ZF) set theory in which the Axiom of Choice fails, thus providing a

middle ground between ZF and Quine’s set theory New Foundations (NF). We generalise

Forster’s concept of hereditarily symmetric sets to define a family of models for stratified

fragments of ZF, all refuting Choice. These models provide an insight to a question

in [Forster 1] about the sensitivity of the hereditarily symmetric sets to changes in

their definition. As an application we also include a result by Zachiri McKenzie where

these models are used to distinguish two different structures in [Forster 1], namely the

hereditarily symmetric sets and the stratified constructible sets.

The second idea, which appeared in various forms in [Hinnion 1], [Holmes 1] and an

unpublished paper of Thomas Forster, is to use well-founded extensional relations to

create syntactic models of set theory. Here we will introduce a closely related technique

to create syntactic models of both ZF and ZFA (where the Axiom of Foundation is

replaced with its opposite, the Axiom of anti-foundation) from models of the stratified

fragment of ZF. This technique uses graphs in an existing model of the stratified set

theory to represent the membership relation of sets in a new model, and the properties of

the constructed model depend on the class of graphs we considered initially. In particular

restricting those graph to well-founded extensional relations as in the accounts above

give us a well-founded construction, while allowing graphs with loops gives us a model of

anti-foundation. This construction is applicable to the family of generalised hereditarily

symmetric models described previously, and shows that the apparently weak theory of

these models is strong enough to interpret ZF. In fact if the Axiom of Choice holds in

the original ZF model (from which the generalised hereditarily symmetric models are

defined), we can recover an exact replica of this original model within the generalised

hereditarily symmetric models.

Finally we utilise both ideas in the context of multisets. We formalise the language and

axioms for a multiset theory in which multiplicities are of the same type as sets, and

define the multiset analogue of the hereditarily symmetric sets in this theory. Using

an adaptation of our previous graph-based technique, we prove the consistency of our

multiset theory with anti-foundation and show that unlike in set theory, the subset

relation on multisets under our definition need not be antisymmetric; hence an extra

axiom is necessary if one wants to ensure the antisymmetry of the inclusion relation.
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0.2 Syntactic conventions

To keep the formulae readable we shall keep the number of brackets to a minimum and

assign descending priorities to the following symbols:

• Universal and existential quantifiers and their variants.

• Conjunction and disjunction.

• Implications.

For example the formula P ⇒ (∀x)Q(x) ∨R associates as P ⇒
((

(∀x)Q(x)
)
∨R

)
.

If R is a binary relation or binary predicate symbol, write

(∀xRy)φ(x)⇔df (∀x)(xRy ⇒ φ(x))

and

(∃xRy)φ(x)⇔df (∃x)(xRy ∧ φ(x))

For multiple quantifiers we write

(∀x1 . . . xn)φ(x1 . . . xn)⇔df (∀x1) . . . (∀xn)φ(x1 . . . xn)

and

(∃x1 . . . xn)φ(x1 . . . xn)⇔df (∃x1) . . . (∃xn)φ(x1 . . . xn)

Similarly we extend this notation to

(∀〈x1 . . . xn〉Ry)φ(x1 . . . xn)⇔df (∀x1 . . . xn)(〈x1 . . . xn〉Ry ⇒ φ(x1 . . . xn))

and

(∃〈x1 . . . xn〉Ry)φ(x1 . . . xn)⇔df (∃x1 . . . xn)(〈x1 . . . xn〉Ry ∧ φ(x1 . . . xn))

0.3 Other notations

In this thesis relations and functions mean sets of ordered pairs (or tuples in the case of

higher arity), unless specified otherwise.

Write f ∈ Function to mean f is a function and f−1 for the inverse {〈y, x〉 : 〈x, y〉 ∈ f}
(which may not be a function).

Write dom f for the domain of the function f and ran f for the range of f . If R is a

relation, write DomR for the field of R, i.e. the set {x : (∃y)(〈x, y〉 ∈ R ∨ 〈y, x〉 ∈ R)}.
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Remark 1. If f is a function, then it is also a relation. Thus we have

Dom f = dom f ∪ ran f

Write TC(x) for the set-theoretic transitive closure of x, i.e. the smallest transitive set

that contains x.

Write Trans(R) for the transitive closure of the relation R, i.e. the smallest transitive

relation that includes R.

Definition 1. ι is the function-class x 7→ {x}.

Definition 2. j is the operator taking any function-class f to jf , where (jf)x := {f(y) :

y ∈ x}.

Remark 2. Note that by extending f with the identity function where necessary, we can

define jf on the whole universe of sets; thus following this convention jf will always be

a proper class. However in practice we can always restrict our attention to some set as

domain, where the size of jf will not be a problem.

Following tradition we write f“x as a shorthand for (jf)x, so for example ι2“x =

{{{y}} : y ∈ x}.

If our theory is strong enough to implement natural numbers, as is often the case, we

can formally implement jn for any natural number n of the theory as follows:

Definition 3. Write

y = jnf(x)⇔df (∃s ∈ Function)
(

dom s = {m ∈ N : m ≤ n} ∧

∀i > 0)φ(s(i), s(i+ 1)) ∧ s(n)(x) = y ∧

f ⊂ s(0) ∧ f−1 ⊂ s(0) ∧
⋃n

x ⊂ dom s(0) ∧

(∀z ∈ dom s(0) \ (dom f ∪ ran f))s(0)(z) = z
)

where N is the set of natural numbers within the theory and φ(f, g) is shorthand for

f ∈ Function ∧ g ∈ Function ∧ dom g = P dom f ∧

(∀x ∈ dom g)g(x) = {f(y) : y ∈ x}

Remark 3. Note that in the formula above, the function s(0) is an extension of f by

the identity function to a larger domain. This ensures that x will be in the domain of

s(n).
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When we refer to a permutation with no specified domain, we mean just a bijection

whose domain and range are the same.

A formula φ is stratified if we can assign to each variable x in φ a natural number

t(x), the type of x, such that t(x) = t(y) whenever x = y is a subformula of φ, and

t(y) = t(x) + 1 whenever x ∈ y is a subformula of φ.

A set x is Cantorian if it is the same size as the set of singletons of its members; it is

strongly Cantorian if the singleton operator is the bijection that makes the set Cantorian.

The theory strZF consists of stratified instances of ZF axioms: Extensionality, stratified

instances of Comprehension, Pairing, Union, Power Set, stratified instances of Collec-

tion, Foundation, and Infinity (there exists a well-order with no maximal element).

Remark 4. Without full Comprehension, there is a difference between Collection and

Replacement - here we choose Collection to suit the constructions we are going to use.

New Foundations (NF) is the theory consisting of Extensionality, Comprehension and

the existence of a universal set

(∃V )(∀x)(x ∈ V )

NFU is a variant of NF where Extensionality is restricted to non-empty sets, and has

been proven to be consistent with ZF.

We denote the class of all ordinals by ON . In ZF models this means the class of von

Neumann ordinals.

0.3.1 Symbol overloading

To avoid too complicated notations, we will overload certain symbols to denote analogous

concepts in different contexts. For example, [A, a] might denote a pointed digraph when

we build a syntactic model of set theory, or a pointed hypergraph when we intend to

provide an interpretation of multiset theory. Similarly f−1(x) may be the preimage of x

under the function of f , while R−1(x) is the set of predecessors of x under the relation

R. In such circumstances, the meaning of the overloaded symbol will be clear from the

specified context.
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1 HS and its variants

The structures presented in this section have their roots in the class of hereditarily

symmetric sets HS, presented by Thomas Forster in [Forster 1]. Here we will give

a very brief discussion of this structure, leading to a few questions that motivate the

construction in the next section.

Definition 4. (Forster) Let G be the group of finite permutations on Vω, or the alter-

nating group on Vω. For n ∈ ω, say x is n-symmetric if (∀i ≥ n)(∀σ ∈ G)jiσ(x) = x.

Say x is symmetric if x is n-symmetric for some n.

HS is the class of all hereditarily symmetric sets, i.e. x ∈ HS if and only if x and

everything in its transitive closure is symmetric.

Remark 5. While in [Forster 1] n is a concrete natural number, here we will take n to

be any finite ordinal in V in order for HS to be a definable class.

Consider the cumulative hierarchy {Vα : α ∈ ON}. It is easy to see that any set of rank

n is n + 1-symmetric for all n ∈ ω, hence Vω ⊂ HS. There is also a good reason for

letting G act on Vω only: Suppose G acts transitively on Vα for some α > ω, and x /∈ Vω
is symmetric. Then TC(x) must contain the whole of Vα, hence HS = Vω!

In [Forster 1], HS is shown to be a model of strZF. Furthermore Vα ∩ HS ∈ HS for

all ordinals α. We will omit the proof here, since a generalised result will be shown in

the next section. However since in the definition of symmetry we take n to be finite

ordinals instead of concrete natural numbers, the central device in the proof needs a

slight modification. The following lemma is adapted from [Coret 1]:

Lemma 1. (Coret’s Lemma) Let φ(x1 . . . xk) be a stratified formula such that xi have

type ti in a stratification of φ and let ti be the von Neumann ordinal corresponding to

ti.

Then for any permutation σ ∈ V

(∀m ∈ ω)
(
φ(x1 . . . xk)⇔ φ(jt1+mσ(x1) . . . jtk+mσ(xk))

)
Proof. Induction on the structure of φ.

The original Coret’s Lemma was proved for concrete natural numbers as types, whereas

here we have converted all the types into von Neumann ordinals. However with our

formal definition of jn (Definition 3) the lemma can be proved in exactly the same way

as in the original lemma.
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Remark 6. From now on, whenever we refer to the types of variables in a stratification,

we mean the von Neumann counterparts to the concrete natural types. In other words, a

stratification in our context is a map from the set of variables to the finite von Neumann

ordinals.

In that sense, the notion of stratification technically depends on the model V . However

in practical terms it does not matter, since the finite ordinals used as types are always

standard. By using finite ordinals in V instead of concrete natural numbers, we will

be able to apply Coret’s Lemma to our formal definition of hereditarily symmetric sets

above.

One peculiar feature of HS is that the Axiom of Choice fails in it, regardless of the

status of Choice in V : there is no total ordering of Vω in HS. To see this, suppose R

is an n-symmetric total ordering of Vω and let σ be the transposition swapping ∅ and

{∅}. Since jn+3σ(R) = R, 〈ιn∅, ιn+1∅〉 ∈ R if and only if 〈ιn+1∅, ιn∅〉 ∈ R. This means

R cannot be antisymmetric.

This bears some similarity with the theory of New Foundations (NF), which consists

of Extensionality, a Universal set and stratified Comprehension, and disproves Choice.

Thus it was hoped that HS might provide a model for some intermediate theory with

NF -like properties but consistent with ZF. In particular, [Forster 1] questioned the

existence of an initial segment HS ∩ Vα with a set containing all isomorphism types of

well-orders (in said initial segment).

There is a list of stratified rudimentary functions in [Forster 1], which are all absolute

for transitive structures, such that any set closed under those and power set is closed

under stratified ∆0 comprehension. Using these, we can build a structure S along the

lines of Gödel’s L:

• S0 := ∅

• Sα+1 := closure of Sα ∪ {Sα} under stratified rudimentary functions.

• Sλ :=
⋃
α<λ Sα for limit λ

• S :=
⋃
ON Sα

The class S is also a model of strZF, and has an external well-ordering just like L. In

fact it is easy to show that S ⊂ L: the stratified rudimentary functions are absolute and

L is a model of ZF itself, so there exists a version of S inside L which is the same as S

in V . However, S ⊂ HS and Vω ∈ S, which means Choice also fails in S. The natural

question to ask here is if S = HS ∩ L?
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Remark 7. With our earlier choice of the group of permutation G, it is easy to show

that G ∈ L. Thus we can construct HS relative to L, and this new class turns out to be

the same as HS ∩ L.

Instead of looking into HS itself, we will answer this by looking at a family of structures

related to HS. These structures also provides an insight into the question in [Forster

1] about the sensitivity of the hereditarily symmetric sets to the group of permutations

that is used in the definition of symmetry.

There is also an admittedly vague point of discussion about how much information is

lost when we move from V to HS. By requiring the set to be symmetric, we have

seemingly destroyed much of the unstratified information, leading to the loss of Choice

and all infinite von Neumann ordinals. It may be a little surprising that we can in some

sense recover all the information about V just by looking inside HS if Choice originally

holds, or at least recover a model of ZF if not.

1.1 The construction

We will start by generalising the definition of symmetric sets. The new definition par-

allels Fraenkel-Mostowski-Specker (FMS) models as described in [Felgner 1], but we

are only interested in preserving stratified Comprehension. Symmetric sets in the FMS

method are those preserved under ∈-isomorphisms of V , so to get non-trivial models one

would need to start with non-trivial isomorphisms, i.e. ZF with atoms. Underlying our

construction is the concept of a stratimorphism, i.e. an ω-collection of permutations fi
such that x ∈ y ⇔ fi(x) ∈ fi+1(y); in other words fi+1 = jfi. By using stratimorphisms

in place of the stronger ∈-isomorphisms, we no longer need to assume the existence of

atoms in our initial model.

Remark 8. For the sake of simplicity we will not formally define stratimorphisms but

make direct changes to the definition of our permutation models. The result is essentially

the same as if one simply replaced the ∈-isomorphisms in the FMS construction with

stratimorphisms.

We work in a model V of ZF. Let G be a group of permutations (i.e. bijections f where

dom f = ran f) and F a filter on G.

Definition 5. Say a permutation σ fixes x above n ∈ ω if and only if jiσ(x) = x for

all i ≥ n.

Definition 6. The n-stabiliser of x in G, Gn(x), is the set of σ ∈ G that fixes x above

n.
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The weak stabiliser of x in G, Gω(x), is the set of σ ∈ G that fixes x above some n ∈ ω.

In other words Gω(x) =
⋃
n∈ω Gn(x).

Definition 7. x ∈ V is strongly symmetric (with respect to G and F) if Gn(x) ∈ F for

some n ∈ ω.

x ∈ V is weakly symmetric (with respect to G and F) if the Gω(x) ∈ F .

Clearly a set is weakly symmetric if it is strongly symmetric, since F is closed under

inclusion.

Let HSS and HWS be the classes of hereditarily strongly symmetric sets and heredi-

tarily weakly symmetric sets respectively. They are definable in V as follows:

Define

Gn(x) := {f ∈ G : (∀m ≥ n)x = jmf(x)}

Similarly

Gω(x) := {f ∈ G : (∃n ∈ ω)(∀m ≥ n)x = jmf(x))

Thus we can define

x ∈ HSS ⇔df (∀y ∈ TC{x})(∃n ∈ ω)(Gn(y) ∈ F)

x ∈ HWS ⇔df (∀y ∈ TC{x})(Gω(y) ∈ F)

Remark 9. The class HS in [Forster 1] thus corresponds to HSS when G is the group

of finite permutations of Vω (or the alternating group) and F = {G}.

For these classes to be models of strZF, we will need to impose extra conditions later

on.

1.2 Axioms of strZF

Lemma 2. Let φ(x) be a stratified formula with all parameters strongly (respectively

weakly) symmetric. If (∃!x)φ(x), then that unique witness x is strongly (respectively

weakly) symmetric.

Proof. Let a1 . . . an be the parameters of φ(x), where ak has type tk ≥ 0 and x has type

t ≥ 0 in some stratification of φ. Suppose φ(x, a1 . . . an) holds.

If the ak are strongly symmetric and Gm(k)(ak) ∈ F , then H :=
⋂
kGm(k)(ak) ∈ F .

Let m := max{m(1) . . .m(n)}. By Coret’s Lemma, for any i ≥ 0 and σ ∈ H

φ(jt+m+iσ(x), jt1+m+iσ(a1) . . . jtn+m+iσ(an))

12



But this is exactly φ(jt+m+iσ(x), a1 . . . an), so by uniqueness of x we have x = jt+m+iσ(x).

Hence H ⊂ Gt+m(x), and thus x is strongly symmetric.

If the ak are weakly symmetric, take

H :=
⋂
k

Gω(ak) ∈ F

If σ ∈ H, let σ ∈ Gm(i)(ai) for each ai and m := max{m(1) . . .m(n)}. By the same

argument as above, x = jt+m+iσ(x) for any i ≥ 0, so H ⊂ Gω(x).

Lemma 3. HSS and HWS safisfy Extensionality.

Proof. The two classes are transitive.

Lemma 4. HSS and HWS satisfy Empty Set.

Proof. Easy to see G1(∅) = G ∈ F so ∅ ∈ HSS ⊂ HWS.

Lemma 5. HSS and HWS satisfy Pair Set.

Proof. Let x, y ∈ HSS. By Lemma 2 {x, y} is strongly symmetric so it is in HSS.

Similarly for HWS.

Lemma 6. HSS and HWS satisfy Sumset.

Proof. Let x ∈ HSS. By Lemma 2,
⋃
x is strongly symmetric so it is in HSS.

Similarly for HWS.

Lemma 7. If x, y ∈ HSS, then x× y ∈ HSS, and similarly for HWS.

Proof. If x, y ∈ HSS, then x× y is strongly symmetric by Lemma 2. With Pair Set it

is easy to see that x× y ∈ HSS.

Similarly for HWS.

Lemma 8. Let φ(x) be a stratified formula with parameters in HSS and A ∈ HSS.

Then {x ∈ A : φ(x)} ∈ HSS.

Similarly for HWS.

Proof. Let A and the parameters of φ be in HSS. The formula y = {x ∈ A : φ(x)}
is stratified and y is unique given A and the parameters of φ. By Lemma 2 the set

{x ∈ A : φ(x)} is strongly symmetric and thus in HSS as it is a subset of A.
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Similarly for HWS.

Corollary 1. HSS and HWS satisfy stratified ∆0 Comprehension.

Proof. By the last lemma and absoluteness of ∆0 formulae.

Although y = P(x) is stratified, we cannot prove Power Set in the same way as for the

last few lemmata. A similar proof merely shows that P(x) is symmetric. For example,

if G is the group of permutations which are themselves members of Vω, and F = {G},
then Vω ∈ HSS but Vω+1 is not. The power set of x in HSS would be P(x)∩HSS; but

its definition is not stratified since the definition of HSS involves the use of transitive

closures.

On the other hand, HSS and HWS contain transitive closures of their members even

though the definition of transitive closure is not stratified.

Lemma 9. (∀x ∈ HSS)(TC(x) ∈ HSS) and similarly for HWS.

Proof. Let x ∈ HSS and Gk(x) ∈ F .

Since z ∈ x→ f(z) ∈ jf(x), by an easy induction

(∀f ∈ Function)(∀n ∈ ω)(z ∈
⋃n

x→ f(z) ∈
⋃n

jn+1f(x))

Now let y ∈
⋃mx and σ ∈ Gk(x). Then for any n ≥ k, setting z = y and f = jnσ gives

jnσ(y) ∈
⋃m

jn+1+mσ(x) =
⋃m

x

Thus jk+1σ(TC(x)) ⊂ TC(x) and applying the result with σ−1 gives

jk+1σ(TC(x)) = TC(x)

Therefore Gk+1(TC(x)) ⊃ Gk(x), and we already have TC(x) ⊂ HSS.

Let x ∈ HWS and σ fix x above k. The same argument as above shows that σ fixes

TC(x) above k + 1, so Gω(TC(x)) ⊃ Gω(x).

For HSS and HWS to satisfy Power Set and full stratified Comprehension, we need to

impose further conditions on G and F .

Definition 8. 〈G,F〉 satisfies the strong closure condition if

G∗ := {σ ∈ G : (∀n ∈ ω)(jnσ“HSS ⊂ HSS)} ∈ F

Similarly 〈G,F〉 satisfies the weak closure condition if

{σ ∈ G : (∀n ∈ ω)(jnσ“HWS ⊂ HWS)} ∈ F

14



Remark 10. If the closure condition holds, a set is strongly symmetric with respect to

〈G,F〉 if and only if it is strongly symmetric with respect to 〈G∗,F ∩ PG∗〉 (and the

same holds for weak symmetry); so by replacing G with G∗ we can assume that

(∀n ∈ ω)(∀σ ∈ G)(∀y ∈ HSS)jnσ(y) ∈ HSS

(or HWS respectively).

Lemma 10. Assuming the corresponding closure condition, HSS and HWS satisfy

Power set.

Proof. Let x ∈ HSS and Gn(x) ∈ F where n ≥ 1.

If x ⊃ y ∈ HSS and σ ∈ Gn(x), then jnσ(y) ⊂ jnσ(x) = x and jnσ(y) ∈ HSS by the

strong closure condition. Hence Gn+1(Px ∩HSS) ⊃ Gn(x), so Px ∩HSS is the power

set of x in HSS.

Similarly for HWS.

Lemma 11. Assuming the corresponding closure condition, HSS and HWS are proper

classes.

Proof. If HSS ∈ V , then it is strongly symmetric by the strong closure condition. Thus

HSS ∈ HSS, which contradicts foundation.

Similarly for HWS.

Corollary 2. Assuming the corresponding closure condition, HSS and HWS have

members of every rank in V .

Proof. Since HWS and HSS are proper classes, they have members of arbitrarily large

ranks; but they are also transitive.

Let λ be a limit ordinal with cofinality greater than rankG. We now show that initial

segments of HSS and HWS above λ are themselves members of the corresponding

structures. With the corollary above in mind, this will give us an unlimited supply of

distinct hereditarily symmetric sets.

Lemma 12. (∀α ≥ λ)(∀n ∈ ω)(∀σ ∈ G)(jnσ“Vα ⊂ Vα).

Proof. We prove the claim by induction on α.

If α > λ is a limit: Let x ∈ Vα and λ < β < α such that x ∈ Vβ. Then jnσ(x) ∈ Vβ ⊂ Vα.

If α = β + 1 for some β ≥ λ: Let x ∈ Vα.
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• If n ≥ 1, then jnσ(x) ⊂ jnσ(Vβ) ⊂ Vβ since x ⊂ Vβ.

• If n = 0 the proof is trivial since ranσ ⊂ TC(G) ⊂ Vλ.

If α = λ: Let x ∈ Vλ and n ∈ ω, then rank jnσ(x) ≤ rankx + rankG + n by induction

on n.

• If n = 0, then rankσ(x) < rankG < rankx+ rankG.

• If n ≥ 1, then

(∀y ∈ x)(rank jn−1σ(y) < rank y + rankG+ (n− 1) ≤ rankx+ rankG+ (n− 1)

so rank jnσ(x) ≤ rankx + rankG + n. But rankx + rankG + n < λ since λ has

cofinality greater than rankG, so jnσ(x) ∈ Vλ.

Corollary 3. Assuming the corresponding closure condition, HSS ∩ Vα ∈ HSS for all

α ≥ λ. In particular

(∀α ≥ λ)(G1(HSS ∩ Vα) ⊃ G∗)

(respectively for HWS).

Proof. It is enough to prove that HSS ∩ Vα is strongly symmetric.

For all n ≥ 1 and σ ∈ G∗, jnσ(HSS ∩ Vα) ⊂ Vα by the lemma, so by the closure

condition

jnσ(HSS ∩ Vα) ⊂ HSS ∩ Vα

This also shows jnσ−1(HSS ∩Vα) ⊂ HSS ∩Vα, therefore jnσ(HSS ∩Vα) = HSS ∩Vα.

Similarly for HWS.

This gives us an easy form of Infinity:

Lemma 13. Assuming the corresponding closure condition, ∃A ∈ HSS (respectively

HWS) such that HSS (respectively HWS) believes A is a well-order with no top element

and no limit point.

Proof. Take a sequence of ordinals 〈α(n) : n ∈ ω〉 all greater than λ, and let

A := {HSS ∩ Vα(n) : n ∈ ω}
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Then G2(A) ⊃ G∗ so A ∈ HSS, and by Power Set and stratified ∆0 Comprehension

the inclusion ordering on A is in HSS. This is a well-order with no top element and no

limit point in V , so it has the same properties in HSS.

Similarly for HWS.

We can also prove stratified Comprehension and Collection now.

Lemma 14. Assuming the corresponding closure condition, HSS (respectively HWS)

satisfies stratified Comprehension.

Proof. Let φ(x) be a stratified formula with parameters in HSS and A ∈ HSS. By

Reflection in V , let α > λ be such that A ∈ Vα and

(∀x ∈ Vα)(φ(x)HSS ⇔ Vα |= φ(x)HSS)

Thus

{x ∈ A : φ(x)HSS} = {x ∈ A : φ(x)Vα∩HSS}

But (Vα ∩ HSS) ∈ HSS so the set of interest is actually an instance of stratified ∆0

Comprehension in HSS.

Similarly for HWS.

Lemma 15. Assuming the corresponding closure condition, HSS (respectively HWS)

satisfies Collection.

Proof. Let A ∈ HSS and φ(x, y) is a formula with parameters in HSS such that

(∀x ∈ A)(∃y ∈ HSS)φ(x, y)HSS

By Collection and Comprehension in V there exists B ⊂ HSS such that

(∀x ∈ A)(∃y ∈ B)φ(x, y)HSS

Let α > rankB such that Vα ∩HSS ∈ HSS, then Vα ∩HSS is the required set.

The proof for HWS is identical.

Corollary 4. Assuming the corresponding closure condition, HSS (respectively HWS)

satisfies stratified Replacement.

Proof. Stratified Replacement follows from Collection and stratified Comprehension.
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Lemma 16. If f ∩HSS is a function, then for any n ∈ ω,A ∈ HSS, the graph of jnf

on domain A is in HSS; and similarly for HWS.

Proof. Induction on n.

For n = 0, the graph of f on domain A is in HSS by stratified ∆0 Comprehension from

(A ∪ dom f)2. If f is not defined on all of A, we extend it with the identity function.

If fn ∈ HSS is the graph of jnf on domain A, then fn+1 = {〈x, y〉 : (x ∈ A)∧(y = fn“x)}
is strongly symmetric by Lemma 2. To show fn+1 ∈ HSS, it is enough to show that

fn“x ∈ HSS for all x ∈ A. But fn“x is strongly symmetric also by Lemma 2, and is a

subset of ran fn.

The proof for HWS is the same.

Corollary 5. G∩HSS ∈ F and G∩HWS ∈ F each implies the corresponding closure

condition.

Proof. If σ ∈ G ∩HSS and x ∈ HSS, then the graph of jnσ on domain {x} is in HSS

so we can take G∗ = G ∩HSS.

Similarly for HWS.

Remark 11. Since every set of finite rank in V is in HSS regardless of the choices of

G and F , it is clear that the original HS satisfies G ∩HSS ∈ F . Thus it is a model of

strZF.

Now we turn to answering some of the questions about HS posed in the introduction.

The following result by Zachiri McKenzie from [Dang and McKenzie 1] shows that

S 6= HS ∩ L.

Remark 12. Note that L is a model of ZF, so we can define HSL and SL. The stratified

rudimentary functions are absolute, so SL = S. The formula “x is symmetric” is also

absolute with this particular choice of G and F , so HSL = HS ∩ L. Therefore it is

enough to show HS 6= S for all models V of ZF.

Theorem 1. (Zachiri McKenzie) HS 6= S

Proof. Let HS1 be the hereditarily strong symmetric sets where G is generated by the

single transposition swapping {{Vω}} and {{Vω}, Vω}, and F = {G}.

G has a stratified definition with parameter Vω, but it is easy to see Vω ∈ HS1, so HS1

satisfies the strong closure condition. Hence HS1 is a model of strZF. An induction on

α shows Sα ∈ HS1 for all ordinals α, so S ⊂ HS1.
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Now let A0 := {Vω}, An+1 := An ∪ {An} and A := {An : n ∈ ω}. Then A ∈ HS \ HS1

by direct inspection, so HS 6= S.

Remark 13. Thomas Forster conjectured downward absoluteness from V to HS for the

smallest class of sentences that is

• Stratified.

• Inclusive of all atomic formulae and their negations.

• Closed under universal quantifiers.

• Closed under unique existential quantifiers, e.g. (∃!x)φ(x).

However, this is not the case if parameters are allowed. For example, let P be the power

set of Vω in HS and consider the sentence

(∃!x)(x = P(Vω) ∧ x 6= P )

Clearly this sentence (with Vω and P as parameters) is in the class defined above, but it

is true in V and false in HS since P 6= Vω+1. It is still open if the conjecture holds for

sentences without parameters.

Definition 9. A set x ∈ HSS is uniformly (strongly) symmetric if there are H ∈ F ,

n ∈ ω such that (∀y ∈ x)H ⊂ Gn(y).

A set x ∈ HWS is uniformly (weakly) symmetric if there exists H ∈ F such that

(∀y ∈ x)H ⊂ Gω(y).

The following result follows immediately from the definition, and a similar result holds

for HWS:

Lemma 17. Let x ∈ HSS be uniformly symmetric, then:

• P(x) ∈ HSS and is uniformly symmetric.

• If R ∈ V is a relation on x, then R ∈ HSS and is uniformly symmetric.

• In particular HSS believes that x is strongly Cantorian.

Proof. Let H ∈ F , n ∈ ω such that (∀y ∈ x)H ⊂ Gn(y). Then clearly H ⊂ Gn+1(a) for

all a ⊂ x and thus H ⊂ Gn+2 (P(x)). Hence P(x) ∈ HSS and is uniformly symmetric.

If R is a relation on x, then every a ∈ R is an ordered pair of things in x, so H ⊂ Gn+2(a).

Therefore H ⊂ Gn+3(R) and R is uniformly symmetric.
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Finally graph of the singleton function ι on x is a relation on x, so it is hereditarily

symmetric i.e. x is strongly Cantorian in the view of HSS.

Lemma 18. If Choice holds in V and the strong closure condition holds, then for any

limit α > |G|+ there is no X ∈ HSS ∩ Vα such that any well-order in HSS ∩ Vα is

isomorphic to a member of X.

Proof. Suppose X satisfies the hypothesis.

If |TC(X)| > max{ω, |G|}, let Gm(TC(X)) ∈ F for some m. Let H be the group of

permutations generated by

{jiσ : i ≥ m,σ ∈ Gm(TC(X))}

For any x ∈ TC(X) let x̂ := {τ(x) : τ ∈ H}, and let Y := {x̂ : x ∈ TC(X)}.

Then it is clear that x̂ ⊂ TC(X), so Y partitions TC(X). Assuming Choice in V , the size

of each x̂ is at most |H| ≤ max{ω, |G|} < |TC(X)| so again by Choice |Y | = |TC(X)|.

Furthermore Gm(X) ⊂ G1(x̂) for all x ∈ TC(X) by definition of H, so Y is uniformly

symmetric. Thus P(Y ) ∈ HSS and is also uniformly symmetric. Hence the well-

ordering of P(Y ) in V is also in HSS, but it is not isomorphic to anything in X since

the size of P(Y ) is too large.

If |TC(X)| ≤ max{ω, |G|}, there is some Z ∈ HSS such that max{ω, |G|} < rankZ < α

since the strong closure condition implies that HSS has members of every rank. Then

max{ω, |G|} < |TC(Z)|, so by the same argument as above we can find a well-order in

HSS∩Vα whose carrier set is bigger than |TC(Z)|, which therefore cannot be isomorphic

to anything in X.

Remark 14. In the case of HS we can weaken the condition on α to being any limit

ordinal. The reason is that |G| is countable and Vω+1 ∩HS is (externally) uncountable,

so the proof above holds for all limit α > ω. The case α = ω is trivial since all finite

von Neumann ordinals are in HS.

The following lemma is the first step to recovering unstratified information from HSS:

Lemma 19. If HSS believes that R is a well-founded relation, then R is well-founded

in V .

Similarly for HWS.

Proof. Suppose R is not well-founded in V , so there exists X ⊂ DomR with no R-

minimal element.
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For HSS, let Gn(R) ∈ F and define

Y := {jiσ(x) : x ∈ X ∧ σ ∈ Gn(R) ∧ i ≥ n}

Clearly Gn(R) ⊂ Gn(DomR), therefore Y ⊂ DomR. But Gn(R) ⊂ Gn+4(Y ) by defini-

tion of Y , so Y is strongly symmetric and thus Y ∈ HSS.

Now let y := jiσ(x) for some x ∈ X, σ ∈ Gn(R), i ≥ n. Since X has no R-minimal

member, there exists z ∈ X such that 〈z, x〉 ∈ R. But then

〈jiσ(z), jiσ(x)〉 = ji+2σ〈z, x〉 ∈ R

But jiσ(z) ∈ Y , so y is not R-minimal in Y . This shows Y has no R-minimal member,

so R is not well-founded in HSS.

Similarly, for HWS we define

Y :=
⋃
n

{jiσ(x) : x ∈ X ∧ σ ∈ Gn(R) ∧ i ≥ n}

It is easy to check that Y ⊂ DomR and Y is weakly symmetric by definition. As before

Y has no R-minimal element so R is not well-founded in HWS.

Corollary 6. HSS thinks that R is a well-founded extensional relation on X if and

only if V believes the same thing; and similarly for HWS.

Proof. Extensionality of R is a ∆0 predicate with parameters X,R and thus is absolute

since HSS and HWS are transitive.

So far we have shown identical results for HSS and HWS. Thus it may be of interest

to demonstrate that they are not in fact identical classes.

Remark 15. Let G be the group of finite permutations of Vω and F = {G}, so that HSS

is the same as the class HS in [Forster 1]. Then we can find a set in the corresponding

HWS that does not belong to HSS as follows:

For any n ∈ ω let An := ιn{x ∈ Vω : |x| = n}. Then for any σ ∈ G and any i ∈ ω, it

is easy to see that jiσAn = An if i 6= n or if σ does not move any set of size n. Hence

{An|n ∈ ω} ∈ HWS since for any σ ∈ G and any i ∈ ω larger than the size of the largest

set moved by σ, jiσAn = An for all n. Furthermore if σ is a transposition swapping a

set of size n and a set of size n+ 1, then jnσAn 6= An. Thus {An|n ∈ ω} 6∈ HSS.
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1.3 A copy of V inside HSS

If Choice holds in the enveloping model, it is now easy to show that there is an essentially

isomorphic structure inside the hereditarily symmetric sets, where the isomorphism does

not exists formally inside V but can still be seen from outside. From now on we will

restrict our discussion to HSS, since the proofs and results for HWS are exactly the

same - we rely on earlier results, which were proved for both classes, rather than the

internal structure of each class.

Remark 16. Until the end of this section, we assume that G∩HSS ∈ F , and that the

Axiom of Choice holds in V .

Definition 10. A BFEXT is a well-founded extensional relation with a top element,

namely an element t such that any other element is at the end of a finite descending

chain from t.

Remark 17. The definitions of top element and BFEXT are preserved under isomor-

phisms of relations, as long as the graph of the isomorphism is a set. The top element

is unique if it exists in a well-founded relation.

Remark 18. The definition of a BFEXT can be carried out in any model of strZF as

a stratified formula:

To say that t is the top element of R, we require that DomR is the smallest set containing

t and closed under R−1. In other words any object in DomR must be accessible via a

downward path from the top element, and this ensures the top element is unique by

well-foundedness.

Since the graph of R is a set, the formula xRy is stratified and homogeneous (i.e. x and

y have the same type). This means both the formula asserting that R is well-founded and

the above definition of the top element are stratified. Hence the definition of a BFEXT

is stratified.

Remark 19. This is not the same as Roland Hinnion’s definition of BFEXTs in [Hin-

nion 1]. Hinnion does not require the whole domain to be accessible from the top element,

thus a BFEXT in his sense may have more than one top element. However our definition

does coincide with what Hinnion calls Ω, which is a subclass of his BFEXTs.

Let B be the class of all BFEXTs in HSS.

Definition 11. If R ∈ B and y ∈ DomR, let Ry be the restriction of R to y and

everything below (i.e. the carrier set of Ry is the smallest set containing y and closed

under R−1).
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Define an interpretation for the language of set theory on B as follows - the idea is

to look at each BFEXT as a graph representation of some set, with the top element

standing in for the set in question:

• = is taken to be isomorphism between BFEXTs

• ∈ is taken to be C, where R C S if and only if R is isomorphic to Sy for some y

directly below the top element of S (i.e. 〈y, s〉 ∈ S where s is the top element of

S).

Any R ∈ B is a well-founded extensional relation in V , and so has a Mostowski collapse

m(R). Then m(R) = TC{x}, where x is the image of the top element of R. By

uniqueness, we can call x = t(R).

Lemma 20. Any x ∈ V is t(R) for some R ∈ B.

Proof. This is where we need Choice in V . Let κ be an ordinal the same size as TC{x}
and λ be a limit ordinal whose cofinality is greater than rankG. Let X := {HSS∩Vλ+α :

α < κ}. Then X ∈ HSS and is uniformly symmetric (see Lemma 12 and Corollary 3),

so we can copy the membership relation on TC{x} over to a relation R ∈ HSS on the

carrier set X.

Lemma 21. Let R,S ∈ B. Then R ∼= S if and only if t(R) = t(S), and R C S if and

only if t(R) ∈ t(S).

Proof. R ∼= S if and only if they have the same Mostowski collapse if and only if

t(R) = t(S).

If R C S: Let s be the top element of S, rSs and R ∼= Sr. Let y be the Mostowski

collapse of S and z be the image of r under the Mostowski map. Then z ∈ t(S) and

z = t(Sr). But R ∼= Sr so by the first part z = t(R) too.

If t(R) ∈ t(S), let r be the preimage of t(R) under the Mostowski map for S. Then

rSs, and t(Sr) is the image of r under the Mostowski map, which is just t(R). But then

R ∼= Sr by the first part, so RC S.

It is now easy to see that R↔ t(R) defines an informal isomorphism between (B,∼=,C)

and (V,=,∈). Though we cannot describe this isomorphism formally within V , at least

this gives us an easy proof of elementary equivalence between V and B:

Lemma 22. Let φ(~x) be a formula in the language of set theory and ~R a tuple in B.

Then φ(~R) holds in B if and only if φ(t(~R)) holds in V .
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Proof. We prove the result by induction on the complexity of φ.

The atomic cases are true by the previous lemma, and the induction is trivial for con-

junction and negation.

Now suppose φ⇔df (∃y)ψ(~x, y).

If φ(~R) holds in B, there exists S ∈ B such that ψ(~R, S) holds in B. By the induction

hypothesis ψ(t(~R), t(S)) holds in V , so φ(t(~R)) holds in V .

Conversely if φ(t(~R)) holds in V , then ψ(t(~R), y) holds in V for some y ∈ V . Let

y = t(S) for some S ∈ B by Lemma 20, then by the induction hypothesis ψ(~R, S) holds

in B, and so does φ(~R).

Corollary 7. B satisfies the same first-order sentences as V , and in particular is a

model of ZFC (in the sense that it satisfies the new interpretation of all ZFC axioms).

Remark 20. If we are willing to look at V and B as sets (i.e. from an external point

of view), we can formalise an isomorphism between V and the quotient B/ ∼=. Then the

above results can be extended to infinitary languages.

1.3.1 Without the Axiom of Choice

If Choice does not hold in V , there is no guarantee that we can replicate the membership

graph of any set inside the BFEXT structure. However we can still show that the

BFEXT structure is a model of ZF. The discussion hinges on variants of the following

axiom.

Axiom 1. (IO) Every set is the same size as a set of singletons.

There is an unpublished result by Thomas Forster that the class of BFEXTs in a model

of strZF and IO interprets ZF. Nathan Bowler has proved that IO holds for Forster’s

original class HS; and a trivial adaptation of his proof generalises the result to HSS if

the strong closure condition holds, each permutation in G is finite, and F is a principal

filter. However the proof requires Choice to hold in V , and without it the status of IO

in HSS, or even in HS, is not yet clear. Nevertheless, if G ∩ HSS ∈ F , it turns out

that just enough of IO can be salvaged to carry out the interpretation.

We will take a detour to give a more general proof, which will give us not just an

interpretation of ZF with the BFEXTs, but also allow us to model anti-foundation with

the class of accessible pointed graphs.
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2 Interpreting ZF in stratified theories

2.1 The general construction

Definition 12. Let strZF− be the weakening of strZF where Foundation is replaced by

the axiom that there is no universal set, i.e.

(∀x)(∃y)y 6∈ x

In this section we work in a model M of strZF−, plus a few other axioms to be specified.

First some stratified definitions for handling relations:

Definition 13. Let R be a relation, x ∈ DomR and X ⊂ DomR:

• R−1 := {〈y, x〉 : 〈x, y〉 ∈ R}.

• R � X := R ∩X2.

• Trans(R) :=
⋂
{S ⊂ (DomR)2 : R ⊂ S ∧ (∀x, y, z ∈ DomS)(xSy ∧ ySz ⇒ xSz)},

the transitive closure of R.

• xR := {x} ∪ {y ∈ DomR : 〈y, x〉 ∈ Trans(R)}, the closure of {x} under R−1.

• Rx := R � xR.

Definition 14. An accessible pointed graph (APG) is a directed graph with a distin-

guished node called its point, such that there is a directed path from the point to any

other node.

Remark 21. It is obvious that every BFEXT is an APG if we regard the unique top

element as the distinguished point. Furthermore for any BFEXT one can easily recover

the distinguished point from the relation itself. However this is not true for non-well-

founded APGs, and it is easy to find examples of directed graphs accessible from more

than one point. Thus for a general APG we will explicitly specify its distinguished point

in addition to the graph relation.

Formally, let A be an APG if A = 〈R, {{{r}}}〉 such that:

• R is a relation.

• r ∈ DomR.

• DomR = rR.
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Here R represents the graph and r the point - the triple singleton is to make sure the

predicate “A is an APG” is stratified. 〈x, y〉 ∈ R denotes a directed edge from y to x

and informally represents “x ∈ y”. For convenience we write [R, r] for such an object.

Let G be a definable subclass of APGs with a stratified definition. We call members of

G standard pointed graphs (SPGs). The intention is to use these graphs to represent the

membership graphs of sets in a ZF model. Further properties of the resulting model will

depend on the class G.

Added to our theory is a weakened version of IO (Axiom 1):

Axiom 2. (Weak IO for G) If [R, r] ∈ G, then DomR is the same size as a set of

singletons.

Definition 15. If G is a definable class of APGs, let the theory strZFG be strZF− plus

Weak IO for G.

Definition 16. Let [R, r] be an APG and n a concrete natural number such that

[Rx, x] ∈ G whenever there is a chain x = x0 R . . . R xn = r, i.e. there is a directed

path of length n from the distinguished point r to x. Then we call [R, r] an extended

pointed graph (EPG).

Remark 22. Intuitively, each EPG is built up by grouping disjoint SPGs together in a

tree of finite depth whose branches all have equal lengths. At the moment we specify n

as a concrete natural number since there is no need quantify over n; in fact n ≤ 2 will

be enough for our purposes.

We now state the extra axioms necessary to interpret ZF in G.

Axiom 3. (Axiom of Preservation for G) If [R, r] ∈ G, [S, s] is an APG and φ(x, y) is

a stratified formula (possibly with parameters) such that

(∀x ∈ DomR)(∃!y ∈ DomS)φ(x, y) ∧

(∀y ∈ DomS)(∃!x ∈ DomR)φ(x, y) ∧

(∀x, y ∈ DomR)(∀z, t ∈ DomS)
(

(φ(x, z) ∧ φ(y, t))⇒ (xRy ⇔ zSt)
)

Then [S, s] ∈ G.

Axiom 4. (Axiom of Stability for G) If [R, r] ∈ G and f is an isomorphism between Rx

and Ry for some x, y ∈ DomR, then f is the identity.

Axiom 5. (Axiom of Quotient for G) Let [R, r] be an EPG. Then there exists an SPG

[Q, q] and a surjective quotient map π : DomR→ DomQ such that

(∀z, t ∈ DomQ)(zQt⇔ (∃x, y ∈ DomR)(z = π(x) ∧ t = π(y) ∧ xRy))
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and π(r) = q.

Furthermore, if x ∈ DomR and [Rx, x] is an SPG, then π is an isomorphism between

Rx and Qπ(x).

Remark 23. The Axiom of Preservation essentially states that G is closed under ex-

ternal isomorphisms; but if x and y have different types in φ, then we cannot show that

the graph of φ is a set with only stratified axioms. The Axiom of Stability will ensure

that our structure for set theory is extensional, whereas the Axiom of Quotient will be

useful time and again in building new SPGs.

Now let M be a model of strZF− and G be a stratified definable class provable in

strZF− to be a class of APGs. Assume that M also satisfies the Axioms of Weak IO,

Preservation, Stability and Quotient for G.

Let GM be the class G of SPGs in the model M . Reinterpret the language of set theory

on GM as follows:

• The equality relation is [R, r] ≡ [S, s] if and only if there is an isomorphism R↔ S

which sends r to s.

• The membership relation is [R, r]C [S, s]⇔df (∃xSs)[R, r] ≡ [Sx, x].

It is easy to see that ≡ is an equivalence relation respected by C.

If φ is a formula in the language of set theory (possibly unstratified), let φ̄ be the formula

obtained from φ by replacing all = with ≡, ∈ with C and ∃x with ∃x ∈ GM . Then φ̄ is

stratified since both ≡ and C have stratified definitions, and it is the interpretation of

φ in the structure GM . We write GM |= φ to mean M |= φ̄.

We now prove all axioms of ZF except Foundation and Infinity in this interpretation.

Lemma 23. Let [R, r] ∈ GM and n be a concrete natural number. Then DomR has the

same size as {ιnx : x ∈ DomS} for some [S, s] ∈ GM .

Proof. By induction on n.

Suppose the result is true for n. Let π : {{x} : x ∈ X} ↔ DomR be a bijection for

some X ∈M .

Define a relation P on X by xPy ⇔df π({x})Rπ({y}).

Then [P,
⋃
π−1r] ∈ GM by the Axiom of Preservation, so X has the same size as {ιnx :

x ∈ DomS} for some [S, s] ∈ GM . Therefore DomR has the same size as {ιn+1x : x ∈
DomS}.
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Lemma 24. Extensionality holds.

Proof. Suppose [R, r] and [S, s] have the same C-predecessors. The set F of all isomor-

phisms Rx ↔ Sy where xRr, ySs is given by stratified comprehension from P(DomR×
DomS).

If f, g ∈ F are defined on the same x ∈ DomR, then they are both defined on xR and

{〈f(y), g(y)〉 : y ∈ xR} is an isomorphism between Sf(x) and Sg(x); thus by the Axiom

of Stability it is the identity. In particular f(x) = g(x).

Hence
⋃
F is a function, and by the same argument in the other direction

⋃
F is

injective. By the hypothesis

dom
⋃
F = DomR \ {r} ∧ ran

⋃
F = DomS \ {s}

so
⋃
F ∪ {〈r, s〉} is an isomorphism R↔ S that sends r to s.

The next result gives us much freedom in creating new SPGs:

Lemma 25. (Supertransitivity Lemma) Let A ∈M be a set of SPGs. Then there is an

SPG [S, s] such that

(∀[P, p] ∈ GM )
(

[P, p]C [S, s]⇔ (∃[Q, q] ∈ A)[P, p] ≡ [Q, q]
)

Proof. For any SPG [P, p] and x ∈ DomP , let xP := 〈ι3x, P 〉 and

PP := {〈xP , yP 〉 : 〈x, y〉 ∈ P}

PP exists by stratified Comprehension from P4({P} ∪ DomP ). Then [PP , pP ] is an

SPG by the Axiom of Preservation, since the map x 7→ xP is stratified.

By stratified Comprehension let

A∗ := {[PP , pP ] : [P, p] ∈ A}

By construction the DomPP are disjoint for all [PP , pP ] ∈ A∗, since each xP is an

ordered pair with second component P . Note that the formula X = A∗ is stratified, and

going from x to xP or A to A∗ raises type by 5.

Let b /∈
⋃
{DomP : [P, p] ∈ A∗} and

B :=
⋃
{P : [P, p] ∈ A∗} ∪ ({p : [P, p] ∈ A∗} × {b})

Then [B, b] is an EPG, so by the Axiom of Quotient let π be the quotient map from

[B, b] to an SPG [Q, q].
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By Lemma 23, there is a bijection θ : DomQ↔ ι5“H for some H ∈M . Define a relation

on H by

S := {〈x, y〉 : 〈θ−1ι5x, θ−1ι5y〉 ∈ Q}

and let θ(q) = ι5s. Then [S, s] is an SPG by the Axiom of Preservation. Below is an

informal diagram of the construction:

Let [P, p] ∈ A. Since [PP , pP ] = [BpP , pP ] is an SPG, by the Axiom of Quotient the

restriction of π induces an isomorphism [PP , pP ]↔ [Qπ(pP ), π(pP )].

By stratified Comprehension define

σ := {〈x, y〉 ∈ DomP ×DomS : θπ(xP ) = ι5y}

Then σ is an isomorphism between P and Sσ(p), therefore

[P, p] ≡ [Sσ(p), σ(p)]C [S, s]

Conversely let [R, r]C [S, s]; without loss of generality let [R, r] = [Sy, y] where ySs.

Then there exists xBb such that θπ(x) = ι5y, but then x = pP for some [P, p] ∈ A.

Thus by the argument above, [P, p] ≡ [Sy, y].

Lemma 26. Comprehension holds.

Proof. Let [R, r] be an SPG and φ(x) a formula in the language of set theory with

parameters in GM , then φ̄ is stratified.

Hence by stratified Comprehension from P(R) × ι3“ DomR, the following set exists in

M

A := {[Rx, x] : xRr ∧ φ̄[Rx, x]}

By the Supertransitivity Lemma, there exists [S, s] such that for any SPG [P, p]

[P, p]C [S, s]⇔ (∃[Q, q] ∈ A)([P, p] ≡ [Q, q])⇔ ([P, p]C [R, r] ∧ φ̄[P, p])

Lemma 27. Pairing holds.
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Proof. Given [R, r] and [S, s], let A := {[R, r], [S, s]} and the result holds by the Super-

transitivity Lemma.

Lemma 28. Union holds.

Proof. Given [R, r], by stratified Comprehension from PR and DomR we get

A := {[Rx, x] : (∃y ∈ DomR)(xRy ∧ yRr)}

By the Supertransitivity Lemma, there exists [S, s] such that

[P, p]C [S, s]⇔ (∃[Q, q] ∈ A)[P, p] ≡ [Q, q]

⇔ (∃[T, t]C [R, r])[P, p]C [T, t]

Lemma 29. Power Set holds.

Proof. Given [R, r], let A := {[Rx, x] : xRr} and construct A∗ like in the proof of the

Supertransitivity Lemma.

Assume there exist B disjoint from
⋃
{DomP : [P, p] ∈ A∗} and a bijection φ from B

to ι4“P{x ∈ DomR : xRr}. We form an EPG representing the power set of [R, r] by

letting each member of B stand for the corresponding subset of [R, r].

Let c /∈
⋃
{DomPP : [PP , pP ] ∈ A∗} be a new vertex, and define a stratified relation:

C :=
⋃
{PP : [PP , pP ] ∈ A∗} ∪

{
〈pP , y〉 : [PP , pP ] ∈ A∗ ∧ p ∈

⋃4
φ(y)

}
∪ (B × {c})

Below is an illustration of the graph C.
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Then [C, c] is an EPG, and by the Axiom of Quotient there is a quotient map π from

[S, s] to an SPG [Q, q].

Since [Q, q] is an SPG, by Lemma 23 there is a bijection θ : DomQ ↔ ι5“G for some

G ∈M . Define a relation

S := {〈x, y〉 : 〈θ−1ι5x, θ−1ι5y〉 ∈ Q}

and let θ(q) = ι5s. Then [S, s] is an SPG by the Axiom of Preservation.

We now prove that

(∀[P, p] ∈ GM )([P, p]C [S, s]⇔ GM |= [P, p] ⊂ [R, r])

Suppose GM |= [P, p] ⊂ [R, r]. Let

a := φ−1ι4“{xRr : [Rx, x]C [P, p]}

and let b be such that θπ(a) = ι5b.

We have the following informal diagram:

If [T, t]C [P, p], then [T, t] ≡ [RZ , z] for some z ∈
⋃4φ(a).

For convenience write Z := Rz, then [ZZ , zZ ] is an SPG so

[ZZ , zZ ] ≡ [Qπ(zZ), π(zZ)]C [Qπ(a), π(a)]

Define by stratified Comprehension an isomorphism between Z and Sσ(z) as follows

σ := {〈x, y〉 ∈ domZ ×DomS : θπ(xZ) = ι5y}

Hence [Z, z] ≡ [Sσ(z), σ(z)]C [Sb, b].

On the other hand if xSb, then ι5x = θπ(zZ) where z is such that ι4“z ∈ φ(a) and

Z = Rz.

Then [Z, z] C [P, p] by definition of a, but [Z, z] ≡ [Sx, x] by the same argument as in

the last paragraph, so [Sx, x]C [P, p].

By Extensionality we have proved

[P, p] ≡ [Sb, b]C [S, s]
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Conversely let [P, p]C [S, s], then [P, p] ≡ [Sb, b] for some bSs.

Let xSb, then ι5x = θπ(zZ) where zRr and Z = Rz. By the same reasoning as above

we have [Sx, x] ≡ [Z, z]C [R, r]. Therefore

GM |= [P, p] ⊂ [R, r]

and thus [S, s] is the power set of [R, r] in GM .

To complete the proof we describe how to construct B as required. First let

C := P{x ∈ DomR : xRr}

Let c /∈
⋃4{DomP : [P, p] ∈ A∗} ∪DomR and define

D := {{{〈x, c〉 : x ∈ y}} : y ∈ C}

Then D has a natural stratified bijection with ι4“C. Now let

B := D \ ∅ ∪ {ι4c}

Then B has the same size as D since ι4c 6= {{〈x, c〉}} for any x ∈ DomR, and B is

disjoint from
⋃
{DomP : [P, p] ∈ A∗} since (∀x ∈ B)c ∈

⋃4x.

Lemma 30. Collection holds.

Proof. Let [R, r] ∈ GM and φ(x, y) be a formula in the language of set theory such that

GM |= (∀x ∈ [R, r])(∃y)φ(x, y)

For any [P, p] C [R, r], there exists x ∈ DomR such that [P, p] ≡ [Rx, x]. Thus by

stratified Collection in M we have a set A such that

(∀[P, p]C [R, r])(∃[Q, q] ∈ A)([Q, q] ∈ GM ∧ φ̄([P, p], [Q, q])

By stratified Comprehension let B := A ∩ GM . By the Supertransitivity Lemma, let

[S, s] be such that for all SPG [P, p]

[P, p]C [S, s]⇔ (∃[Q, q] ∈ B)[P, p] ≡ [Q, q]

So for any [P, p]C [R, r] there exists [Q, q]C [S, s] such that φ̄([P, p], [Q, q]) holds.

Remark 24. Stratified Collection in M is only used in the proof of Collection in GM .

Therefore we could drop stratified Collection in M if we do not need Collection in the

new interpretation.
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2.2 The BFEXTs and Foundation

It is clear that any BFEXT is an APG if we regard the top element as the distinguished

point, and recall from Remark 18 that the class of BFEXTs has a stratified definition.

Let M be a model of strZFBFEXT (i.e. strZF− plus Weak IO for BFEXTs) and write

BM for the class of BFEXTs in M . We will prove the following result:

Theorem 2. If M is a model of strZFBFEXT , then the class BM of BFEXTs in M

models ZF in the given interpretation.

Lemma 31. (Axiom of Preservation for BFEXTs) If [R, r] ∈ BM , [S, s] is an APG and

φ(x, y) is a stratified formula (possibly with parameters) such that

(∀x ∈ DomR)(∃!y ∈ DomS)φ(x, y) ∧ (∀y ∈ DomS)(∃!x ∈ DomR)φ(x, y) ∧

(∀x, y ∈ DomR)(∀z, t ∈ DomS)
(

(φ(x, z) ∧ φ(y, t))⇒ (xRy ⇔ zSt)
)

Then [S, s] ∈ BM .

Proof. Let ∅ 6= A ⊂ DomS, then

B := {x ∈ DomR : (∃y ∈ A)φ(x, y)} 6= ∅

Let b be R-minimal in B, then there exists a ∈ A such that φ(b, a) holds. Then a is

S-minimal in A, so S is well-founded.

Let a, b ∈ DomS such that {x : xSa} = {x : xSb}. Let c, d ∈ DomR such that φ(c, a),

φ(d, b) hold. Then {x : xRc} = {x : xRd} so c = d and a = b, i.e. S is extensional.

Lemma 32. (Axiom of Stability for BFEXTs) If [R, r] ∈ BM and f is an isomorphism

between Rx and Ry for some x, y ∈ DomR, then f is the identity.

Proof. If {z ∈ DomR : f(z) 6= z} 6= ∅, let a be its R-minimal element. Then

(∀zRa)f(z) = z, but f is bijective so {z : zRf(a)} = {f(z) : z ∈ a} = {z : zRa}.
Hence a = f(a), contradicting the choice of a.

Lemma 33. (Axiom of Quotient for BFEXTs) Let [R, r] be a well-founded APG. Then

there exists a BFEXT [Q, q] and a surjective quotient map π : DomR → DomQ such

that

(∀z, t ∈ DomQ)
(
zQt⇔ (∃x, y ∈ DomR)(z = π(x) ∧ t = π(y) ∧ xRy)

)
and π(r) = q.
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Furthermore, if x ∈ DomR and [Rx, x] is a BFEXT, then π is an isomorphism between

Rx and Qπ(x).

Proof. Define a relation ∼ on DomR by recursion on R as follows:

If T is a relation, let φ(T ) be the formula

(∀x ∈ DomT )(∀y ∈ ranT )(xTy ⇔ ((∀zRx)(∃tRy)zT t ∧ (∀tRy)(∃zRx)zT t))

Now define

x ∼ y ⇔df (∃T ⊂ X2)(T is a relation ∧ φ(T ) ∧ xTy)

We will show that

(∀x, y ∈ DomR)
(
x ∼ y ⇔

(
(∀zRx)(∃tRy)zT t ∧ (∀tRy)(∃zRx)zT t

))
(†)

First suppose x ∼ y, then there is a relation T ⊂ DomR2 such that xTy and φ(T ) holds.

If zRx, then by φ(T ) there is some tRy such that zT t, but then z ∼ t by definition.

Similarly if tRy then there is zRx such that zT t and so z ∼ t. Thus the left to right

implication holds.

Conversely let R̄ := Trans(R), then R̄ is well-founded. Suppose there is some x, y ∈
DomR such that

(∀zRx)(∃tRy)(s ∼ t) ∧ (∀tRy)(∃zRx)(s ∼ t) ∧ (x 6∼ y)

The set of all such x, y exists by Union and stratified Comprehension from P2 DomR.

Let a be the R̄-minimal such x and b be R̄-minimal value of y corresponding to a. Define

T := {〈x, y〉 : x ∼ y ∧ xR̄a ∧ yR̄b} ∪ {〈a, b〉}

Let x ∈ domT and y ∈ ranT . We show that

xTy ⇔
(

(∀zRx)(∃tRy)zT t ∧ (∀tRy)(∃zRx)zT t
)

The left to right implication holds by the previous paragraph, since the restriction of T

to {x : xR̄a} × {y : yR̄b} is the same as ∼.

The right to left implication holds if xR̄a by minimality of a, if x = a and yR̄b by

minimality of g, and if x = a, y = b by default.

Thus φ(T ) holds, and we have x ∼ y contradicting our earlier assumption. We have

proved the other direction of (†).

Now we show that ∼ is an equivalence relation.
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Suppose x is R-minimal such that x 6∼ x, then (∀yRx)(y ∼ y), so x ∼ x by (†).

Also it is clear that x ∼ y if and only if y ∼ x; for if T witnesses x ∼ y, then T−1

witnesses y ∼ x.

Suppose x ∼ y ∼ z but x 6∼ z. Choose y to be R-minimal by stratified Comprehension.

If sRx, then s ∼ v ∼ t for some vRy, tRz but y is R-minimal so s ∼ t. Similarly if tRz

then s ∼ t for some sRx, so x ∼ z i.e. contradiction. Therefore ∼ must be transitive.

Now we can use stratified Comprehension on P DomR to get the set A of ∼-equivalence

classes.

For any x ∈ DomR, write [x] ∈ A for the ∼-equivalence class of x. Define a relation Q

on A by

yQt⇔df (∃x ∈ y)(∃z ∈ t)xRz

Let B ⊂ A and let x be R-minimal in
⋃
B, then [x] is Q-minimal in B. So Q is

well-founded.

Let a, b ∈ A such that {x : xQa} = {x : xQb}.

Let x ∈ a and y ∈ b. If zRx, then [z]Qa so [z]Qb. Thus zRs for some s ∼ y by definition

of Q. But then by (†) z ∼ t for some tRy. Similarly if tRy, then z ∼ t for some zRx.

By the other direction of (†) we have x ∼ y.

Hence a = b, which shows that Q is extensional.

Thus A has a bijection θ with a set B of singletons. Let Y :=
⋃
B and let

π := {〈x, y〉 ∈ DomR× Y : (∃a ∈ A)(x ∈ a ∧ y ∈ θ(a))}

Define a relation S on Y by

ySz ⇔df {x : xθy}Q{x : xθz}

Then S is also well-founded and extensional. It is clear that π is a surjection, xRy ⇒
π(x)Sπ(y), and

pSq ⇒ (∃x, y ∈ DomR)(p = π(x) ∧ q = π(y) ∧ xRy)

Suppose C ⊂ Y contains π(r) and is closed under S−1, then {x ∈ DomR : π(x) ∈ C}
contains p and is closed under R−1. Thus C = Y , so π(r) is the top element of Y .

Now let [Rx, x] be a BFEXT for some x ∈ DomR. We need to show that π is injective

on xR.

Suppose there are y 6= z ∈ xR such that y ∼ z, and choose y to be R-minimal. For

any t ∈ xR with tRy, t ∼ p for some pRz. Then p ∈ xR and y is R-minimal so t = p.

Similarly tRy if tRz, so by extensionality of R on Z we have y = z. Contradiction.
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Remark 25. What we just proved is slightly stronger than the Axiom of Quotient as

previously stated. If we take SPGs to be BFEXTs, then the corresponding EPGs are

well-founded APGs, but not all well-founded APGs are EPGs.

In light of the results in section 2.1, BM is thus a model of ZF minus Foundation and

Infinity.

Lemma 34. Infinity holds for BM .

Proof. Let R ∈ M be a non-empty well-order with no maximal element, and let s /∈
DomR. Define S := R ∪ (DomR × {s}), then [S, s] is a BFEXT. But the set {[Sx, x] :

x ∈ DomR} is well-ordered by C, so [S, s] is a nonzero limit von Neumann ordinal in

BM .

Lemma 35. Foundation holds for BM .

Proof. Let [R, r] be a BFEXT, and let x be R-minimal in {x : xRr}. Suppose [P, p] C

[R, r] and [P, p] C [Rx, x], then there is some yRr such that [Ry, y] ≡ [P, p] C [Rx, x].

Contradiction. Thus [Rx, x] is a minimal member of R, r in the sense of BM .

Thus we have proved Theorem 2

2.3 APGs and anti-foundation

The idea is to consider the class of accessible pointed graphs, in order to get a non-well-

founded model of set theory inside HS. We will model the anti-foundation axiom AFA

as in [Aczel 1], which states that every APG has a unique decoration, where:

Definition 17. A decoration on an APG [A, a] is a function f defined on DomA such

that (∀x ∈ DomA)f(x) = {f(y) : y ∈ x}.

Axiom 6. (AFA) Every APG has a unique decoration.

Definition 18. The theory ZFA is ZF with AFA in place of Foundation.

There are some problems with considering the class of APGs as is. Firstly if HSS

does not satisfy IO, then we can easily find an APG [A, a] where DomA is not the

same size as any set of singletons : If X ∈ HSS is a counterexample to IO, let a /∈ X
and set A := X × {a}. But more importantly, since AFA states that each APG has a

unique decoration, the representation of sets as APGs is not unique: the same set can be

represented by infinitely many non-isomorphic APGs. For example these APGs, with
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the star denoting the distinguished point, all represent the same set according to AFA,

namely the unique Quine atom a = {a}:

Therefore it is advantageous to build some kind of extensionality clause into our class

of APG under consideration. This will provide us with canonical pictures of sets and

simplify the new identity relation, as well as giving us enough control over these APGs

in HSS to prove the necessary version of IO.

We borrow the notion of a bisimulation from computer science:

Definition 19. Given a relation R, a bisimulation on R is a relation ∼ on DomR such

that

(∀x, y ∈ DomR)(x ∼ y ⇒ ((∀zRx)(∃tRy)(z ∼ t) ∧ (∀tRy)(∃zRx)(z ∼ t)))

With this, we restrict our attention to the following class of graphs:

Definition 20. A relation R is rigid if any bisimulation on R is the identity. A rigid

pointed graph (RPG) is an APG [R, r] where R is rigid.

Remark 26. If R is a relation and S ⊂ R is such that

(∀x ∈ DomS)(∀y ∈ DomR)(yRx⇒ 〈y, x〉 ∈ S)

we say S is a closed subset of R, and then clearly any bisimulation on S is a bisimulation

on R.

Thus closed subsets of rigid relations are rigid. In particular if [R, r] is an RPG, then

[Rx, x] is an RPG for any x ∈ DomR.

It is clear that the class of RPGs has a stratified definition. Let M be a model of

strZFRPG (i.e. strZF− plus Weak IO for RPGs, as in Definition 15) and let RM be the

class of RPGs in M .

Lemma 36. (Axiom of Preservation for RPGs) If [R, r] ∈ RM , [S, s] is an APG and

φ(x, y) is a stratified formula (possibly with parameters) such that

(∀x ∈ DomR)(∃!y ∈ DomS)φ(x, y) ∧ (∀y ∈ DomS)(∃!x ∈ DomR)φ(x, y) ∧

(∀x, y ∈ DomR)(∀z, t ∈ DomS)((φ(x, z) ∧ φ(y, t))⇒ (xRy ⇔ zSt))
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Then [S, s] ∈ RM .

Proof. Let ∼ be a bisimulation on S. Define a relation ≈ on DomR by

x ≈ y ⇔df (∃z, t ∈ DomS)(φ(x, z) ∧ φ(y, t) ∧ z ∼ t)

Then it is easy to see that ≈ is a bisimulation on R, therefore it is the identity. Hence

by definition of ≈, ∼ is also the identity.

Lemma 37. (Axiom of Stability for RPGs) If [R, r] ∈ RM and f is an isomorphism

between Rx and Ry for some x, y ∈ DomR, then f is the identity.

Proof. The graph of f regarded as a binary relation itself is a bisimulation on R. There-

fore f is the identity.

Lemma 38. (Axiom of Quotient for RPGs) Let [R, r] be an APG, then there is an

RPG [S, s] and a surjective map π : DomR→ DomS such that

(∀z, t ∈ DomS)(zSt⇔ (∃x, y ∈ DomR)(z = π(x) ∧ t = π(y) ∧ xRy))

and π(r) = s.

Furthermore, if p ∈ DomR and [Rp, p] is an RPG, then π is an isomorphism between

Rp and Sπ(p).

Proof. We use the construction of strongly extensional quotients (Theorem 2.4 to Lemma

2.17) in [Aczel 1], with simplification when possible and some changes to accommodate

our weakened theory:

Define a relation on DomR2 by stratified Comprehension as

x ≈ y ⇔df (∃ ∼)(∼ is a bisimulation on R ∧ x ∼ y)

If ∼ is a relation on DomR, write ∼+ for the relation

x ∼+ y ⇔df (∀zRx)(∃tRy)(z ∼ t) ∧ (∀tRy)(∃zRx)(z ∼ t)

Then ∼ is a bisimulation if and only if ∼⊂∼+. It is clear that if ∼1⊂∼2, then ∼+
1 ⊂∼

+
2 ,

i.e. ∼ is monotonic with respect to the subset relation. The following argument is a

special case of the Knaster-Tarski theorem [Tarski 1]:

If x ≈ y, then x ∼ y for some bisimulation ∼ on R, so x ∼+ y. But ∼+ ⊂ ≈+ since

∼ ⊂ ≈, so x ≈+ y. Hence ≈ ⊂ ≈+, so ≈+ ⊂ ≈++. But then ≈+ is a bisimulation, so

≈+ ⊂ ≈.
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We have shown that

(∀x, y ∈ DomR)
(
x ≈ y ⇔

(
(∀zRx)(∃tRy)(z ≈ t) ∧ (∀tRy)(∃zRx)(z ≈ t)

))
Furthermore, ≈ is an equivalence relation because:

• The identity on R is a bisimulation, so ≈ is reflexive.

• For any bisimulation ∼ on R, (∼−1)+ = (∼+)−1 ⊃ ∼−1, so ≈ is symmetric.

• For any bisimulations ∼1,∼2 on R, define

x ' y ⇔df (∃z ∈ DomR)(x ∼1 z ∧ z ∼2 y)

If x ' y with z as the witness, then x ∼+
1 z and z ∼+

2 y, so x '+ y. Thus ' is a

bisimulation, and ≈ is transitive.

Using stratified Comprehension on P(DomR), we get the set A of ≈-equivalence classes.

For convenience, write x̂ for the equivalence class of x.

Define a stratified relation Q on A by aQb⇔df (∃x ∈ a)(∃y ∈ b)xRy.

The set {x ∈ DomR : x̂ ∈ r̂Q} contains r and is closed under R−1, so it is the whole of

rR = DomR and thus r̂Q = A.

Let ∼Q be a bisimulation on Q. Define a stratified relation on R by x ∼R y ⇔df x̂ ∼Q ŷ.

Suppose x̂ ∼Q ŷ, then

(∀aQx̂)(∃bQŷ)(a ∼Q b) ∧ (∀bQŷ)(∃aQx̂)(a ∼Q b)

Since each a ∈ DomQ is ẑ for some z ∈ DomR

(∀zRx)(∃tRy)(z ∼R t) ∧ (∀tRy)(∃zRx)(z ∼R t)

This shows ∼R is a bisimulation on R, so x ≈ y and x̂ = ŷ. Thus any bisimulation on

Q is the identity, i.e. [Q, r̂] is an RPG.

Therefore there is a bijection θ : B ↔ A where B is a set of singletons.

Define a relation S on
⋃
B by xSy ⇔df θ{x} Q θ{y} and let {s} = θ−1r̂, then clearly

[S, s] is also an RPG.

Define the map π : DomR→ DomS by stratified comprehension as

{〈x, y〉 : (∃a ∈ A)(x ∈ a ∧ θ(a) = {y})
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Clearly π is surjective and for all z, t ∈ DomS

zSt⇔ (∃x, y ∈ DomR)(z = π(x) ∧ t = π(y) ∧ xRy)

Now let p ∈ DomR such that [Rr, p] is an RPG.

The restriction of ≈ to pR is a bisimulation on Rp, so it is the identity. But π(x) =

π(y)⇔ x ≈ y, so π is injective on pR and thus an isomorphism between Rp and Sπ(p).

Thus all the axioms of ZF hold in RM , except Infinity and Foundation.

Lemma 39. Infinity holds in RM .

Proof. As before, let R be a well-order in M with no maximal element. Let s /∈ DomR

and define S := R ∪ (DomR × {s}). Then [S, s] is an BFEXT. But all BFEXTs are

RPGs as we will show in Lemma 42, so [S, s] ∈ RM . Now [S, s] is well-ordered by C

with no maximal element, so Infinity holds.

The next result allows us to prove the anti-foundation axiom for this model.

Lemma 40. Let ≡ be the relation defined in Section 2.1 to interpret the symbol ∈ in

the language of set theory (see page 26).

If [A, a] is an APG, then there exists a function φ : DomA→ RM such that

(∀x ∈ DomA)(∀y ∈ RM )(y C φ(x)⇔ (∃zAx)y ≡ φ(z))

Furthermore, if ψ is another function with the property above, then φ(x) ≡ ψ(x) for all

x ∈ DomA.

Proof. By the Axiom of Quotient, there is a quotient map π from [A, a] to some RPG

[Q, q].

Then there is a bijection θ : DomQ↔ ι5“G for some G ∈M . Define

S := {〈x, y〉 : 〈θ−1ι5x, θ−1ι5y〉 ∈ Q}

By stratified Comprehension, let

φ(x) := [Sy, y]⇔ θπ(x) = ι5y

Let x ∈ DomA and φ(x) = [Sy, y], then for any z ∈ RM

z C [Sy, y]⇔ (∃pSy)z ≡ [Sp, p]

⇔ (∃rAx)z ≡ φ(r)
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Now let ψ satisfy the same condition, and [T, t] := ψ(a).

The set {x ∈ DomA : (∃y ∈ DomT )ψ(x) ≡ [Ty, y]} contains a and is closed under A−1

by the hypothesis, so it is DomA.

Define a relation ∼ on A by x ∼ y ⇔df ψ(x) ≡ ψ(y), then ∼ is a bisimulation on A by

the hypothesis. Hence {〈φ(x), φ(y)〉 : x ∼ y} is a bisimulation on the rigid relation S,

so ψ(x) ≡ ψ(y)⇔ φ(x) = φ(y).

Since T is also rigid, there is a bijection τ : DomS ↔ DomT given by

τ(x) := y ⇔ (∃z ∈ DomA)(φ(z) = [Sx, x] ∧ ψ(z) ≡ [Ty, y])

But for x, y ∈ DomS

xSy ⇔ (∃zAt)(φ(z) = [Sx, x] ∧ φ(t) = [Sy, y])

⇔ (∃zAt)([Tτ (x), τ(x)] ≡ ψ(z)C ψ(t) ≡ [Tτ (y), τ(y)])

⇔ τ(x)Tτ(y)

Therefore τ is an isomorphism from S to T , and thus φ(x) ≡ ψ(x) for all x ∈ DomA.

Lemma 41. AFA holds in RM .

Proof. Suppose RM believes [A, a] is an APG with graph relation [G, g] on domain [D, d]

and distinguished point [Dp, p] where pDd. Define a graph on {[Dx, x] : xDd} as follows

H := {〈[Dx, x], [Dy, y]〉 : RM |= 〈[Dx, x], [Dy, y]〉 ∈ [G, g]}

Then [H, [Dp, p]] is an APG since any set containing [Dp, p] and closed under H−1

contains the whole of {[Dx, x] : xDd}.

Thus by the previous Lemma there is a map φ : DomH → RM , unique up to equivalence

under ≡, such that

(∀x ∈ DomH)(∀y ∈ RM )(y C φ(x)⇔ (∃zHx)y ≡ φ(z))

By the Supertransitivity Lemma, there is an RPG [S, s] such that for any RPG [T, t]

[T, t]C [S, s]⇔ [T, t] ∈ {[R, r] : (∃x, y ∈ RM )(〈x, y〉 ∈ φ ∧RM |= [T, t] = 〈x, y〉)

Then RM believes [S, s] is the function that sends x ∈ DomH to φ(x), which is a

decoration of [A, a].

Conversely, if RM thinks [Q, q] is a decoration of [A, a], then consider

ψ :=
{
〈x, y〉 : x ∈ DomH ∧ y ∈ {[Sx, x] : x ∈ DomS} ∧ RM |= 〈x, y〉 ∈ [S, s]

}
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Then ψ satisfies the same property as φ, so by uniqueness ψ(x) ≡ φ(x) for all x ∈ DomH.

Therefore [Q, q] ≡ [S, s], i.e. the decoration is unique.

This completes the proof of:

Theorem 3. If M is a model of strZFRPG, then the class of RPGs in M is a model of

ZFA.

2.4 Relation between the RM and BM

Lemma 42. BFEXTs are exactly the same as well-founded RPGs.

Proof. Let [R, r] be a BFEXT and ∼ be a bisimulation on R.

Let x be R-minimal in the set {x ∈ DomR : (∃y 6= x)x ∼ y} and y be R-minimal

corresponding to x. Then

(∀zRx)(∀tRy)(z ∼ t⇒ z = t)

But ∼ is a bisimulation so {z : zRx} = {t : tRy}, thus x = y by Extensionality.

Contradiction, hence [R, r] is an RPG.

Conversely, let [R, r] be an RPG where R is well-founded.

Let x, y ∈ DomR be such that {z : zRx} = {z : zRy}, then the map x 7→ y, z 7→ z for

z 6= x, y is a bisimulation on R. Hence x = y, so [R, r] is a BFEXT.

Thus if M is a model of strZFRPG, then we have both a model of ZFA in RM and a

model of ZF in BM .

Lemma 43. Let [R, r] be an RPG. Then RM thinks [R, r] is well-founded if and only

if R is well-founded.

Proof. Suppose RM thinks [R, r] is well-founded. Let A ⊂ DomR, then by the Super-

transitivity Lemma we have an RPG [S, s] such that

(∀[P, p] ∈ RM )([P, p]C [S, s]⇔ (∃x ∈ A)[P, p] ≡ [Rx, x])

Then RM |= [S, s] ⊂ [R, r], so let x ∈ A be such that RM thinks [Rx, x] is the minimal

member of [S, s]. But then x is R-minimal in A, otherwise there would be y ∈ A such

that [Ry, y]C [Rx, x].

Conversely, let R be well-founded. Let RM think [S, s] ⊂ [R, r], and A := {xRr :

[Rx, x]C [S, s]}. Let x be R-minimal in A, then [Rx, x] is C-minimal in [S, s].
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Remark 27. Thus we easily see that BM is precisely the well-founded part of RM .

The exact isomorphism cannot be seen from within M since the equivalence classes of

graphs are too large; but as in the case of V and BHSS with Choice, first-order elementary

equivalence can still be proven (cf. Remark 20).

Remark 28. Since BM is a model of ZF, if we apply the BFEXT construction again,

we will just get the same model - since every BFEXT in it can be Mostowski collapsed

down and every transitive membership graph is automatically an BFEXT. Similarly, for

RM the anti-foundation axiom means that applying the RPG construction again gives

us the same model back.

We know that taking the internal well-founded part of RM gives BM - so what does the

RPG construcion on BM look like? If M = HSS and we have the conditions that lead to

BM ∼= V , then the RPG construction on BM is the same as that on V , and isomorphic

to RM . If Choice does not hold, when do we get RM?

2.5 Application to hereditarily symmetric sets

We show that HSS is a model of strZFRPG if G ∩HSS ∈ F , hence the class of RPGs

in HSS models ZFA and the class of BFEXTs in HSS models ZF. Since G∩HSS ∈ F
implies the strong closure condition, HSS is already a model of strZF. Thus it only

remains to show Weak IO for RPGs.

Lemma 44. If [R, r] is an RPG in HSS where G∩HSS ∈ F , then DomR is uniformly

symmetric.

Proof. Let R ∈ HSS and Gn(R) ∈ F . Let H := Gn(R) ∩HSS, then H ∈ F .

If σ ∈ H and i ≥ n, then jiσ is a permutation on DomR and its graph on DomR is in

HSS since σ ∈ HSS.
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If 〈x, y〉 ∈ R, then 〈jiσ(x), jiσ(y)〉 = ji+2σ〈x, y〉 ∈ R. Hence jiσ is an automorphism of

R in HSS. By the Axiom of Stability for RPGs (which can be proved in strZF−) jiσ is

the identity on DomR.

Then

(∀x ∈ DomR)(∀σ ∈ H)(∀i ≥ n+ 3)jiσ(x) = x

so DomR is uniformly symmetric.

Remark 29. An easy adaptation of the proof above shows the same result for HWS.

Corollary 8. Weak IO for RPGs holds in HSS.

Proof. Every uniformly symmetric set is strongly Cantorian.

Even if G ∩HSS 6∈ F , we can still prove Weak IO for BFEXT in HSS.

Lemma 45. If [R, r] is a BFEXT in HSS, then DomR is uniformly symmetric.

Proof. Let Gn(R) ∈ F . As before if σ ∈ Gn(R) and i ≥ n, then jiσ is an automorphism

of R in V even though the graph of jiσ on DomR might not be in HSS. However we

already know that well-founded extensional relations in the sense HSS are well-founded

extensional in V , so jiσ still has to be the identity on DomR.

Thus if the strong closure condition holds but G∩HSS 6∈ F , HSS may not be a model

of strZFRPG but it is still a model of strZFBFEXT . Therefore even though the RPG

model of ZFA may not exist, we can still build the BFEXT model of ZF from HSS.

2.5.1 Without the closure condition

What if the closure condition does not hold? Then HSS might not even satisfy Power

Set, let alone strZFBFEXT . However we can still show that the BFEXTs in HSS form

a model of Zermelo set theory minus Infinity by exploiting specific properties of HSS.

Let B be the class of BFEXTs in V and BHSS be the class of BFEXTs in HSS. Our

previous results shows that BHSS = B∩HSS, and we will make full use of the fact that

B is a model of ZF (under the intended interpretation of the language of set theory).

Moreover if [R, r], [S, s] ∈ BHSS , then DomR and DomS are uniformly symmetric so

any function between them is uniformly symmetric as well. In particular if [R, r] ∼= [S, s]

in V , then the isomorphism is also in HSS. This also shows [R, r] C [S, s] in B if and

only if [R, r] C [S, s] in BHSS , so from now on we no longer need to specify context for
∼= or C.
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Remark 30. Let [R, r] ∈ BHSS, then every B-member of [R, r] is isomorphic to a BHSS-

member of [R, r]. To see this, note that if [P, p] C [R, r] in B, then [P, p] ∼= [Rx, x] for

some xRr.

Lemma 46. Extensionality holds in BHSS.

Proof. Suppose [R, r], [S, s] ∈ BHSS have the same BHSS-members. By Remark 30 [R, r]

and [S, s] must have the same B-members, so they are isomorphic by Extensionality in

B.

Remark 31. Let [R, r] be an EPG made of BFEXTs in B and [Q, q] ∈ B the quotient of

[R, r] as given by the Axiom of Quotient. If R ∈ HSS and is uniformly symmetric, an

inspection of the proof of the Axiom of Quotient for BFEXTs shows that [Q, q] ∈ HSS.

Definition 21. Say A ⊂ BHSS is supersymmetric if there exists n ∈ ω and H ∈ F
such that

(∀[R, r] ∈ A)(∀x ∈ DomR)H ⊂ Gn(x)

Remark 32. Let A ⊂ BHSS be supersymmetric. By the Supertransitivity Lemma for B
there exists [Q, q] ∈ B such that

(∀[P, p] ∈ B)([P, p]C [Q, q]⇔ [P, p] ∈ A

Furthermore in the proof of the Supertransitivity Lemma (Lemma 25) if the new vertex

b ∈ HSS, one can easily check that by supersymmetry of A the graph B ∈ HSS and is

uniformly symmetric. Then Q ∈ HSS by Remark 31 so [Q, q] ∈ BHSS.

Lemma 47. Comprehension holds in BHSS.

Proof. Let [R, r] ∈ BHSS and φ(x) be a formula with parameters in BHSS . The set

{[Rx, x] : xRr ∧ BHSS |= φ([Rx, x])} is supersymmetric, so by Remark 32 there exists

[Q, q] ∈ BHSS such that

(∀[P, p] ∈ B)
(

[P, p]C [Q, q]↔ BHSS |= φ([P, p])
)

By Remark 30 it is clear that BHSS |= [Q, q] = {x ∈ [R, r] : BHSS |= φ(x)}.

Lemma 48. Pair Set holds in BHSS.

Proof. If [R, r], [S, s] ∈ BHSS , it is straightforward to verify that the set {[R, r], [S, s]}
is supersymmetric. Then by Remark 32 we have the result.

Lemma 49. Sumset holds in BHSS.

45



Proof. If [R, r] ∈ BHSS , the set {[Rx, x] : (∃y)(xRy ∧ yRr)} is supersymmetric so the

result holds by Remark 32.

Lemma 50. Power Set holds in BHSS.

Proof. If [R, r] ∈ BHSS , let B |= [Q, q] = P[R, r]. Inspecting the earlier proof of Power

Set for our syntactic models shows that by choosing c ∈ HSS we can arrange that the

EPG [C, c] ∈ HSS and is uniformly symmetric. Hence [Q, q] ∈ HSS by Remark 31 and

it is clear that BHSS |= [Q, q] = P[R, r].

Remark 33. The truth of Infinity in BHSS depends on Infinity in HSS: given any

well-order of limit type in HSS we can easily build one in BHSS and vice versa.

On the other hand the proof of Replacement in BHSS runs into a different difficulty. If

[R, r] ∈ BHSS and BHSS believes φ(x, y) defines a function on [R, r], we would need a

supersymmetric set A such that

(∀xRr)(∃[Q, q] ∈ A)BHSS |= φ([Rx, x], [Q, q])

But while the set {[Rx, x] : xRr} is easily supersymmetric, it is not clear that we could

prove the same for A since the function described by φ could change the degree of sym-

metry of each [Rx, x] differently.

Thus the question remains of whether there is a pair (G,F) such that the closure con-

dition fails for HSS and either Infinity or Replacement fails for BHSS.
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3 Multisets

It has been observed by Thomas Forster that in working with stratified set theories, one

frequently has difficulties with making copies of sets. If we want the copies to be indexed

by some set I, the traditional approach would be to make ordered pairs with the index

component being members of I. Then by reading off this component one would have

a bijection between the set of copies and the index set I. However it is clear that this

bijection may well be unstratified unless a type-level definition of ordered pairs is used.

In the previous chapter we met some instances of this: for example in the proof of the

Supertransitivity Lemma (Lemma 25) merely making disjoint copies of a given set of

APGs raises their type by 5. In that particular case we were saved by Weakened IO,

which let us bring the type back down.

Things get even more complicated when the index set is not disjoint from the sets

being copied, in which case even type-level ordered pairs might not help. Consider the

following example: Suppose we tried to interpret NF syntactically from the APGs in

an NFU model in the same manner as in the previous chapter. As before the definition

of APGs is stratified and the definition of a bisimulation can be carried over to enforce

extensionality between equivalence classes of APGs. It is also relatively straightforward

to verify Comprehension for this interpretation, and we are left with constructing a

universal APG. Conveniently in the original NFU model there exists a set of all APGs

so it seems we need only pick a new vertex and connect it to the top of all APGs to get

the universal APG. The only thing left is to arrange for all the children APGs to have

disjoint domains, so that when we join them in the universal APG they do not receive

extra edges. However it is impossible to make disjoint copies of all APGs: if Â is the

new copy of A, we would have to index each vertex of Â with A itself to be sure that

Dom Â is disjoint from other Dom B̂. But then Â will be of higher type than A even if

our ordered pairs are type-level, since its vertices are already of the same type as A; so

we will not have a bijection from the set of copies to the original set of APGs!

Thus in stratified theories, even something as simple as copying sets may prove trou-

blesome. One way to try to get around this difficulty is to introduce an extra degree of

freedom into our objects, by considering multisets in place of sets. Since each member

of a multiset comes with a multiplicity, we can encode more information in a multiset

than in a pure set, which might give a means to index things. Another reason to intro-

duce this extra freedom from the NF perspective is that, according to a view attributed

to Randall Holmes, the increased “slop” may potentially make it easier to prove the

consistency of NF-like systems. To that end, we will investigate a new axiomatisation
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of multisets customised to be fitted with a stratification system.

Multisets are sets with possibly repeated elements, somewhat natural objects that arise

in various situations in both mathematics and computing. However despite numerous

accounts of multisets, some by quite well-known mathematicians, there has been no

consensus on how to axiomatise them. The best survey of these accounts is Wayne

Blizard’s The development of multiset theory [Blizard 1] and the two most comprehensive

proposals seem to be Blizard’s own in [Blizard 2] and [Blizard 3], the latter even allowing

for infinite multiplicities. However like other multiset theories, they are both two-sorted

theories where the multiplicities are a different type of objects from the multisets they

support. This would require separate axioms for multiplicity arithmetic, and in the

infinite case it involves piggybacking on a predefined model of cardinal arithmetic (for

example [Blizard 3] uses cardinals in a model of ZF set theory).

The above would not serve our purpose, since beyond the cumbersome axiomatisation

the space of cardinal multiplicities may not be rich enough to encode information about

the multisets themselves. Therefore we will now propose a one-sorted account of multi-

sets, where multiplicities and sets come from the same universe and follow the same ax-

ioms. As a result multiplicities are no longer cardinal numbers but sets themselves, with

their own internal structures. The natural ordering of multiplicities will be identified

with the subset relation, i.e. intuitively we consider x to be less than y as multiplicities

if x is a proper subset of y. The axioms we propose will mirror Zermelo-Fraenkel set

theory, mutatis mutandis, the only real complication coming from the subset relation

for multisets, which becomes naturally recursive upon being identified with the ordering

on multiplicities. As an intended tool to help prove the consistency of fragments of

NF, we will keep our multiset theory relatively consistent with ZF. We will also define

a stratification system that gives rise to a multiset analogue of Coret’s lemma and a

parallel structure to the hereditarily symmetric sets.

3.1 The theory

This is a one-sorted theory where the same variables will be used for multisets and

multiplicities; we shall often call them sets for brevity. The membership predicate is a

ternary predicate: x ∈a y means x belongs to y with multiplicity a. Note that a is of

the same type of object as x and y, and in turn may have members of its own.

Definition 22. The language of multisets LH has one sort of variable and two predicate

symbols: the identity = and the ternary symbol ∈ (in practice we write x ∈a y).

Remark 34. The membership and subset relations we will define on multisets will be
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denoted by boldface symbols to differentiate them from their set-theoretic counterparts.

This distinction is especially important when we build a model for our multiset theory

from a model of set theory. Unfortunately the bold symbols look almost the same as the

regular symbols, so the reader should keep in mind the context where they appear.

We write x ∈ y for (∃a)x ∈a y, i.e. x belongs to y with some multiplicity.

To begin, we assert that multiplicities are unique.

Axiom 7.

(∀x, y, a, b)(x ∈a y ∧ x ∈b y ⇒ a = b)

Thus we can write informally y
x for the unique multiplicity of x in y.

Axiom 8. Axiom of Extensionality

(∀x, y)
(
x = y ⇔ (∀a, b)(a ∈b x⇔ a ∈b y)

)
Definition 23. Let φ(x, y) be a formula with two free variables and possibly parameters

such that (∀x)(∃!y)φ(x, y). We say φ defines a function-class on multisets.

Definition 24. Let φ define a function-class on multisets. We write {x ⊗ y : φ(x, y)}
for the multiset a satisfying

(∀x, y)(x ∈y a⇔ φ(x, y))

i.e. a contains x with multiplicity y if and only if φ(x, y) holds.

As a special case, for any concrete natural number n we write {x1 ⊗ y1, . . . xn ⊗ yn} for

the multiset a satisfying

(∀x, y)(x ∈y a⇔ 〈x, y〉 = 〈x1, y1〉 ∨ . . . ∨ 〈x, y〉 = 〈xn, yn〉)

The multisets specified in the definition above are unique by Extensionality.

Axiom 9. Axiom of Empty Set

(∃x)(∀y)y 6∈ x

As usual, extensionality ensures that the empty multiset, which we denote by ∅, is

unique.

Axiom Schema 10. Axiom schema of Comprehension

(∀x)(∃y)y = {a⊗ b : a ∈b x ∧ φ(a, b)}

for all formula φ with two free variables and possibly parameters.
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Note that the set given by Comprehension inherits the multiplicities from the original

set. At this stage we will avoid changing multiplicities in our axioms as much as possible.

By introducing axioms that deal with multiplicities separately, we can extend the basic

theory to incorporate different systems of multiset, for example those with only finite

multiplicities or cardinal multiplicities.

Axiom 11. Axiom of Pairing

(∀x, y)(∃a)a = {x⊗ ∅, y ⊗ ∅}

(see the special case of Definition 24)

We define ordered pairs in the usual manner and the Axiom of Pairing ensures their

existence.

Definition 25. 〈x, y〉 :=
{
{x⊗ ∅} ⊗ ∅, {x⊗ ∅, y ⊗ ∅} ⊗ ∅

}
3.1.1 The subset relation

Intuitively in our theory there should be an ordering on multiplicities (namely “there

are more copies of something than of another”). With this in mind, we regard a multiset

x as a subset of y if and only if every member of x appears in y with greater or equal

multiplicity. As mentioned before, identifying the subset relation with the ordering on

multiplicities gives us a natural recursive definition of subset.

Axiom Schema 12. ⊂ is a partial order and the largest class relation such that

(∀x, y)
(
x ⊂ y ⇔ (∀a ∈ x)

(
a ∈ y ∧ x

a ⊂
y
a

))
In other words if φ(x, y) is a formula (possibly with parameters) such that

(∀x, y)
(
φ(x, y)⇔ (∀a ∈ x)

(
a ∈ y ∧ φ(xa ,

y
a)
))

then (∀x, y)(φ(x, y)⇒ x ⊂ y).

Instead of adopting this axiom schema right away, we will prove it from the rest of

the axioms by defining the subset relation in terms of the multi-membership relation.

However at this stage we can check that these properties makes the empty multiset ∅
a subset of everything, and that {x ⊗ ∅} behaves like the traditional singleton in set

theory.

Formally we write x ⊂ y as shorthand for the following formula:
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Definition 26.

x ⊂ y ⇔dfx = y ∨

(∃R)
(
〈x, y〉 ∈ R ∧ (∀v, w)

(
〈v, w〉 ∈ R⇒ (∀a ∈ v)(a ∈ w ∧ 〈 va ,

w
a 〉 ∈ R)

))
Lemma 51. (∀x)(∀y)(x ∈ y ⇔ {x⊗ ∅} ⊂ y)

Proof. In one direction {x ⊗ ∅} ⊂ y since ∅ is a subset of everything, while the other

direction is trivial.

As part of our axioms we stipulate that ⊂ is antisymmetric. This is the only part of the

Axiom of Subset that does not follow from the other axioms with the definition above,

and we will prove this independence result in the last section of this thesis.

Axiom 13. Axiom of Subset

(∀x, y)(x ⊂ y ∧ y ⊂ x⇒ x = y)

It trivially follows from the definition that if x ⊂ y, then every member of x is a member

of y. Furthermore ∅ is a subset of everything.

Remark 35. At this point one may question the necessity of the axiom of Subset in

our theory. After all the subset relation in set theory is trivially antisymmetric, and

the recursive property of ⊂ makes it easy to prove antisymmetry if we have a reasonable

definition of well-foundedness in the model. However in the last section we will show that

the axiom of Subset is independent from the remaining axioms by means of a syntactic

model.

We move on to the definition of union. In set theory
⋃
x is simply defined as the set

of members of members of x since there are no worries about multiplicities, but on

reflection the really useful feature of
⋃
x is the fact that it is the minimal superset of

all members of x. In the context of two-sorted multiset theory, this definition of union

means taking the supremum of multiplicities of the same object, as opposed to what

[Blizard 2] calls the additive union where multiplicities are added.

Axiom 14. Axiom of Union

(∀x)(∃b)(∀a)(b ⊂ a⇔ (∀y ∈ x)y ⊂ a)

Following set theory convention, we denote the union of x by
⋃
x and write x ∪ y for⋃

{x⊗ ∅, y ⊗ ∅}. Since ⊂ is antisymmetric,
⋃
x is unique for every x.
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We follow the same approach in defining Replacement. Let the formula φ define a

function on x and a be in the image of x. If a is the image of more than one y ∈ x, the

multiplicity of a in the new multiset (given by Replacement) should be at least as large

as the multiplicity of any preimage of a in x. Thus we simply let the multiplicity of a be

the ⊂-least upper bound (i.e. the union) of x
y for all preimages y of a. If y is unique, it

easily follows that the multiplicity of a is x
y since ⊂ is both reflexive and antisymmetric.

Axiom Schema 15. Axiom schema of Replacement

(∀x)

(
(∀a ∈ x)(∃!b)φ(a, b)⇒

(∃y)(∀b, d)
(
b ∈d y ⇔ (∃a ∈ x)φ(a, b) ∧ (∀e)

(
d ⊂ e⇔ (∀a ∈ x)(φ(a, b)⇒ x

a ⊂ e)
)))

for all formulae φ with two free variables and possibly with parameters.

It is clear that the set given by Replacement is unique for each x and each function-class

φ, and we will denote it by Repφx.

Lemma 52. (∀x, b)
(
b =

⋃
x⇒ (∀a)(a ∈ b⇔ (∃y ∈ x)a ∈ y)

)
Proof. If (∀y ∈ x)a 6∈ y, by Comprehension let

z := {v ⊗ w : v ∈w b ∧ v 6= a}

Let y ∈ x and R be a witness to y ⊂ b. Define by Replacement

S := {v ⊗ w : (v ∈w R ∧ v 6= 〈y, b〉) ∨ (v = 〈y, z〉 ∧ 〈y, b〉 ∈w R)}

In other words S is obtained by replacing 〈y, b〉 in R with 〈y, z〉.

Since a 6∈ y it is still true that

(∀〈v, w〉 ∈ S)(∀c ∈ v)(c ∈ w ∧ 〈vc ,
w
c 〉 ∈ S)

Hence S is a witness to y ⊂ z and thus b ⊂ z by definition of union, so a 6∈ b.

Conversely let y ∈ x and a ∈ y, then a ∈ b since y ⊂ b by definition.

One may expect that the multiplicity of each a ∈
⋃
x is the union of multiplicities of a

in all b ∈ x, but currently our axioms do not allow changing multiplicities. We will prove

this result later on when the axiom schema of Multiplicity Replacement is introduced.

Given any multiset x there can be more than one multiset whose memmbers are exactly

the subsets of x, so we will make a canonical choice for the power set of x by specifying

all multiplicities in the power set to be ∅. Other choices are also possible, but this seems

to be the simplest.
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Definition 27. The canonical power set of x is Px := {y ⊗ ∅ : y ⊂ x}.

Axiom 16. Axiom of Power Set

(∀x)(∃y)y = Px

Lemma 53. For any x, y there exists the product of x and y, namely

x× y := {〈v, w〉 ⊗ ∅ : v ∈ x ∧ w ∈ y}

Proof. By Comprehension from P3(x ∪ y).

Lemma 54. Intersection

(∃x)φ(x)⇒ (∃b)(∀a)
(
a ⊂ b⇔ (∀y)(φ(y)⇒ a ⊂ y)

)
for any formula φ with one free variable and possibly parameters.

Proof. Let φ(x) hold for some x. By Comprehension from Px and Union we have the

multiset

b :=
⋃
{v ⊗ ∅ : v ⊂ x ∧ (∀y)(φ(y)⇒ v ⊂ y)}

If φ(y) holds, then v ⊂ y for any v in the union, hence b ⊂ y by definition of union.

Therefore (∀a ⊂ b)a ⊂ y.

Conversely if a ⊂ y for all y such that φ(y) holds, then a ⊂ x. Hence a is in the union,

so a ⊂ b.

For convenience we denote the intersection as defined in the lemma by
⋂
φ(x) x. For any

given φ and x, the intersection is unique if it exists since ⊂ is antisymmetric.

Remark 36. It is time for a short comment on ∅ as a multiplicity. Normally one would

expect x ∈∅ y to denote non-membership, since it fits with the intuition of x belonging to y

zero times. However with our definition of the inclusion relation, equating ∅-multiplicity

with non-membership would give rise to rather odd phenomena. For example there might

be two non-empty multisets with exactly the same members but empty intersection:

Suppose x and y are two non-empty disjoint multisets, which can always be arranged if

the axiom of Pairing holds and the model has more than one non-empty object. Then

{∅⊗x} and {∅⊗y} have the same member, namely ∅. However the multiplicity of ∅ in the

intersection must be empty since it is a subset of both x and y, hence {∅⊗x}∩{∅⊗y} = ∅.
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Remark 37. There is no negative membership in our theory, since ∅ is already the

bottom multiplicity (recall that ∅ is a subset of everything, and we already chose to

identify the ordering of multiplicities with the subset relation on multisets). For a quick

overview of negative multiplicities and a theory of multisets with integer multiplicities

(including the negative integers), see [Blizard 4].

If φ(x) is the formula x ∈ y, we simply write
⋂
y. If φ(x) is the formula x ∈ a ∧ x ∈ b,

we write a ∩ b.

3.1.2 Relations and functions

Definition 28. A multiset R is a (binary) relation if all its members are ordered pairs.

Define the canonical field of R by Comprehension as

DomR :=
{
x⊗ v : (∃y)(〈x, y〉 ∈ R ∨ 〈y, x〉 ∈ R) ∧ x ∈v

⋃2
R
}

Definition 29. A relation f is a function if

(∀a, x, y)((〈a, x〉 ∈ f ∧ 〈a, y〉 ∈ f)⇒ x = y)

We define the canonical domain and range of f as follows

dom f :=
{
x⊗ v : (∃y)〈x, y〉 ∈ f ∧ x ∈v

⋃2
R
}

ran f :=
{
y ⊗ v : (∃x)〈x, y〉 ∈ f ∧ y ∈v

⋃2
R
}

Note that if f is a function, then Dom f = dom f ∪ ran f . In general f can be regarded

as a function on any multiset with the same members as dom f .

Intuitively the definition above requires a function to send all identical copies of an

object in its domain to identical images. In other words a function is just a map which

sends multisets to multisets, and its domain is just a canonical object to represent the

class of multisets on which the map is defined. The multiplicities in the domain and in

the graph of the function itseld are thus of no importance.

We write R ∈ Relation and f ∈ Function as shorthand for the formulae saying R

is a relation and f is a function respectively, and write f(x) = y for 〈x, y〉 ∈ f . For

convenience we also extend our notation by introducing {f(x)⊗g(y) : φ(x, y)} where f, g

are either functions or formulae defining function-classes on multisets, with the obvious

meaning.

Lemma 55. ⊂ is transitive and thus a partial order.
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Proof. Suppose a ⊂ b and b ⊂ c. If a = b or b = c the proof is trivial, so we only

consider the case where they are distinct.

If R1 witnesses a ⊂ b and R2 witnesses b ⊂ c, define by Comprehension from
⋃2R1 ×⋃2R2 the following relation

R := {〈x, z〉 ⊗ v : (∃b)(〈x, y〉 ∈ R1 ∧ 〈y, z〉 ∈ R2) ∧ 〈x, z〉 ∈v DomR1 ×DomR2}

If 〈x, z〉 ∈ R, let 〈x, y〉 ∈ R1 and 〈y, z〉 ∈ R2. Suppose v ∈ x, then v ∈ y and so v ∈ z.

Furthermore 〈xv ,
y
v 〉 ∈ R1 and 〈yv ,

z
v 〉 ∈ R2 so 〈xv ,

z
v 〉 ∈ R. Thus we have

〈x, y〉 ∈ R⇒ (∀v ∈ x)(v ∈ y ∧ 〈xv ,
y
v 〉 ∈ R)

and it is trivial to see that 〈a, c〉 ∈ R.

3.1.3 Well-orders and Infinity

Definition 30. Say X is a closed multiset and write X ∈ Closed if

(∀v ∈ X)(∀a, b)(a ∈b v ⇒ (a ∈ X ∧ b ∈ X))

Well-orders are defined in exactly the same way as in set theory.

Definition 31. A relation R is a well-order if it is a total order and any non-empty

multiset A ⊂ DomR has a R-minimal member.

To state the Axiom of Infinity we assert the existence of an analogue of the von Neumann

ordinals.

Definition 32. Write α ∈ ON for the formula saying both of the following:

• (∀x ∈ α)
(
α
x = ∅ ∧ (∀y ∈ x)(y ∈ α ∧ x

y = ∅)
)

• The relation ∈ restricted to α is a well-order.

Write α+ for α ∪ {α⊗ ∅}, and write α < β for α ∈ β when α and β are both ordinals.

Lemma 56. If α ∈ ON , then α is closed. Furthermore if β ∈ α, then β ∈ ON .

Proof. By comparing the definition of ordinals with Definition 30, for α to be closed it is

enough to show that ∅ ∈ a. But if γ be the ∈-minimal member of α, then any member

of γ would also be a member of α; so γ has to be empty.
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Suppose β ∈ alpha and x ∈ β, then β
x = ∅ since α ∈ ON . Furthermore x ∈ α, so for

any y ∈ x we also have y ∈ α and x
y = ∅. Since the relation ∈ is a well-order on α,

either β ∈ y or y ∈ β. But β ∈ y would violate well-foundedness of ∈ on α, so y ∈ β.

Hence for β to be an ordinal it only remains to prove that the relation ∈ restricted to β

is a well-order. But we already know that every member of β is a member of α, so the

result follows trivially from the fact that ∈ restricted to α is a well-order.

Remark 38. The advantages of specifying all multiplicities to be ∅ are that our later

construction of a ZF model inside a model of our multiset theory is simplified, and that

ordinals are automatically closed multisets; though other choices are also possible. It

also follows directly from the definition of α+ that α ∈∅ α+ (note that α cannot be a

member of itself due to the well-ordering condition in the definition of ordinals).

Just like in traditional set theory, it follows trivially that α+ ∈ ON whenever α ∈ ON .

Axiom 17. Axiom of Infinity

(∃x ∈ ON)
(
∅ ∈∅ x ∧ (∀y ∈ x)

(
y ∈ ON ∧ (y = ∅ ∨ (∃z ∈ x)y = z+) ∧ y+ ∈∅ x

))

We call this multiset ω and use the usual numerals to stand for the appropriate finite

ordinals, i.e. n+ 1 stands for n+.

Remark 39. The usual proof of induction on the ordinals also works here: Suppose the

formula φ(α) (possibly with parameters) holds for an ordinal α whenever it holds for all

ordinals β < α. If φ(γ) is false for some γ ∈ ON , let δ be the least ordinal in γ+ such

that φ(δ) is false (since the membership relation restricted to γ+ is a well-order). Then

φ holds for all ordinals smaller than δ since γ+ is closed (i.e. any ordinal smaller than

δ is also a member of γ+), so φ(δ) is true and we get a contradiction.

3.1.4 The maximal property of ⊂

Lemma 57. For any x, there exists a closed multiset with x as a member.

Proof. Define a function-class

ϕ(v, w)⇔df w = v ∪ {b⊗ b : (∃a)a ∈b v}

By Union and Replacement

(∀v)(∃w)ϕ(v, w)
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Define a function-class φ(x, y) from ω to the universe of multisets as follows

φ(x, y)⇔df (∃f ∈ Function)
(
f(x) = y

∧ dom f ⊂ ω

∧ (∀n ∈ dom f)(∀m < n)m ∈ dom f

∧ f(0) = {x⊗ ∅}

∧ (∀n ∈ dom f)f(n+ 1) =
⋃
Repϕf(n)

)
By induction on ω (see Remark 39) it is easy to see that φ defines a function on all of

ω, so by Replacement let X := Repφω. Thus

(∀y)(y ∈ X ⇔ (∃a ∈ ω)φ(a, y))

For any v ∈ X, there exists n ∈ ω such that v ∈ f(n).

Let w be such that φ(v, w) holds. If a ∈b v, then a, b ∈ w so a, b ∈ f(n+ 1).

Thus
⋃
X has the desired closure property, and x ∈

⋃
X since x ∈ f(0).

Corollary 9. For any multiset x there is a ⊂-minimal closed multiset with x as a

member.

Proof. Let φ(y) be the formula stating that y is closed and x ∈ y, then by the last

lemma there is at least one y such that φ(y) holds. Hence we can take the intersection

of all multisets satisfying φ.

Lemma 58.

(∀x, y)
(
x ⊂ y ⇔ (∀a ∈ x)(a ∈ y ∧ x

a ⊂
y
a)
)

Moreover if φ(x, y) is a formula such that

(∀x, y)
(
φ(x, y)⇒ (∀a ∈ x)(a ∈ y ∧ φ(xa ,

y
a))
)

then (∀x, y)(φ(x, y)⇒ x ⊂ y).

Proof. If x = y the first claim is trivial, so we assume otherwise.

Let x ⊂ y, then 〈x, y〉 ∈ R for some relation R such that

(∀v, w)
(
〈v, w〉 ∈ R⇒ (∀a ∈ v)(a ∈ w ∧ 〈 va ,

w
a 〉 ∈ R)

)
If a ∈ x, then a ∈ y and 〈xa ,

y
a〉 ∈ R. Hence R itself witnesses x

a ⊂
y
a .

Conversely, suppose

(∀a ∈ x)(a ∈ y ∧ x
a ⊂

y
a)
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Let X be a closed multiset containing x and Y a closed multiset containing y. Define a

relation R by Comprehension from X × Y as follows

R :=
{
〈v, w〉 ⊗ a : (∀b ∈ v)

(
b ∈ w ∧ v

b ⊂
w
b

)
∧ 〈v, w〉 ∈a X × Y

}
By the proven direction of the claim

(∀v ∈ X)(∀w ∈ Y )(v ⊂ w ⇒ 〈v, w〉 ∈ R)

From this and the definition of R we have

(∀v, w)(〈v, w〉 ∈ R⇒ (∀b ∈ v)(b ∈ w ∧ 〈vb ,
w
b 〉 ∈ R))

But 〈x, y〉 ∈ R by the hypothesis, so x ⊂ y as witnessed by R and the converse is

proved.

Now suppose φ(x, y) is a formula such that

(∀x, y)
(
φ(x, y)⇒ (∀a ∈ x)

(
a ∈ y ∧ φ(xa ,

y
a)
))

and that φ(x, y) holds for some particular pair x, y. Again, let X,Y be closed multisets

containing x, y respectively and define a relation R by

R :=
{
〈v, w〉 ⊗ a : (∀b ∈ v)

(
b ∈ w ∧ φ(vb ,

w
b )
)
∧ 〈v, w〉 ∈a X ⊗ Y

}
As above we have

(∀v ∈ X)(∀w ∈ Y )(φ(v, w)⇒ 〈v, w〉 ∈ R)

and

(∀v, w)(〈v, w〉 ∈ R⇒ (∀b ∈ v)(b ∈ w ∧ 〈vb ,
w
b 〉 ∈ R)

Hence x ⊂ y as witnessed by R.

3.1.5 Transitive closures

There are two obvious candidates for the definition of transitive multisets:

(∀x ∈ a)(∀y ∈ x)y ∈ a

and

(∀x ∈ a)x ⊂ a

The second trivially implies the first, but unlike in set theory the converse is false: let

x := {∅ ⊗ {∅}} and a := {x,∅}, then a satisfies the first condition but not the second.

Therefore we will take the stronger condition to be our definition for transitive multisets.
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Definition 33. A multiset a is transitive if (∀x ∈ a)x ⊂ a.

Lemma 59. Let φ(x) be a formula with one free variable such that (∃x)φ(x) and φ(x)

only holds for transitive multisets. Then
⋂
φ x is transitive.

Proof. Let a ∈
⋂
φ x and suppose φ(x) holds, then a ∈ x since

⋂
φ x ⊂ x. By transitivity

a ⊂ x for all such x, so a ⊂
⋂
φ x by definition.

Remark 40. According to this definition of transitivity, all ordinals are transitive. For

if α ∈ ON and x ∈ α, then for all y ∈ x we also have y ∈ α. But from the definition

of ON we also have x
y = ∅ ⊂ α

y , so x ⊂ α.

Lemma 60. Transitive Closure

For any multiset x, there exists a ⊂-minimal transitive multiset TC(x) such that x ⊂
TC(x).

Proof. Let x be any multiset. Define a function-class φ by

φ(a, b)⇔df (∃f ∈ Function)
(
f(a) = b

∧ dom f ⊂ ω

∧ (∀c ∈ dom f)(∀d < c)d ∈ dom f

∧ f(0) = x

∧ (∀c, d ∈ dom f)(d = c+ 1⇒ f(d) =
⋃
f(c))

)
By induction we can prove that for any a ∈ ω there is a unique b such that φ(a, b) holds.

Hence by Replacement there exists

v := {φ(a)⊗ b : a ∈b ω}

Let w :=
⋃
v, then x ⊂ w since x ∈ v.

For any e ∈ w there exist a, b such that φ(a, b) and e ∈ b. Then
⋃
b ∈ v by definition

of φ, so
⋃
b ⊂ w. But e ⊂

⋃
b, so e ⊂ w.

Thus there is a transitive w such that x ⊂ w, so let TC(x) be the intersection of all

such w. By the previous lemma TC(x) is transitive, and by definition of intersection

x ⊂ TC(x) and TC(x) is ⊂-minimal.

Corollary 10.

(∀x, y)(x ∈ TC(y)⇒ TC(x) ⊂ TC(y)}

(∀x, y)
(
x ∈ TC(y)⇔ (x ∈ y ∨ (∃a ∈ y)x ∈ TC(a))

)
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Proof. If x ∈ TC(y), then x ⊂ TC(y) as TC(y) is transitive so by definition TC(x) ⊂
TC(y). Consequently

(x ∈ y ∨ (∃a ∈ y)x ∈ TC(a))⇒ x ∈ TC(y)

Conversely suppose x 6∈ y and (∀a ∈ y)x 6∈ TC(a). By Replacement, Comprehension

and Union let

v := y ∪
⋃
{TC(a)⊗ b : a ∈b y}

If w ∈ v, then clearly w 6= x. Either w ∈ y so w ⊂ TC(w) ⊂ v, or w ∈ TC(a) for some

a ∈ y so w ⊂ TC(a) ⊂ v.

Hence v is transitive and TC(y) ⊂ v, so x 6∈ TC(y).

In summary, we propose the following basic system.

Definition 34. The theory MS consists of the following axioms:

• Axiom of Extensionality

(∀x, y)(x = y ⇔ (∀a, b)a ∈b x⇔ a ∈b y)

• Axiom schema of Comprehension

(∀x)(∃y)(∀a, b)
(
a ∈b y ⇔ (a ∈b x ∧ φ(a, b))

)
for all formula with two free variables and possibly parameters.

• Axiom of Pairing

(∀x, y)(∃a)
(
x ∈∅ a ∧ y ∈∅ a ∧ (∀b)(b ∈ a⇒ (b = x ∨ b = y))

)
• Axiom of Subset

(∀x, y)(x ⊂ y ∧ y ⊂ x⇒ x = y)

where

x ⊂ y ⇔dfx = y ∨

(∃R)
(
〈x, y〉 ∈ R ∧ (∀v, w)

(
〈v, w〉 ∈ R⇒ (∀a ∈ v)(a ∈ w ∧ 〈 va ,

w
a 〉 ∈ R)

))
• Axiom of Union

(∀x)(∃b)(∀a)(b ⊂ a⇔ (∀y ∈ x)y ⊂ a)
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• Axiom schema of Replacement

(∀x)

(
(∀a ∈ x)(∃!b)φ(a, b)⇒

(∃y)(∀b, d)
(
b ∈d y ⇔ (∃a ∈ x)φ(a, b) ∧ (∀e)

(
e ⊂ d⇔ (∀a ∈ x)(φ(a, b)⇒ x

a ⊂ e)
)))

for all formulae φ with two free variables and possibly with parameters.

• Axiom of Power Set

(∀x)(∃y)(∀a)
(
a ∈ y ⇔ (a ⊂ x ∧ y

a = ∅)
)

• Axiom of Infinity

(∃x ∈ ON)
(
∅ ∈∅ x ∧ (∀y ∈ x)(y ∈ ON ∧ y+ ∈∅ x ∧ (y = ∅ ∨ (∃z ∈ x)y = z+))

)
We leave the Axiom of Foundation for a later discussion in Section 3.1.8.

3.1.6 The collection of sets

In this section we work in a model of the theory MS.

Definition 35. For any multiset x, let core(x) be the multiset such that

(∀y)(y ∈ core(x)⇔ y ∈ x) ∧ (∀y ∈ core(x)) core(x)y = ∅

Let Core be the class of cores, i.e. write x ∈ Core for (∀y ∈ x)xy = ∅.

By Extensionality, core(x) is unique if it exists. It trivially follows that the core of

core(x) is itself, and two multisets have the same core if and only if they have the same

members. Note that if α ∈ ON , then core(α) = α by definition.

Definition 36. We say x ∈ Set if x ∈ Core ∧ (∀y ∈ TC(x))y ∈ Core.

It immediately follows from the definition that

(∀x)(x ∈ Set⇔ x ∈ Core ∧ (∀y ∈ x)y ∈ Set)

Consider the following interpretation of the language of set theory:

• = is the identity relation.

• ∈ is interpreted as ∈.
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• (∀x)φ(x) is replaced with (∀x)(x ∈ Set⇒ φ(x)).

• (∃x)φ(x) is replaced with (∃x)(x ∈ Set ∧ φ(x)).

We first note that under this interpretation the induced subset relation coincides with

⊂, i.e.

(∀x, y ∈ Set)(x ⊂ y ⇔ (∀a ∈ x)a ∈ y)

Theorem 4. If MS is consistent, so is ZF.

Proof. We check that the given interpretation of the language of set theory turns Set

into a model of all ZF axioms minus Foundation.

• Extensionality

(∀x, y ∈ Set)((∀a ∈ Set)(a ∈ x⇔ a ∈ y)⇒ x = y)

Suppose a ∈b x, then a ∈ x and b = ∅ since x ∈ Core, thus a ∈ Set. Therefore

a ∈ y, but y ∈ Set so a ∈∅ y. Similarly a ∈b y implies a ∈b x, so x = y by

Extensionality for multisets.

• Comprehension

(∀x ∈ Set)(∃y ∈ Set)(∀a ∈ Set)(a ∈ y ⇔ (a ∈ x ∧ φ(a)))

By Comprehension for multisets we have y := {a⊗ b : a ∈b x∧φ(a)}. It is enough

to show y ∈ Set, but x ∈ Set so a ∈ Set and b = ∅ whenever a ∈b y.

• Replacement

(∀x ∈ Set)
(

(∀a ∈ x)(∃!b ∈ Set)φ(a, b)⇒ (∃y ∈ Set)(∀b ∈ Set)(b ∈ y ⇔ (∃a ∈ x)φ(a, b))
)

By Replacement for multisets we have y := {b ⊗ ∅ : (∃a)(a ∈ x ∧ φ(a, b))}, and

clearly y ∈ Set.

• Pair Set

(∀x, y ∈ Set)(∃a ∈ Set)(∀b ∈ Set)(b ∈ a⇔ (b = x ∨ b = y))

If x, y ∈ Set, then clearly {x⊗ ∅, y ⊗ ∅} ∈ Set.

• Union

(∀x ∈ Set)(∃y ∈ Set)(∀a ∈ Set)(a ∈ y ⇔ (∃b ∈ x)a ∈ b)

It is enough to show that x ∈ Set⇒
⋃
x ∈ Set.

Clearly a ∈ Set for any a ∈
⋃
x, and

S
x
a = ∅ since (∀y ∈ x)(a ∈ y ⇒ y

a = ∅).
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• Power Set

(∀x ∈ Set)(∃y ∈ Set)(∀a ∈ Set)(a ∈ y ⇔ a ⊂ x)

If x ∈ Set, then trivially (∀y ⊂ x)y ∈ Set so Px ∈ Set.

• Infinity

Clearly ω ∈ Set and corresponds to the von Neumann ω under our interpretation.

Remark 41. Note that Definition 32 ensures that (∀α ∈ ON)α ∈ Set.

Remark 42. Up to this point, since we have chosen our axioms to avoid all manipula-

tion of multiplicities so far, note that any model of Zermelo-Fraenkel set theory can be

trivially regarded as a model for our multiset theory by interpreting x ∈ y as x ∈∅ y (we

could replace ∅ everywhere by another designated set if we rewrite the Axioms of Pair Set,

Power Set and Infinity for multisets to avoid specifying ∅ as the required multiplicity).

Hence the consistency strength of our theory is the same as ZF.

3.1.7 Multiplicity Replacement

By adding different axioms to handle multiplicities, we can extend MS to implement

different systems of multisets of various strengths. For example consider the following

theory:

Axiom 18. Axiom of Finite Multiplicities

(∀x, y, a)(x ∈a y ⇒ a ∈ ω) ∧ (∀x)(∀a ∈ ω)(∃y)y = {x⊗ a}

Definition 37. The theory MSω consists of all MS axioms, plus the Axiom of Finite

Multiplicities.

MSω describes a system of multisets with finite multiplicities which is essentially equiv-

alent to the theory MST in [Blizard 2]. The one major difference is that in MST the

multiplicity 0 is regarded as non-membership while our theory allows positive member-

ship with multiplicity 0. In other words the multiplicity n in MSω corresponds to the

multiplicity n+ 1 in MST.

If we want a theory of multiset where multiplicities are ZF cardinals (similar to the

theory MSTC presented in Blizard[3]), we make use of the fact that the class Set is a

model of ZF. Thus we let Card be the class of cardinals in Set and add to MS the axiom

schema below:
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Axiom Schema 19.

(∀x)
(

(∀a ∈ x)(∃!b ∈ Card)φ(a, b)⇒ (∃y)y = {a⊗ b : a ∈ x ∧ φ(a, b)}
)

for any formula φ with two free variables and possibly parameters.

This allows us to replace multiplicities in existing multisets with any ZF cardinals, as

long as the replacement is a definable map. To ensure that any multiplicity is a ZF

cardinal we add the following axiom

Axiom 20. (∀x, y, a)(x ∈a y ⇒ a ∈ Card)

Remark 43. With the way ordinals are defined in our multiset theory, every multiset

ordinal is automatically in the class Set. As long as our axiom regarding multiplicities

is strong enough to replace every multiplicity by ∅, two ordinals will have a bijection in

the universe of multisets if and only if they have a bijection in the class Set, and so the

alephs in the multiset model (defined analogously to their set-theoretic counterparts) will

be the same as the set-theoretic alephs in the ZF interpretation of the class Set.

In order to set up a stratification system for multisets later on we will need the strongest

possible axiom to manipulate multiplicities. Namely, for any multiset and any definable

map from it to the universe of multisets we can use that map to replace the multiplicities

in the given multiset at will.

Axiom Schema 21. Axiom schema of Multiplicity Replacement

(∀x)
(

(∀a ∈ x)(∃!b)φ(a, b)⇒ (∃y)y = {a⊗ b : a ∈ x ∧ φ(a, b)}
)

for any formula φ with two free variables and possibly parameters.

The addition of this axiom means that our theory can no longer accept models of

Zermelo-Fraenkel set theory since set-theoretic Extensionality is provably false. For

example {∅ ⊗ ∅} and {∅ ⊗ {∅ ⊗ ∅}} are proved to exist as distinct multisets with ex-

actly the same members. In the same way, it cannot accept models of any traditional

multiset theories where multiplicities are integers or cardinals, since with Multiplicity

Replacement it is easy to create multiplicities that would be disallowed by those theories.

However we will show that the schema of Multiplicity Replacement does not raise the

consistency strength of the theory by constructing a model for it from any ZF model.

Definition 38. The theory MS+ consists of all MS axioms, plus the schema of Multi-

plicity Replacement.
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Lemma 61. (MS+)

(∀x)(∀a ∈
⋃
x)

S
x
a =

⋃
{ya ⊗ b : y ∈b x ∧ a ∈ y}

Proof. By Multiplicity Replacement let

A :=
{
v ⊗ w : v ∈

⋃
x ∧ w =

⋃
{yv ⊗ b : y ∈b x ∧ v ∈ y}

}
It is easy to show that y ⊂ A for all y ∈ x, so

⋃
x ⊂ A. Thus (∀a ∈

⋃
x)

S
x
a ⊂

A
a .

Conversely if a ∈ y ∈ x, then y ⊂
⋃
x so y

a ⊂
S
x
a . Hence A

a ⊂
S
x
a .

The claims thus follows by antisymmetry of ⊂.

3.1.8 Well-founded multisets

Start with a model of MS+.

We say a multiset x is well-founded if every sub-multiset A of the ⊂-minimal multiset

containing x (see Corollary 9) has a minimal member y such that

(∀z ∈ y)(z 6∈ A ∧ y
z 6∈ A)

Alternatively, we can define the class WF of well-founded multisets by the analogue of

the cumulative hierarchy:

V∅ := ∅

Vα+1 :=
{
x⊗ ∅ : (∀y, a)

(
y ∈a x⇒ (y ∈ Vα ∧ a ∈ Vα)

)}
Vλ :=

⋃
{Vα ⊗ ∅ : α < λ} for limit λ

x ∈WF ⇔df (∃α ∈ ON)x ∈ Vα

A simple induction shows that the Vα are all closed and form a nested hierarchy. Fur-

thermore also by induction WF is precisely the class of well-founded multisets. We can

thus define the rank of a well-founded multiset as the minimal ordinal α such that Vα
contains the multiset in question, with the property that

rankx := max{sup
y∈x

rank y + 1, sup
y∈x

rank x
y + 1}

Lemma 62. (∀x)((∀y ∈ x)(y ∈WF ∧ x
y ∈WF )⇒ x ∈WF )

Proof. Let α := max{supy∈x rank y + 1, supy∈x rank x
y + 1}, then x ∈ Vα+1.

Lemma 63. (∀x ∈WF )(∀y ⊂ x)y ∈WF
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Proof. If x ∈WF and y ⊂ x but y 6∈WF , let x be of minimal rank. Then for all z ∈ y,

z ∈WF and y
z ∈WF since y

z ⊂
x
z . Hence y ∈WF , contradiction.

Lemma 64. (∀α ∈ ON)α ∈WF

Proof. We already showed that ordinals are closed, so it is straightforward to see that

α+ is the ⊂-minimal multiset that has α as a member. Suppose A ⊂ α+ and let y be

the ∈-minimal member of A.

If there is some z ∈ y, then clearly z 6∈ A. Furthermore y is a non-empty ordinal by

Lemma 56, so y
z = ∅. But ∅ ∈ y as in the proof of Lemma 56, so ∅ 6∈ A by minimality

of y.

Axiom 22. (Axiom of Foundation) (∀v)v ∈WF

Just like in set theory, we can show that:

Theorem 5. WF is a model of MS+ plus Foundation.

Proof. The proof is much like its counterpart in set theory. Extensionality holds since

WF is closed downwards. Comprehension, Pairing, Power Set and Multiplicity Replace-

ment all hold by Lemma 62. Union holds by an induction on rank, using the recursive

relation in Lemma 61. Replacement follows from Union and lemma 62. Infinity holds

since ω is well-founded by Lemma 64. Foundation holds since the cumulative hierar-

chy defined relative to WF is exactly the same as the cumulative hierarchy that forms

WF .

Corollary 11. If MS+ is consistent, then MS+ plus Foundation is consistent.

3.1.9 Transitive closed multisets

We have shown in the theory MS that for any multiset x there is a transitive multiset

containing x and a closed multiset containing x. We now show in MS+ that there is

always a transitive closed multiset containing x.

Lemma 65. (MS+) For any multiset x there is a transitive closed multiset y such that

x ∈ y.

Proof. Let a be closed such that {x⊗ ∅} ∈ a, and let b =
⋃
a. Then x ∈ b.

If v ∈ b, then v ∈ w for some w ∈ a so v ∈ a. Thus v ⊂ b, i.e. b is transitive. Also

b
v =

⋃
{wv ⊗ ∅ : v ∈ w ∈ a} ⊂ b
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since w
v ∈ a if v ∈ w ∈ a.

Let c be the smallest closed multiset such that b ∈ c. Then an easy induction on the

minimal property of c shows that for all w ∈ c

w ⊂ b ∧ (∀v ∈ w)wv ⊂ b

If w = b the claim is trivial.

Suppose the claim is true for w and v ∈ w. Then v ∈ b, so v ⊂ b and thus

(∀q ∈ v)vq ⊂
b
q ⊂ b

Also by the claim w
v ⊂ b so

(∀q ∈ w
v )

w
v
q ⊂

b
q ⊂ b

and the induction is complete.

By Multiplicity Replacement let y := {v⊗ b : v ∈ c}, then y is also closed and obviously

x ∈ y.

If w ∈ y, then w ∈ c so

(∀v ∈ w)wv ⊂ b = y
v

Hence w ⊂ y, i.e. y is transitive as required.

Remark 44. Any model of Zermelo set theory that refutes transitive containment (such

as that given in [Mathias 1]) readily provides a model of MS minus Replacement in which

some multiset is not contained in any transitive multiset. It remains to be investigated

whether the lemma above still holds if the underlying theory is weakened to MS.

3.1.10 Stratification, Coret’s Lemma and hereditarily symmetric multisets

Throughout this section we work in a model of MS+ plus Foundation.

In this section we extend the language of multisets LH (see Definition 22) to a new

language LH+ by introducing ⊂ as a formal symbol, whose meaning is the same as

before. Thus formally we add the axiom

Axiom 23.

x ⊂ y ⇔ x = y ∨ (∃R)
(
〈x, y〉 ∈ R∧(∀v, w)(〈v, w〉 ∈ R⇒ (∀a ∈ v)(a ∈ w∧〈 va ,

w
a 〉 ∈ R))

)
Remark 45. As an alternative approach, we could have introduced ⊂ as a new symbol

from the beginning with the associated axiom schema:
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• ⊂ is a partial order

• (∀x, y)(x ⊂ y ⇔ (∀a ∈ x)(a ∈ y ∧ x
a ⊂

y
a)

• (∀x, y)
(
φ(x, y)⇔ (∀a ∈ x)(a ∈ y ∧ φ(xa ,

y
a))
)
⇒ (∀x, y)(φ(x, y)⇒ x ⊂ y)

for all formula φ with two variables.

Then we can state the axioms of Union, Replacement, Power Set and Infinity using the

⊂ symbol directly instead of the previous definition for the inclusion relation. Finally

we can prove that the previous definition holds for x and y exactly when x ⊂ y, in the

same way that we proved the properties of the inclusion relation.

Definition 39. If φ is a formula in the extended language, a stratification σ of φ is a

map from the set of variables in φ to ω × ω such that:

• If x = y occurs in φ, then σ(x) = σ(y).

• If x ∈a y occurs in φ and σ(x) = 〈m,n〉, then σ(y) = 〈m+ 1, n〉 and σ(a) =

〈m,n+ 1〉.

• If x ⊂ y occurs in φ, then σ(x) = σ(y), with the caveat that σ(x) 6= 〈0, 0〉.

We say the formula φ is stratified if it has a stratification σ, and say x has type σ(x)

for a variable x in φ.

Remark 46. The condition that σ(x) 6= 〈0, 0〉 whenever x ⊂ y occurs is to make sure

that the proof of Coret’s Lemma for multisets (see below) goes through. If σ(x) = 〈0, 0〉
was allowed, then the lemma would imply f(x) ⊂ f(y) for any bijective function-class

f , which is false.

Definition 40. The operator j

Suppose f is a bijective function or function-class on the universe of multisets and

〈m,n〉 ∈ N× N. Define a function-class j〈m, n〉f inductively as follows:

y = j〈0, 0〉f(x)⇔df y = f(x) ∨ (y = x ∧ x 6∈ dom f)

y = j〈0, n + 1〉f(x)⇔df y = {v ⊗ w : (∃a)(a ∈w x ∧ v = j〈0, n〉f(a))}

y =j〈m + 1, n〉f(x)⇔df

y = {v ⊗ w : (∃a, b)(a ∈b x ∧ v = j〈m, n〉f(a) ∧ w = j〈m, n + 1〉f(b))}
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The definitions of stratification and the operator j are both based on the idea that

for any permutation f , jf acts not just on the members of a multiset but also on the

multiplicities (since multiplicities are of the same type of object as sets). Combining the

two definitions gives us the following analogue of Coret’s Lemma.

Lemma 66. Coret’s Lemma for multisets

Let σ be a stratification for the formula φ(x1 . . . xn), then for any bijective function or

function-class f

(∀x1 . . . xn)φ(x1 . . . xn)⇔ φ(jσ(x1)f(x1) . . . jσ(xn)f(xn))

Proof. The proof is exactly the same as with the original Coret’s Lemma, by induction

on the formula φ. The only new case is with ⊂.

If φ⇔df x = y, the result follows immediately since j is well defined.

If φ ⇔df x ∈a y, let σ(x) = 〈m,n〉. Then σ(y) = 〈m+ 1, n〉 and σ(a) = 〈m,n+ 1〉, so

the result follows from the definition of j〈m + 1, n〉.

If φ⇔df x ⊂ y, let σ(x) = σ(y) = 〈m,n〉. We prove the claim by induction on m.

If m ≥ 1, then

jσ(x)f(x) = {j〈m− 1, n〉f(a)⊗ j〈m, n + 1〉f(xa ) : a ∈ x}

jσ(y)f(y) = {j〈m− 1, n〉f(a)⊗ j〈m, n + 1〉f(ya) : a ∈ y}

Let a ∈ x, then a ∈ y so j〈m− 1, n〉f(a) ∈ jσ(y)f(y).

Furthermore x
a ⊂

y
a , so by the inductive hypothesis j〈m, n + 1〉f(xa ) ⊂ j〈m, n + 1〉f(ya).

Hence jσ(x)f(x) ⊂ jσ(y)f(y) as required.

If m = 0, then n ≥ 1. Hence

jσ(x)f(x) = {j〈0, n− 1〉f(a)⊗ x
a : a ∈ x}

jσ(y)f(y) = {j〈0, n− 1〉f(a)⊗ y
a : a ∈ y}

Let a ∈ x, then a ∈ y so j〈0, n− 1〉f(a) ∈ jσ(y)f(y). But also x
a ⊂

y
a , so jσ(x)f(x) ⊂

jσ(y)f(y) as required.

If φ ⇔df ψ ∧ ϕ, then σ is a stratification for both ψ and ϕ. Applying the inductive

hypothesis to φ and ϕ gives us the induction step.

If φ ⇔df ¬ψ, then σ is a stratification for ψ so we can apply the inductive hypothesis

to ψ.
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If φ⇔df (∃x)ψ(x), then σ is a stratification for ψ. If φ(a1 . . . an) holds, there exists a such

that ψ(a, a1 . . . an) holds. By the inductive hypothesis ψ(jσ(x)f(a), jσ(x1)f(a1) . . . jσ(xn)f(an))

holds, so φ(jσ(x1)f(a1) . . . jσ(xn)f(an)) holds.

Thus we can reintroduce the notion of symmetry in the context of multisets. As before,

let G be a group of permutations (i.e. bijections f where dom f = ran f) and F a filter

on G. To avoid complications with multiplicities we assume that F ∈ Core.

Definition 41. For m,n ∈ ω, the 〈m,n〉-stabiliser of x in G is

G〈m, n〉(x) =
{
σ ⊗ ∅ : σ ∈ G ∧ (∀p, q ∈ ω)

(
(p ≥ m ∧ q ≥ n)⇒ j〈p, q〉σ(x) = x

)}
The weak stabiliser of x in G is Gω(x) :=

⋃
m,n∈ω G〈m, n〉(x).

Definition 42. The multiset x is strongly symmetric if G〈m, n〉(x) ∈ F for some n ∈ ω,

and weakly symmetric if Gω(x) ∈ F .

Lemma 67. Let φ(x) be a stratified formula with all parameters strongly (or weakly)

symmetric. If (∃!x)φ(x), then that unique witness x is strongly (respectively weakly)

symmetric.

Proof. Let a1 . . . al be the parameters of φ(x), where ai has type 〈pi, qi〉 and x has type

〈p, q〉 in some stratification of φ. Suppose φ(x, a1 . . . al) holds.

If the ai are strongly symmetric andG〈m(i), n(i)〉(ai) ∈ F , thenH :=
⋂
iG〈m(i), n(i)〉(ai) ∈

F .

Let m := max{m(1) . . .m(l)} and n := max{n(1) . . . n(l)}.

By Coret’s Lemma, for any a, b ≥ 0 and σ ∈ H

φ(j〈p + m + a, q + n + b〉σ(x), j〈p1 + m + a, q1 + n + b〉σ(a1) . . . j〈pl + m + a, ql + n + b〉σ(al))

But this is exactly φ(j〈p + m + a, q + n + b〉σ(x), a1 . . . al), so by uniqueness of x we have

x = j〈p + m + a, q + n + b〉σ(x). Hence H ⊂ G〈p + m, q + n〉(x) and thus x is strongly

symmetric.

If the ai are weakly symmetric, take

H :=
⋂
i

Gω(ai) ∈ F

If σ ∈ H, let σ ∈ G〈m(i), n(i)〉(ai) for each ai and m := max{m(1) . . .m(l)}, n :=

max{n(1) . . . n(l)}.

By the same argument as above, x = j〈p + m + a, q + n + b〉σ(x) for any a, b ≥ 0, so

H ⊂ Gω(x).
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Let HSM be the class of hereditarily strongly symmetric multisets, i.e. x ∈ HSS

if there is a closed set y containing x such that everything in y is strongly symmetric.

Similarly we define HWM to be the class of hereditarily weakly symmetric multisets. As

with HSS and HWS, these are formally definable classes in the language of multisets.

Remark 47. In the definition above we use the notion of closed set instead of transitive

set since if x is hereditarily symmetric, it makes sense to require all multiplicities involved

in x also to be hereditarily symmetric.

Define the strong closure condition as the exact analogue of our previous definition

{σ × ∅ : σ ∈ G ∧ (∀m,n ∈ ω)(∀x ∈ HSM)(j〈m, n〉σ(x) ∈ HSM)} ∈ F

and define the weak closure condition accordingly.

Theorem 6. HSM and HWM are models of the stratified axioms of MS+ plus Foun-

dation if the corresponding closure conditions hold.

Proof. The proof is exactly the same as with sets, so we only give an outline.

Extensionality and Foundation are inherited from the starting model. By the lemma

above it is trivial to verify that stratified ∆0-Comprehension, Empty Set and Pairing

hold.

Union follows from the same lemma since the definition of union, written in terms of ⊂,

is stratified. In fact this is very much the reason we introduced an extra formal symbol

for ⊂ and defined the j operator around it.

By the closure condition {y×∅ : y ∈ HSM ∧ y ⊂ x} is hereditarily symmetric and acts

as the power set of x in HSM , and the same holds for HWM . Thus Power Set holds

in both structures.

Also by the closure condition Vα ∩ HSM ∈ HSM and Vα ∩ HWM ∈ HWM for

large α, so stratified Comprehension can be reduced to stratified ∆0-Comprehension. In

addition, this allows us to prove the multiset equivalent of the ZF axiom of Collection.

Once we have established stratified Multiplicity Replacement, together with stratified

Comprehension and Collection we can prove stratified Replacement.

Infinity (in a stratified form) holds by choosing a suitable hereditarily symmetric well-

order that is externally isomorphic to ω.

The only case not present in the set-theoretic analogue of this proof is stratified Multi-

plicity Replacement, i.e. stratified instances of the schema

(∀x)
(

(∀a ∈ x)(∃!b)φ(a, b)⇒ (∃y)y = {a⊗ b : a ∈ x ∧ φ(a, b)}
)

71



Let φ(a, b) be a stratified formula defining a function from x ∈ HSM to HSM in which

a has type 〈m,n〉 and b has type 〈m,n+ 1〉. Assume that φ has no parameters; the

general case can be dealt with similarly by raising the types in the proof above the types

of the parameters. We show

y := {a⊗ b : a ∈ x ∧ φ(a, b)} ∈ HSM

It is enough to prove that y is symmetric. Suppose G〈p, q〉(x) ∈ F . By Coret’s Lemma

(∀i, j ≥ 0)(∀σ ∈ G)
(
φ(a, b)⇔ φ(j〈p + m + i, q + n + j〉σ(a), j〈p + m + i, q + n + j + 1〉σ(b))

)
But

(∀i, j ≥ 0)(∀σ ∈ G〈p, q〉(x))(∀a ∈ x)j〈p + m + i, q + n + j〉σ(a) ∈ x

Hence G〈p + m + 1, q + n〉(y) ⊃ G〈p, q〉(x) ∈ F and y is strongly symmetric.

If y := {a⊗b : a ∈ x∧φ(a, b)} ∈ HWM , a similar argument shows that Gω(y) ⊃ Gω(x)

so y is weakly symmetric.

3.2 A model for the theory

Start with a model V of ZF. It is possible and indeed quite natural to construct a well-

founded model for our multiset theory from V by interpreting x ∈a y in the language

of multiset as 〈x, a〉 ∈ y in a recursively defined subclass of V . However we will take

a different approach and construct a graph-based model in which there are interesting

manifestations of anti-foundation, in the hope that this will give rise to some consistency

results for NF-like multiset theories (where we know that foundation must fail).

For our purposes we will only consider directed 3-uniform hypergraphs, which we simply

call hypergraphs for brevity. The model for our multiset theory will be a definable class

of these hypergraphs.

We implement a hypergraph H as the set of its edges, where each edge is an ordered

tuple 〈x, y, z〉. Write H(x, y, z) as shorthand for 〈x, y, z〉 ∈ H.

Definition 43. Let H be a hypergraph and x any set.

Let

H−1x := {y : (∃z)〈x, y, z〉 ∈ H}

and

H−2x := {z : (∃y)〈x, y, z〉 ∈ H}

Similarly let

H−1 := {y : (∃x, z)〈x, y, z〉 ∈ H}
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and

H−2 := {z : (∃x, y)〈x, y, z〉 ∈ H}

Definition 44.

xH :=
⋂
{X : x ∈ X ∧ (∀y ∈ X)(H−1y ⊂ X ∧H−2y ⊂ X)}

In other words xH contains x and all vertices of H accessible from x by a finite directed

path.

Let Hx be the restriction of H to xH . It is the smallest subgraph of H containing x and

closed under outward edges.

Definition 45. A pointed hypergraph [H,h] is an ordered pair 〈H,h〉 where H is a

hypergraph and h a set which we call the point of [H,h]. We say [G, h] ∼= [H,h] if there

is an isomorphism between G and H that takes g to h.

Definition 46. If [H,h] is a pointed hypergraph, let

Dom[H,h] := {h} ∪ {x : (∃y, z)〈x, y, z〉 ∈ H}

∪ {y : (∃x, z)〈x, y, z〉 ∈ H}

∪ {z : (∃x, y)〈x, y, z〉 ∈ H}

Definition 47. A finite directed path in [H,h] is a finite sequence x1 . . . xn in Dom[H,h]

where xi+1 ∈ H−1xi or xi+1 ∈ H−2xi. We say that the directed path is from x1 to xn.

Definition 48. [H,h] is accessible if Dom[H,h] = hH . Equivalently, for any x ∈
Dom[H,h] there is a finite directed path in [H,h] from h to x.

Remark 48. For any hypergraph H and any x, [Hx, x] is accessible.

To help with illustrations, we introduce a graphical representation of pointed hyper-

graphs. We represent the point with a star and and edge 〈x, y, z〉 by a solid arrow from

x to y with a segmented arrow branching out to z. The intended interpretation is that

(the object represented by) y belongs to x with multiplicity z. We omit the names of

the vertices unless it is necessary to specify them.

Both graphs in the figure above depict the singleton of the empty multiset with empty

multiplicity, but the second graph has two vertices both standing for the empty multiset.

Obviously there will be many non-isomorphic graphs depicting the same multiset, so we

need to define an equivalence relation to enforce extensionality.
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Definition 49. For any relation ∼ ⊂ Dom[G, g] × Dom[H,h], say ∼ is a bisimulation

between [G, g] and [H,h] if for any a ∼ x we have

(∀b, c ∈ Dom[G, g])(G(a, b, c)⇒ (∃y, z ∈ Dom[H,h])(H(x, y, z) ∧ b ∼ y ∧ c ∼ z))∧

(∀y, z ∈ Dom[H,h])(H(x, y, z)⇒ (∃b, c ∈ Dom[G, g])(G(a, b, c) ∧ b ∼ y ∧ c ∼ z))

If [G, g] = [H,h] we say ∼ is a bisimulation on [H,h].

Lemma 68.

i If ∼ is a bisimulation between [G, g] and [H,h], then the relation

x ' y ⇔df y ∼ x

is a bisimulation between [H,h] and [G, g].

ii If ∼ is a bisimulation between [G, g] and [H,h] and ' a bisimulation between

[H,h] and [Q, q], then the relation

x ≈ d⇔df (∃a)(x ∼ a ∧ a ' d)

is a bisimulation between [G, g] and [Q, q].

iii If ∼ is a bisimulation between [G, g] and [H,h], then its restriction to Dom[Gx, x]×
Dom[Hy, y] is a bisimulation between [Gx, x] and [Hy, y].

iv Any bisimulation between [Gx, x] and [Hy, y] is a bisimulation between [G, g] and

[H,h].

v Let ∼ be a bisimulation between [G, g] and [H,h] such that g ∼ h. If [G, g] and

[H,h] are accessible, then

(∀y ∈ Dom[H,h])(∃x ∈ Dom[G, g])x ∼ y∧(∀x ∈ Dom[G, g])(∃y ∈ Dom[H,h])x ∼ y

Remark 49. As would be expected, since the graphs in the last figure represent the same

multiset, there is a bisimulation between them, namely {〈A,C〉, 〈B,D〉, 〈B,E〉}.

Proof.

i The result is immediate from the definition of bisimulation.
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ii Let x ∼ a ' d and G(x, y, z).

There are b, c ∈ Dom[H,h] such that y ∼ b, z ∼ c and H(a, b, c). Hence there are

e, f ∈ [Q, q] such that b ' e, c ' f and Q(d, e, f), but then we have y ≈ e and

z ≈ f .

The other direction is similar, so ≈ is a bisimulation.

iii Let ∼ be a bisimulation between [G, g] and [H,h].

If a ∼ d where a ∈ Dom[Gx, x], d ∈ Dom[Hy, y] and Gx(a, b, c), then clearly

G(a, b, c). Hence there are e, f ∈ Dom[H,h] such that b ∼ e, c ∼ f and H(d, e, f).

But then Hy(d, e, f) by definition of [Hy, y].

The other direction is similar, so the restriction of ∼ to Dom[Gx, x]×Dom[Hy, y]

is a bisimulation between [Gx, x] and [Hy, y].

iv Let ∼ be a bisimulation between [Gx, x] and [Hy, y].

If a ∼ d and G(a, b, c), then Gx(a, b, c) by definition of [Gx, x]. Thus there are

e, f ∈ Dom[Hy, y] such that b ∼ e, d ∼ f and Gy(d, e, f), but then G(d, e, f).

The other direction is similar, so ∼ is a bisimulation between [G, g] and [H,h].

v Let y ∈ Dom[H,h].

There exists a finite sequence y1 . . . yn in Dom[H,h] where y1 = h, yn = y and

yi+1 ∈ H−1yi∪H−2yi for all i. We show by induction on n that there is a sequence

x1 . . . xn in Dom[G, g] such that xi ∼ yi and xi+1 ∈ G−1xi ∪G−2xi for all i.

The case n = 1 is trivial.

If n > 1, by induction hypothesis we have a sequence x1 . . . xn−1 such that xi ∼ yi
and xi+1 ∈ G−1xi ∪ G−2xi for all i. Now yn ∈ H−1yn−1 ∪H−2yn−1 and xn−1 ∼
yn− 1, so there exists xn ∈ H−1xn−1 ∪H−2xn−1 such that xn ∼ yn since ∼ is a

bisimulation.

Similarly for the other direction.

Remark 50. The notion of bisimulation can also be described by the following back-

and-forth game:

The game is played on a pair of accessible pointed hypergraphs [G, g] and [H,h]. On

the first turn two arbitrary vertices G1 ∈ Dom[G, g] and H1 ∈ Dom[H,h] are picked

out. On the n+ 1-th turn, player 1 picks any vertex previously chosen by either player
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(including the starting vertices), without loss of generality say Gm (m ≤ 2n − 1), and

two more vertices G2n and G2n+1 from the same graph, such that 〈Gm, G2n, G2n+1〉 is

an edge of G. Player 2 then has to pick vertices H2n and H2n+1 from the other graph,

such that 〈Hm, H2n, H2n+1〉 is an edge of H (note that Hm has the same index as Gm).

Note that both players are allowed to pick repeated vertices.

For any pair of vertices x ∈ Dom[G, g] and y ∈ Dom[H,h], there is a bisimulation

relating x to y if and only if player 2 has a strategy to stay alive indefinitely in the

game starting with x and y: Suppose the relation ∼ is such a bisimulation and without

loss of generality that player 1 picks an edge 〈Gm, G2n, G2n+1〉 where Gm ∼ Hm. Then

(assuming the Axiom of Choice) player 2 can pick an edge 〈Hm, H2n, H2n+1〉 where

G2n ∼ H2n and G2n+1 ∼ H2n+1, thus keeping the situation in her favour. Conversely

if player 2 has a strategy to hold out indefinitely, then it is straightforward to check the

required bisimulation is the relation Gm ∼ Hm whenever Hm is the dictated response to

Gm or Gm the response to Hm in some possible unfolding of the game.

Compared to the Ehrenfeucht-Fräıssé game (as in [Ehrenfeucht 1]), this game favours

player 2 more since she does not have to keep the subgraphs on {G1 . . . Gn} and {H1 . . . Hn}
isomorphic after every turn. As a result, the existence of bisimulations does not imply

elementary equivalence: For example the graphs in the following diagram has a bisimu-

lation, yet only one of them is extensional (when regarded as a relation).

Definition 50. Say [H,h] is extensional if any bisimulation on [H,h] is the identity.

Lemma 69.

i If [H,h] is extensional, then so is [Hx, x] for any x ∈ Dom[H,h].

ii If [H,h] is extensional and [Hx, x] ∼= [Hy, y] for x, y ∈ Dom[H,h], then x = y.

Proof.

i For any x ∈ Dom[H,h] and any binary relation ∼ on Dom[H,h], ∼ is a bisimu-

lation on [H,h] if and only if its restriction to xH = Dom[Hx, x] is a bisimulation

on [Hx, x] by Lemma 68. Hence if [H,h] is extensional, then so is [Hx, x].

ii If [Hx, x] ∼= [Hy, y] and φ is the isomorphism, then the relation φ(a) = b is a

bisimulation between [Hx, x] and [Hy, y]. By Lemma 68 it is also a bisimulation

on [H,h], so it is the identity and thus x = y.
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Lemma 70. (Quotient Lemma) For any pointed hypergraph [H,h], there exists an ex-

tensional pointed hypergraph [Q, q] and a surjective quotient map π : Dom[H,h] →
Dom[Q, q] such that q = π(h),

(∀a, b, c ∈ Dom[Q, q])
(
Q(a, b, c)⇔ (∃x, y, z ∈ Dom[H,h])(a = π(x)∧b = π(y)∧c = π(z))

)
and the relation π(x) = y is a bisimulation between [H,h] and [Q, q]. We call [Q, q] the

extensional quotient of [H,h]. Furthermore:

i The extensional quotient is unique up to isomorphism.

ii Dom[Qπ(x), π(x)] = {π(y) : y ∈ Dom[Hx, x]} for any x ∈ Dom[H,h]

In particular if [H,h] is accessible, then so is [Q, q].

iii For any x ∈ Dom[H,h], the extensional quotient of [Hx, x] is (isomorphic to)

[Qπ(x), π(x)].

iv If [Hx, x] is extensional, then [Qπ(x), π(x)] is isomorphic to [Hx, x].

Proof. If ∼ ⊂ Dom[H,h]2, define ∼+ by

a ∼+ x⇔df (∀b, c ∈ Dom[H,h])(H(a, b, c)⇒ (∃y, z ∈ Dom[H,h])(H(x, y, z) ∧ b ∼ y ∧ c ∼ z))∧

(∀y, z ∈ Dom[H,h])(H(x, y, z)⇒ (∃b, c ∈ Dom[H,h])(H(a, b, c) ∧ b ∼ y ∧ c ∼ z))

Clearly ∼1 ⊂ ∼2 implies ∼+
1 ⊂ ∼

+
2 and ∼ is a bisimulation if and only if ∼ ⊂ ∼+.

Now define ≈ ⊂ Dom[H,h]2 by

x ≈ y ⇔df (∃ ∼)(∼ ⊂ ∼+ ∧ x ∼ y)

i.e. the union of all bisimulations on [H,h].

The set of relations on Dom[H,h] ordered by ⊂ forms a complete lattice, and the op-

eration ∼7→∼+ is monotonic. Hence as an easy case of the Knaster-Tarski theorem we

can show that ≈ is the same as ≈+:

If x ≈ y, then there is a relation ∼ ⊂ ∼+ such that x ∼ y. Thus x ∼+ y, so x ≈+ y by

definition of ≈+. Hence ≈ ⊂ ≈+ and therefore ≈+ ⊂ ≈++. Thus ≈ is a bisimulation,

so ≈+ ⊂ ≈ and ≈ = ≈+.

The identity on Dom[H,h] is a bisimulation, so ≈ is reflexive. Since ≈ is a bisimulation,

by Lemma 68 the relations {〈y, x〉 : x ≈ y} and {〈x, z〉 : (∃y)x ≈ y ≈ z} are also

bisimulations, so ≈ is symmetric and transitive.
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Let Dom[Q, q] be the set of equivalence classes of ≈, q the equivalence class of h, and

let π : Dom[H,h]→ Dom[Q, q] be the corresponding quotient map. Define the relation

Q on Dom[Q, q] by

Q(a, b, c)⇔df (∃x, y, z ∈ Dom[H,h])(H(x, y, z) ∧ π(x) = a ∧ π(y) = b ∧ π(z) = c)

Let ∼Q be a bisimulation on [Q, q]. We show that ∼Q must be the identity relation.

Define a relation ∼H on Dom[H,h] by

x ∼H y ⇔df π(x) ∼Q π(y)

If x ∼H a and H(x, y, z), then Q(π(x), π(y), π(z)) so there exists d, e ∈ Dom[Q, q] such

that Q(π(a), d, e) and π(y) ∼Q d, π(z) ∼Q e. Thus there are b, c ∈ Dom[H,h] such that

d = π(b), e = π(c) and H(a, b, c). But then y ∼H b and z ∼H c.

Similarly if x ∼H a and H(a, b, c), then there are y ∼H b, z ∼H c such that H(x, y, z).

Therefore ∼H is a bisimulation.

This means ∼H ⊂ ≈, so x ∼H y ⇒ π(x) = π(y) for any x, y ∈ Dom[H,h] and thus ∼Q
is the identity. We have shown that [Q, q] is extensional.

If π(x) = a and Q(a, b, c), there are d, e, f such that π(d) = a, π(e) = b, π(f) = c and

H(d, e, f). Then x ≈ d so there are y ≈ e, z ≈ f such that H(x, y, z). But then π(y) = b

and π(z) = c.

On the other hand, if H(x, y, z), then Q(π(x), π(y), π(z)). Thus the relation π(x) = y

is a bisimulation between [H,h] and [Q, q].

i Let [Q, q] be an extensional quotient of [H,h] and π the associated quotient map.

Define

x ∼ y ⇔df π(x) = π(y)

It suffices to show that ∼ is the same as the greatest bisimulation ≈ on Dom[H,h].

Now

x ∼ y ⇔ (∃a)(π(x) = a ∧ a = π(y))

so ∼ is a bisimulation on [H,h] by Lemma 68, since the relation π(x) = y is a

bisimulation. Hence ∼ ⊂ ≈.

Similarly, define a relation on Dom[Q, q] by

x ' y ⇔df (∃a, b)(x = π(a) ∧ a ≈ b ∧ π(b) = y)

Then ' is a bisimulation on [Q, q] since both ≈ and π(x) = y are bisimulations.

But [Q, q] is extensional, so ' is the identity, and so ≈ ⊂ ∼.

Thus ∼ = ≈ as required.

78



ii [Hx, x] and [Qπ(x), π(x)] are accessible, and by Lemma 68 the relation π(x) =

y is a bisimulation between them. Hence by Lemma 68 Dom[Qπ(x), π(x)] =

π“ Dom[Hx, x].

If [H,h] is accessible, then Dom[Qq, q] = π“ Dom[H,h] = Dom[Q, q] so [Q, q] is

accessible.

iii By Lemma 68, the restriction of ≈ to Dom[Hx, x]2 is precisely the greatest

bisimulation on [Hx, x].

Let G be the restriction of Q to π“ Dom[Hx, x], then the extensional quotient of

[Hx, x] as constructed in this proof is isomorphic to [G, π(x)] via the bijection that

sends the equivalence class in Dom[Hx, x] of any vertex a to the equivalence class

of a in Dom[H,h].

By the result above, [G, π(x)] is the same as [Qπ(x), π(x)].

iv If [Hx, x] is extensional, the restriction of ≈ to Dom[Hx, x] = xH is the identity

since it is a bisimulation by Lemma 68. Hence π : Dom[Hx, x] ↔ Dom[Qπ(x), x]

is a bijection.

Suppose a, b, c ∈ Dom[Hx, x] and Q(π(a), π(b), π(c)).

Since the relation π(x) = a is a bisimulation, there are d, e ∈ Dom[H,h] such that

π(d) = π(b), π(e) = π(c) and H(a, d, e). But then d, e ∈ Dom[Hx, x], so d = b and

e = c, i.e. H(a, b, c).

Conversely we already know thatH(a, b, c)⇒ Q(π(a), π(b), π(c)), hence [Qπ(x), π(x)] ∼=
[Hx, x].

Definition 51. The hypergraph [Q, q] constructed in the Quotient Lemma provides a

canonical example of an extensional quotient of [H,h]. From now on we simply refer to

it as the extensional quotient of [H,h].

Definition 52. Say [G, g] and [H,h] are similar if their extensional quotients are iso-

morphic, and write [G, g] ≡ [H,h].

Remark 51. It is immediate from the definition above and the Quotient Lemma that if

[G, g] and [H,h] are extensional, then [G, g] ≡ [H,h]⇔ [G, g] ∼= [H,h].

Lemma 71. Let [G, g] and [H,h] be accessible. Then [G, g] ≡ [H,h] if and only if there

exists a bisimulation ∼ between [G, g] and [H,h] such that g ∼ h.
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Remark 52. In other words [G, g] ≡ [H,h] if and only if in the game described in

Remark 50 with starting vertices g and h, player 2 has a strategy to hold out indefinitely.

Proof. Let πG : [G, g]→ [P, p] and πH : [H,h]→ [Q, q] be the quotient maps.

If θ is an isomorphism between [P, p] and [Q, q], then the relation θ(x) = y is clearly a

bisimulation. Define

x ∼ y ⇔df θπG(x) = πH(y)

Then ∼ is a bisimulation by Lemma 68 since the relations πG(x) = y, θ(x) = y and

πH(x) = y are all bisimulations. Furthermore θπG(g) = θ(p) = q = πH(h), so g ∼ h.

Conversely, let ∼ be a bisimulation between [G, g] and [H,h] such that g ∼ h. Define a

relation ≈ ⊂ Dom[P, p]×Dom[Q, q] by

x ≈ a⇔df (∃y, b)(πG(y) = x ∧ πH(b) = a ∧ y ∼ b)

As above ≈ is a bisimulation by Lemma 68.

Define a relation on Dom[P, p] by

x ' y ⇔df (∃a ∈ Dom[Q, q])(x ≈ a ∧ y ≈ a)

Then ' is a bisimulation by Lemma 68 again. Since [P, p] is extensional, ' is the identity

i.e. ≈ is a partial function from Dom[P, p] to Dom[Q, q].

The same reasoning with [Q, q] shows that ≈ is injective. Moreover p ≈ q and the

hypergraphs are accessible, so by Lemma 68 we know that ≈ is defined on the whole of

Dom[P, p] and surjective on Dom[Q, q].

Thus ≈ is a bijection between Dom[P, p] and Dom[Q, q], but it is also a bisimulation

between [P, p] and [Q, q]. Furthermore p ≈ q, so ≈ is an isomorphism between [P, p] and

[Q, q].

Corollary 12. For any x, y ∈ Dom[H,h], [Hx, x] ≡ [Hy, y] if and only if there is a

bisimulation ∼ on [H,h] such that x ∼ y.
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Proof. Immediate from the lemma above and Lemma 68.

Definition 53. Say [H,h] is a multigraph if it is accessible, extensional and

(∀a, b, c, d ∈ Dom[H,h])(H(a, b, c) ∧H(a, b, d)⇒ c = d)

Write H for the class of multigraphs.

Lemma 72. Let [H,h] be accessible and

(H(a, b, c) ∧H(a, d, e) ∧ [Hb, b] ≡ [Hd, d])⇒ [Hc, c] ≡ [He, e]

for all a, b, c, d, e ∈ Dom[H,h]. Then the extensional quotient [Q, q] of [H,h] is a multi-

graph.

Proof. Let π be the quotient map from [H,h] to [Q, q]. By construction [Q, q] is exten-

sional, and its accessibility comes from [H,h].

IfQ(π(a), π(b), π(c)) andQ(π(a), π(b), π(d)), without loss of generality assumeH(a, b, c).

Since the relation π(x) = y is a bisimulation between [H,h] and [Q, q], there exist

e, f ∈ Dom[H,h] such that π(e) = π(b), π(f) = π(d) and H(a, e, f).

The relation π(x) = π(y) is the greatest bisimulation on [H,h], so [He, e] ≡ [Hb, b] and

[Hf , f ] ≡ [Hd, d] by Corollary 12. By the hypothesis [Hf , f ] ≡ [Hc, c], so [Hc, c] ≡ [Hd, d].

By Corollary 12 again, there is a bisimulation ∼ on [H,h] such that c ∼ d, so π(c) = π(d)

as required.

Definition 54. If [H,h], [Q, q] ∈ H, say [Q, q] ∈ [H,h] if there exists d ∈ H−1h such

that [Q, q] ∼= [Hd, d].

Definition 55. If [Q, q] ∈ [H,h], there is a unique 〈h, n, v〉 ∈ H such that [Hn, n] ∼=
[Q, q]. Let [H,h]

[Q,q] := [Hv, v].

Remark 53. The definitions above overloads our symbols in the language of multi-

sets in an obvious manner: the defined relations will interpret these symbols under our

interpretation of the language.

The language of multisets (see Definition 22) is interpreted as follows: Given any formula

φ, form the formula φH by

• Restricting all universal and existential quantifiers to the class H.

• Replacing the identity relation with the bisimilarity relation ≡.
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• Replacing the membership relation x ∈a y with x ∈ y ∧ a = y
x .

The third clause in the interpretation makes sure that the relations y ∈ x and a = x
y on

H are related to the membership relation x ∈a y in the same way that these symbols

are defined at the beginning of Section 3.1.

Definition 56. If φ is any formula in the language of multisets, write H |= φ for the

formula φH.

We now proceed to prove all axioms of MS+ under the given interpretation.

Lemma 73. Let [G, g], [H,h] ∈ H. Suppose

(∀〈g, x, y〉 ∈ G)(∃〈h, a, b〉 ∈ H)([Gx, x] ∼= [Ha, a] ∧ [Gy, y] ∼= [Hb, b])

and

(∀〈h, a, b〉 ∈ H)(∃〈g, x, y〉 ∈ G)([Gx, x] ∼= [Ha, a] ∧ [Gy, y] ∼= [Hb, b])

Then [G, g] ∼= [H,h].

Proof. Define a relation ∼ ⊂ Dom[G, g]×Dom[H,h] by

x ∼ y ⇔df (x = g ∧ y = h) ∨ [Gx, x] ∼= [Hy, y]

We prove that ∼ is a bisimulation between [G, g] and [H,h]. Suppose x ∼ a and

G(x, y, z).

If x = g and a = h, then there are b, c ∈ Dom[H,h] such that H(a, b, c) and [Hb, b] ∼=
[Gy, y], [Hc, c] ∼= [Gz, z]. But then y ∼ b and z ∼ c as required.

If [Gx, x] ∼= [Ha, a], let φ be the isomorphism. Then for b = φ(y), c = φ(z) we have

y ∼ b, z ∼ c and H(a, b, c) as required.

The other direction is similar, so ∼ is a bisimulation. Since [G, g], [H,h] are accessible

and g ∼ h, by Lemma 71 [G, g] ≡ [H,h], but they are extensional so [G, g] ∼= [H,h].

Lemma 74. Axiom of Extensionality

Let [G, g], [H,h] ∈ H. Suppose

(∀[Q, q] ∈ H) ([Q, q] ∈ [G, g]⇔ [Q, q] ∈ [H,h])

and

(∀[Q, q] ∈ [H,h]) [G,g]
[Q,q]

∼= [H,h]
[Q,q]

Then [G, g] ∼= [H,h].
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Proof. This is an immediate corollary of Lemma 73.

Definition 57. For any [H,h] ∈ H and y ∈ H−1x, write H(x, y) for the unique z such

that H(x, y, z).

Definition 58. Let [G, g], [H,h] ∈ H.

Say [G, g] ⊂ [H,h] if there is a relation C ⊂ Dom[G, g] × Dom[H,h] such that for any

x ∈ Dom[G, g], y ∈ Dom[H,h]

xC y ⇒ (∀a ∈ G−1x)(∃b ∈ H−1y)([Ga, a] ∼= [Hb, b] ∧G(x, a)CH(y, b))

and g C h.

Lemma 75. The relation ⊂ respects isomorphism of multigraphs, i.e.

[Q, q] ∼= [G, g] ∧ [G, g] ⊂ [H,h]⇒ [Q, q] ⊂ [H,h]

and

[Q, q] ⊂ [G, g] ∧ [H,h] ∼= [G, g]⇒ [Q, q] ⊂ [H,h]

Proof. If [Q, q] ∼= [G, g] by the isomorphism φ and [G, g] ⊂ [H, g] as witnessed by the

relation C, then the relation φ(x)C y witnesses [Q, q] ⊂ [H,h].

If [Q, q] ⊂ [G, g] as witnessed by the relation C and [H,h] ∼= [G, g] by the isomorphism

φ, then the relation xC φ(y) witnesses [Q, q] ⊂ [H,h].

Lemma 76. Let φ(x, y) be a formula in the language of multisets with two free variables

and possibly parameters, such that

H |= (∀x, y)(φ(x, y)⇔ (∀a ∈ x)(a ∈ y ∧ φ(xa ,
y
a))

Then

(∀[Q, q], [H,h] ∈ H)
((
H |= φ([Q, q], [H,h])

)
⇒ [Q, q] ⊂ [H,h]

)
Furthermore [G, g] ⊂ [H,h] if and only if

(∀[Q, q] ∈ [G, g])
(

[Q, q] ∈ [H,h] ∧ [G,g]
[Q,q] ⊂

[H,h]
[Q,q]

)
Finally ⊂ is reflexive, transitive and

[G, g] ⊂ [H,h] ∧ [H,h] ⊂ [G, g]⇒ [G, g] ∼= [H,h]

i.e. ⊂ is antisymmetric if we interpret ∼= as the identity relation.
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Proof. For the first part, suppose H |= φ([Q, q], [H,h]). Define a set relation C ⊂
Dom[Q, q]×Dom[H,h] by

xC y ⇔df H |= φ([Qx, x], [Hy, y])

Then it is easy to check that C satisfies the condition in Definition 58, so [Q, q] ⊂ [H,h].

If C ⊂ Dom[G, g]×Dom[H,h], define C+ by

xC+ y ⇔df (∀a ∈ G−1x)(∃b ∈ H−1y)([Ga, a] ∼= [Hb, b] ∧G(x, a)CH(y, b))

Note that the operation taking C to C+ depends on the multigraphs [G, g] and [H,h],

but to keep the notation simple we omit the associated multigraphs unless confusion

may arise. It is straightforward to check that C1 ⊂ C2 ⇒ C+
1 ⊂ C

+
2 .

Given [G, g] and [H,h], let

x ≺ y ⇔df (∃C ∈ Dom[G, g]×Dom[H,h])(C ⊂ C+ ∧ xC y)

Clearly [G, g] ⊂ [H,h] if and only if g ≺ h.

If C ⊂ C+ and xC y, then

(∀a ∈ G−1x)(∃b ∈ H−1y)([Ga, a] ∼= [Hb, b] ∧G(x, a)CH(y, b))

But then G(x, a) ≺ H(y, b), so x ≺+ y.

This shows ≺ ⊂ ≺+, so ≺+ ⊂ ≺++ and thus ≺ = ≺+ by definition. Therefore

x ≺ y ⇔ (∀a ∈ G−1x)(∃b ∈ H−1y)([Ga, a] ∼= [Hb, b] ∧G(x, a) ≺ H(y, b))

We call ≺ the greatest subset relation between [G, g] and [H,h].

If x ∈ Dom[G, g], y ∈ Dom[H,h] and ∼ ⊂ Dom[Gx, x] × Dom[Hy, y], clearly ∼+ is the

same relation whether defined relative to [G, g] and [H,h] or [Gx, x] and [Hy, y].

This means the restriction of ≺ to Dom[Gx, x] × Dom[Hy, y] is precisely the greatest

subset relation between [Gx, x] and [Hy, y], hence

[Gx, x] ⊂ [Hy, y]⇔ x ≺ y

Now suppose for any [Q, q] ∈ [G, g] we have [Q, q] ∈ [H,h] and [G,g]
[Q,q] ⊂

[H,h]
[Q,q] . Let

x � y ⇔df x ≺ y ∨ (x = g ∧ y = h)

Suppose x � y and a ∈ G−1x.
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If x ≺ y, there exists b ∈ H−1y such that

[Ga, a] ∼= [Hb, b] ∧G(x, a) ≺ H(y, b)

In particular G(x, a) � H(y, b).

If x = g and y = h, then [Ga, a] ∈ [G, g] so by the hypothesis above

[Ga, a] ∈ [H,h] ∧ [G,g]
[Ga,a]

⊂ [H,h]
[Ga,a]

In other words there exists b ∈ H−1h such that

[Ga, a] ∼= [Hb, b] ∧ [GG(g,a), G(g, a)] ⊂ [HH(h,b), H(h, b)]

This shows G(g, a) ≺ H(h, b), so G(g, a) � H(h, b).

Therefore � ⊂ �+, so � = ≺ and thus g ≺ h.

Conversely let g ≺ h and [Q, q] ∈ [G, g], then [Q, q] ∼= [Gx, x] for some x ∈ G−1g.

There exists y ∈ H−1h such that

[Hy, y] ∼= [Gx, x] ∧G(g, x) ≺ H(h, y)

But then [Hy, y] ∼= [Q, q] so [Q, q] ∈ [H,h] and

[G,g]
[Q,q]

∼= [GG(g,x), G(g, x)] ⊂ [HH(h,y), H(H, y)] ∼= [H,h]
[Q,q]

so [G,g]
[Q,q] ⊂

[H,h]
[Q,q] since ⊂ respects isomorphism.

We have shown that

[G, g] ⊂ [H,h]⇔ g ≺ h⇔ (∀[Q, q] ∈ [G, g])
(

[Q, q] ∈ [H,h] ∧ [G,g]
[Q,q] ⊂

[H,h]
[Q,q]

)
If C is the identity, then trivially C ⊂ C+, so ⊂ is reflexive.

Let C1 witness [Q, q] ⊂ [G, g] and C2 witness [G, g] ⊂ [H,h]. Define

xC y ⇔df (∃d)(xC1 d ∧ dC2 y)

If xC1 dC2 y and a ∈ G−1x, there exists c ∈ G−1d such that

[Qa, a] ∼= [Gc, c] ∧Q(x, a)C1 G(d, c)

and there exist b ∈ H−1y such that

[Gc, c] ∼= [Hb, b] ∧G(d, c)C2 H(y, b)
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But then [Qa, a] ∼= [Hb, b] and Q(x, a)CH(y, b) so C ⊂ C+.

Furthermore q C1 g C2 h, so q C h and thus C witnesses [Q, q] ⊂ [H,h]. This means ⊂
is transitive.

Let ≺1 be the greatest subset relation between [G, g] and [H,h], and ≺2 between [H,h]

and [G, g]. Define ∼ ⊂ Dom[G, g]×Dom[H,h] by

x ∼ y ⇔df x ≺1 y ∧ y ≺2 x

If x ∼ y and G(x, a, b), there exists c ∈ H−1y such that

[Ga, a] ∼= [Hc, c] ∧ b ≺1 H(y, c)

Since ⊂ is reflexive and respects isomorphism

[Ga, a] ⊂ [Hc, c] ∧ [Hc, c] ⊂ [Ga, a]

Hence a ≺1 c ∧ c ≺2 a, i.e. a ∼ c.

Let d := H(y, c), then there exists e ∈ G−1x such that

[Ge, e] ∼= [Hc, c] ∧ d ≺2 G(x, e)

Then [Ge, e] ∼= [Ga, a] so e = a and thus b ∼ d.

Similarly if x ∼ y and H(y, c, d), then there are a ∼ c, b ∼ d such that G(x, a, b). Hence

∼ is a bisimulation and [G, g] ∼= [H,h].

This shows ⊂ is precisely the internal inclusion relation of H as defined in Definition 26

and has all of the properties specified in Axiom 12.

Lemma 77. Axiom of Union

Let [H,h] ∈ H. There exists [G, g] ∈ H such that

(∀[Q, q] ∈ [H,h])[Q, q] ⊂ [G, g]

and for any [P, p] ∈ H

(∀[Q, q] ∈ [H,h])[Q, q] ⊂ [P, p]⇒ [G, g] ⊂ [P, p]

Proof. Given multigraphs [G, g] and [H,h] we will define a recursive relation between

vertices of [G, g] and sets of vertices of [H,h]. Intuitively the vertex a is related to the

set X if the subgraph [Ga, a] is the ⊂-least upper bound of those [Hx, x] for x ∈ X.

Hence [G, g] is the union of [H,h] if and only if g is related to H−1h.
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For any relation C ⊂ Dom[G, g]× P(Dom[H,h]) define (cf. Lemma 61)

aC+ X ⇔df (∀[Q, q] ∈ H)([Q, q] ∈ [Ga, a]⇔ (∃x ∈ X)[Q, q] ∈ [Hx, x]) ∧

(∀b ∈ G−1a)G(a, b)C {H(x, y) : x ∈ X ∧ y ∈ H−1x ∧ [Gb, b] ∼= [Hy, y]}

Then it is straightforward to see that C1 ⊂ C2 ⇒ C+
1 ⊂ C

+
2 . Define

a ≺ X ⇔df (∃C ⊂ Dom[G, g]× P(Dom[H,h]))(C ⊂ C+ ∧ aCX)

As before, by the Knaster-Tarski theorem we have ≺ = ≺+.

For a, b ∈ Dom[G, g] define

a ∼ b⇔df (∃X ⊂ Dom[H,h])(a ≺ X ∧ b ≺ X)

If a ∼ b, then

(∀[Q, q] ∈ H)([Q, q] ∈ [Ga, a]⇔ [Q, q] ∈ [Gb, b])

But [G, g] is extensional so G−1a = G−1b. Furthermore, for any c ∈ G−1a we have

G(a, c) ≺ {H(x, y) : x ∈ X ∧ y ∈ H−1x ∧ [Gc, c] ∼= [Hy, y]}

and

G(b, c) ≺ {H(x, y) : x ∈ X ∧ y ∈ H−1x ∧ [Gc, c] ∼= [Hy, y]}

so G(a, c) ∼ G(b, c).

Hence ∼ is a bisimulation on [G, g], so it is the identity. Thus for each X ⊂ Dom[H,h],

if a ≺ X, then a is unique.

We show that if g ≺ H−1h, then [G, g] is the supposed union of [H,h].

Let [Q, q] ∈ [H,h], then [Q, q] ∼= [Hd, d] for some d ∈ H−1h.

Define C ⊂ Dom[H,h]×Dom[G, g] by

xC y ⇔df (∃X ⊂ Dom[H,h])(x ∈ X ∧ y ≺ X)

If xC y, then

(∀[Q, q] ∈ [Hx, x])[Q, q] ∈ [Gy, y]

so for any a ∈ H−1x there exists b ∈ G−1y such that [Ha, a] ∼= [Gb, b].

But if X witnesses xC y, then

H(x, a) ∈ {H(x, y) : x ∈ X ∧ y ∈ H−1x ∧ [Gb, b] ∼= [Hy, y]}

and

G(y, b) ≺ {H(x, y) : x ∈ X ∧ y ∈ H−1x ∧ [Gb, b] ∼= [Hy, y]}
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so H(x, a)CG(y, b).

Trivially dC g, so C witnesses [Hd, d] ⊂ [G, g]. Therefore [Q, q] ⊂ [G, g].

Now suppose [Q, q] ⊂ [P, p] for any [Q, q] ∈ [H,h].

Define C ⊂ Dom[G, g]×Dom[P, p] by

aC b⇔df (∃X ⊂ Dom[H,h])
(
a ≺ X ∧ (∀x ∈ X)[Hx, x] ⊂ [Pb, b]

)
Then g C p since

g ≺ H−1h ∧ (∀x ∈ H−1h)[Hx, x] ⊂ [P, p]

If X witnesses a C b and c ∈ G−1a, there exists x ∈ X and y ∈ H−1x such that

[Gc, c] ∈ [Hy, y]. Let

Y := {H(d, e) : d ∈ X ∧ e ∈ H−1d ∧ [Gc, c] ∼= [He, e]}

then G(a, c) ≺ Y by the recursive property of ≺.

Since [Hx, x] ⊂ [Pb, b] there exists v ∈ P−1b such that [Hy, y] ∼= [Pv, v], so [Gc, c] ∼=
[Pv, v].

Suppose d ∈ X, e ∈ H−1d and [Gc, c] ∼= [He, e], then [He, e] ∼= [Pv, v].

But [Hd, d] ⊂ [Pb, b], so [HH(d,e), H(d, e)] ⊂ [PP (b,v), P (b, v)]. Thus

(∀w ∈ Y )[Hw, w] ⊂ [PP (b,v), P (b, v)]

Therefore G(a, c)C P (b, v) and so C witnesses [G, g] ⊂ [P, p]. We have shown that

g ≺ H−1h⇔ [G, g] =
⋃

[H,h]

Now given [H,h] we construct its union by adding new vertices ν(X) for all X ⊂
Dom[H,h] and build a new graph D recursively so that the extensional quotient of

[Dν(X), ν(X)] is the ⊂-least upper bound of those [Hx, x] for x ∈ X. Then we let

d := ν(H−1h) and the extensional quotient of [D, d] will be the union of [H,h]. The

details are as follows:

Let ν : P Dom[H,h] → A be a bijection such that A ∩ Dom[H,h] = ∅ and let d :=

ν(H−1h). A will be the set of new vertices corresponding to subsets of Dom[H,h], and

we will build a graph C in which each vertex in A act as the union of its associated

subset of Dom[H,h].

Let C be the smallest set such that

(∀b ∈
⋃
{H−1a : a ∈ H−1h})〈d, b, ν{H(a, b) : a ∈ H−1h such that b ∈ H−1a}〉 ∈ C
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and

(∀b ∈
⋃
{H−1a : a ∈ X})〈ν(X), b, ν{H(a, b) : a ∈ X such that b ∈ H−1a}〉 ∈ C

for any X ⊂ Dom[H,h] such that ν(X) ∈ DomC.

Since A×Dom[H,h]×A has the same closure properties as required of C, we can form

C by taking the appropriate intersection.

Informally C is built by following the recursive property of union on multiplicities (cf.

Lemma 61) from the top vertex d down. Note that in the definition of C above, the

vertex b does not have any descendant just yet. Intuitively b represents members of the

union, their members, members of their members and so on; so now we can just copy

the corresponding subgraphs of [H,h] over to form the final hypergraph.

Finally the required graph D is formed by adding to C subgraphs of H so that for each

vertex b that represents a member of some x ∈ A we have [Cb, b] = [Hb, b]. Thus let

D := C ∪
⋃
{Hb : (∃x, y ∈ A)C(x, b, y)}

Note that if C(x, b, y), then there is no v, w such that C(b, v, w). Hence [Db, b] = [Hb, b].

Now we show that [D, d] has the required property.

Let [G, g] be the extensional quotient of [D, d] and π the quotient map. We first show

[G, g] ∈ H.

Clearly Cd has all the required closure properties in the definition of C, so Cd = C and

thus [C, d] is accessible.

If a ∈ DomHb where (∃x, y ∈ A)〈x, b, y〉 ∈ C, then a is in a finite directed path from b

since [Hb, b] is accessible. But b is in a finite directed path from d, so [D, d] is accessible.

Now suppose D(x, a, v) and D(x, b, w) where [Da, a] ≡ [Db, b].

By construction [Da, a] = [Ha, a] and [Db, b] = [Hb, b], but [H,h] is extensional so a = b.

By construction of [D, d] there is a unique v such that D(x, a, v) so v = w. Hence [D, d]

satisfies the conditions of Lemma 72 and [G, g] ∈ H.

Finally we show that g ≺ H−1h where ≺ is as defined earlier in the proof.

Define C ⊂ Dom[G, g]× P(Dom[H,h]) by

aCX ⇔df a = πν(X)

Then g CH−1h.

If a = πν(X) and v ∈ H−1x for some x ∈ X, then

D(ν(X), v, ν{H(x, y) : x ∈ X such that v ∈ H−1x})
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so π(v) ∈ G−1a.

But [Dv, v] = [Hv, v] is extensional, so [Gπ(v), π(v)] ∼= [Hv, v] by the Quotient Lemma.

Conversely if b ∈ G−1a, then b = π(v) where v ∈ H−1x for some x ∈ X. But then

[Dv, v] = [Hv, v] is extensional, so [Gb, b] ∼= [Hv, v].

We have shown that for any Q ∈ H

[Q, q] ∈ [Ga, a]⇔ (∃x ∈ X)[Q, q] ∈ [Hx, x]

Furthermore with b = π(v) as above, by construction

G(a, b) = πν({H(x, v) : x ∈ X such that v ∈ H−1x})

But v is the unique y such that [Hy, y] ∼= [Gb, b] since [H,h] is extensional, so

{H(x, v) : x ∈ X such that v ∈ H−1x} = {H(x, y) : x ∈ X∧y ∈ H−1x∧[Gb, b] ∼= [Hy, y]}

Hence C ⊂ ≺ by definition, so g ≺ H−1h as required.

The following lemma shows that H is in a sense supertransitive, i.e. for any set X ⊂ H
there is a multigraph whose members in the sense of H are precisely members of X in

V .

Lemma 78. Let φ be a function (a set in the ZF model V ) such that domφ ⊂ H,

ranφ ⊂ H and

(∀[G, g], [H,h] ∈ domφ)[G, g] ∼= [H,h]⇒ φ[G, g] = φ[H,h]

Then there exists [Q, q] ∈ H such that

(∀[H,h] ∈ H)
(

[H,h] ∈ [Q, q]⇔ (∃[G, g] ∈ domφ)[G, g] ∼= [H,h]
)

and

(∀[H,h] ∈ domφ) [Q,q]
[H,h]

∼= φ[H,h]

Proof. If [H,h] ∈ domφ ∪ ranφ, define ν[H,h] ∈ H as follows:

For any a ∈ Dom[H,h] let â := 〈a, [H,h]〉, and let

Ĥ := {〈â, b̂, ĉ〉 : 〈a, b, c〉 ∈ H}

Let ν[H,h] := [Ĥ, ĥ], then clearly ν[H,h] ∼= [H,h].

Furthermore, if [G, g] and [H,h] are different multigraphs, then dom ν[G, g] and dom ν[H,h]

are disjoint. Thus we can assume without loss of generality that distinct multigraphs in

domφ ∪ ranφ have disjoint domains.
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Let d /∈ Dom[G, g] for all [G, g] ∈ domφ ∪ ranφ. Let

D :=
⋃
{G : [G, g] ∈ domφ ∪ ranφ} ∪ {〈d, g, h〉 : (∃G,H)[H,h] = φ[G, g]}

and let [Q, q] be the extensional quotient of [D, d] with quotient map π.

It is straightforward to see that [D, d] is accessible.

Let D(x, a, v) and D(x, b, w) where [Da, a] ≡ [Db, b].

If x = d, by construction [Da, a], [Db, b] ∈ domφ so [Da, a] ∼= [Db, b] since they are

extensional. Hence φ[Da, a] = φ[Db, b] and so v = w.

If x 6= d, then [Dx, x] ∈ domφ ∪ ranφ so trivially a = b and v = w.

Thus [Q, q] is a multigraph.

If [H,h] ∈ [Q, q], then [H,h] ∼= [Qπ(a), π(a)] for some [A, a] ∈ domφ.

Since members of domφ ∪ ranφ have disjoint domains, [Da, a] = [A, a] by construction.

But [A, a] is extensional, so [Qπ(a), π(a)] ∼= [A, a] and thus [H,h] ∼= [A, a].

Conversely let [H,h] ∈ domφ, then [Dh, h] = [H,h] and thus [Qπ(h), π(h)] ∼= [H,h]

since [H,h] is extensional. Thus

[H,h] ∈ [Q, q] ∧ [Q,q]
[H,h] = [Qπ(a), π(a)]

where [A, a] := φ([H,h]).

But also [Da, a] = [A, a] and [Qπ(a), π(a)] ∼= [A, a], so [Q,q]
[H,h]

∼= φ[H,h].

In order to find the power set of [H,h] in the sense of H, we need a set in V containing

a representative from each bisimulation class of multigraphs that H believes to be a

subset of [H,h]. Before giving a rigorous account we start with an informal discussion

of the general approach.

If [Q, q] is a subset of [H,h], we seek to map the hypergraph Q onto a subgraph of H

and reconstruct a copy of [Q, q] from the image of this map. This gives a canonical

representation for each [Q, q] ⊂ [H,h], and the collection of these representations is a

set since they are all built from a set-sized domain.

Let us explore a naive strategy to build such a map, utilising the recursive property of

multiset inclusion. If [Q, q] ⊂ [H,h], first map q to h. If [Qx, x] ∈ [Q, q], then [Qx, x] is

bisimilar to a unique [Hy, y] ∈ [H,h] so we map x to y. Furthermore

[Q,q]
[Qx,x]

⊂ [H,h]
[Hy ,y]
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so we can map Q(q, x) to H(h, y) and iterate this algorithm until we run out of ver-

tices, as [Q, q] is accessible. Unfortunately the map is not quite injective, so we cannot

reconstruct [Q, q] from the image. For example consider the following hypergraph G:

Then

• H |= [Ga, a] = {∅⊗ ∅}

• H |= [Gb, b] = {∅⊗ ∅, [Ga, a]⊗ [Ga, a]}

• H |= [Gc, c] = {∅⊗ [Gb, b], [Ga, a]⊗ [Gb, b]}

It is clear that [Ga, a] ⊂ [Gb, b], therefore [Gb, b] ⊂ [Gc, c]. However if we define a map

from Gb to Gc following the naive strategy above, then both a and • get mapped to b.

The problem is that b is referred to twice in the graph Gc, as the multiplicity of ∅ and

of [Ga, a]. Thus to make the map injective we need to make two distinct copies of b and

map each of a and the unnamed vertex to a different copy, then repeat the process at

lower levels.

We unravel a pointed hypergraph [H,h] by making distinct copies of the same vertex

if there are multiple descending path leading to it. For example the hypergraph [Gc, c]

above is unraveled as
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Note that any copy in our unraveling falls under one of two categories: it is either a

member of its parent vertex, or the multiplicity of the parent vertex in the grandparent

vertex.

Furthermore, according to our naive strategy earlier the only vertices which can have

multiple preimages are multiplicities: roughly speaking since our strategy maps any

member of the subset to a bisimilar counterpart in the superset, by extensionality of the

subset no two members of the subset can be mapped to the same image.

Thus for any vertex x in the original hypergraph we only need a separate copy for each

instance x appears as a multiplicity; all instances of x as a member of other multigraphs

can be represented by one copy. This mean we can simplify our earlier unraveling by

identifying all member-copies of a vertex. For example the multigraph [Gc, c] can be

unraveled as

Note that in the new unraveling each vertex has only one member-copy (the one with

solid arrows going in), but possibly more than one multiplicity-copies (with dotted

arrows going in). This will help simplify our formal definition of the unraveling.

To keep track of the different multiplicity-copies of the same vertex we index each copy

by the path leading down to it. This is always possible since the original hypergraph is

accessible, and provides a unique index for each multiplicity-copy. In our example the

leftmost copy of the vertex a will be indexed by the path

〈c, a, b〉, 〈b, a, a〉

while the rightmost copy of a will be indexed by

〈c, •, b〉, 〈b, a, a〉

We denote such paths by abbreviated vertex sequences, e.g. (c, a, b, a, a) for the first path

and (c, •, b, a, a) for the other. Since only multiplicity-copies are duplicated, adjacent
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edges in these paths always link up at the 3rd and 1st coordinates; hence no confusion

arise from our abbreviation.

Since the member-copy is unique for each vertex, we can just use the original vertex to

denote it. In fact it can always be read off from the sequence denoting its corresponding

multiplicity-copies, as the next-to-last vertex.

Definition 59. Write bx1 . . . xnc for the finite sequence x1 . . . xn where n ∈ ω. Formally

we implement bx1 . . . xnc as a function n→ V whose value at i is xi+1.

To keep our formulae readable, we will sometimes write

∀bx1 . . . xncφ(xa, xb, xc . . .)

as shorthand for

(∃n ∈ ω)(∃x : n→ V )φ(x(a+ 1), x(b+ 1), x(c+ 1) . . .)

Definition 60. The expansion exp[H,h] of [H,h] ∈ H is the set of all bh1 . . . hnc such

that

• hi ∈ Dom[H,h] for all i ≤ n.

• h1 = h.

• hi+1 ∈ H−1hi for all i odd and i+ 1 ≤ n.

• hi+2 = H(hi, hi+1) for all i odd and i+ 2 ≤ n.

The expansion of [H,h] formally represents the unraveling of [H,h] by recording all

directed paths in said unraveling.

Remark 54. Given any multigraph [H,h] ∈ H, the axioms of ZF ensure that its expan-

sion exists as a unique set in V .

For example the expansion of the multigraph [Gc, c] in our informal discussion consists of

the following sequences, which one can easily match to directed paths in the unraveling

of [Gc, c] depicted earlier.

bcc bc, acbc, •c bc, a, bc

bc, •, bc bc, a, b, acbc, a, b, •c bc, •, b, ac

bc, •, b, •c bc, a, b, a, acbc, a, b, •, •c bc, •, b, a, ac

bc, •, b, •, •c bc, a, b, a, a, •cbc, •, b, a, a, •c bc, a, b, a, a, •, •c

bc, •, b, a, a, •, •c
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Remark 55. Any sequence bh1 . . . hnc in exp[H,h] is uniquely determined by the hi for

i even.

Lemma 79. [Q, q] ⊂ [H,h] if and only if there is an injection φ : exp[Q, q]→ exp[H,h]

such that φbqc = bhc and:

• If φbq1 . . . qnc = bh1 . . . hnc and bq1 . . . qn+1c ∈ exp[Q, q], then φbq1 . . . qn+1c =

bh1 . . . hn+1c for some hn+1 ∈ Dom[H,h].

• If n is even and φbq1 . . . qnc = bh1 . . . hnc, then [Qqn , qn] ∼= [Hhn , hn].

Proof. Let [Q, q] ⊂ [H,h].

Define φbq1 . . . qnc := bh1 . . . hnc if [Qqi , qi] ⊂ [Hhi , hi] for i odd and [Qqi, qi] ∼= [Hhi , hi]

for i even.

Clearly φbac = bhc and by definition if φbq1 . . . qnc = bh1 . . . hnc where n is even, then

[Qqn , qn] ∼= [Hhn , hn].

Let bq1 . . . qnc ∈ exp[Q, q]. Since [Q, q] ⊂ [H,h], by Lemma 76 there is a finite sequence

h1 . . . hn in Dom[H,h] such that:

• [Qqi , qi] ⊂ [Hhi , hi] for i odd.

• [Qqi, qi] ∼= [Hhi , hi] for i even.

• h1 = h.

• hi+1 ∈ H−1hi for i odd and i+ 1 ≤ n.

• hi+2 = H(hi, hi+1) for i odd and i+ 2 ≤ n.

Then bh1 . . . hnc ∈ exp[H,h]. Since [H,h] is extensional, hi is uniquely determined by

[Hhi , hi] for all i even. Therefore bh1 . . . hnc is unique and φ is well-defined.

If φbq1 . . . qnc = φbb1 . . . bmc, then m = n by definition of φ. Furthermore [Qqi , qi] ∼=
[Qbi , bi] for all i even, so qi = bi for all i even. But q1 = b1 trivially and qi+2 = Q(qi, qi+1)

for any i odd, so qi = bi for all i and thus φ is injective.

If φbq1 . . . qnc = bh1 . . . hnc and bq1 . . . qn+1c ∈ exp[Q, q], let bb1 . . . bn+1c = φbq1 . . . qn+1c.
By construction bb1 . . . bnc = φbq1 . . . qnc, so bi = hi for all i ≤ n. Setting hn+1 := bn+1

gives φbq1 . . . qn+1c = bh1 . . . hn+1c.

Conversely, suppose there exists an injection φ satisfying the conditions in the lemma.

Define a relation C ⊂ Dom[Q, q]×Dom[H,h] as follows:
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x C y if there exists bq1 . . . qnc ∈ exp[Q, q] where n is odd and x = qn, such that

φbq1 . . . qnc = bh1 . . . hnc where y = hn.

Since φbac = bhc we have aC h.

Let φbq1 . . . qnc = bh1 . . . hnc where n is odd. If qn+1 ∈ Q−1qn, let qn+2 = Q(qn, qn+1).

Since bq1 . . . qn+1c, bq1 . . . qn+2c ∈ exp[Q, q], let bh1 . . . hn+1c = φbq1 . . . qn+1c and bh1 . . . hn+2c =

φbq1 . . . qn+2c. Then [Hhn+1 , hn+1] ∼= [Qqn+1 , qn+1], hn+2 = H(hn, hn+1) and qn+2Chn+2.

Hence C witnesses [Q, q] ⊂ [H,h].

Now that we have an injection of any [Q, q] ⊂ [H,h] onto a subgraph of H, all that

remains is to reconstruct a copy of [Q, q] from the image.

Lemma 80. Axiom of Power Set

If [H,h] ∈ H, there exists [D, d] ∈ H such that

(∀[Q, q] ∈ H)([Q, q] ∈ [D, d]⇔ [Q, q] ⊂ [H,h])

.

Proof. Say B ⊂ exp[H,h] is good if

• bhc ∈ B.

• If bh1 . . . hn+1c ∈ B, then bh1 . . . hnc ∈ B.

• If bh1 . . . hn+1c ∈ B and n is odd, then bh1 . . . hn+2c ∈ B where hn+2 = H(hn, hn+1).

We will show that each good B ⊂ exp[H,h] is the image of some multigraph [Q, q] ⊂
[H,h] under the injection we specified earlier, and each multigraph [Q, q] ⊂ [H,h] injects

onto a unique good B ⊂ exp[H,h]. First we describe the algorithm to construct a

canonical copy of this [Q, q] from B, which we will denote by [QB, qB].

Let ν be an injection where dom ν = exp[H,h] and ran ν is disjoint from Dom[H,h]. We

will use ran ν as the set of vertices on which to construct [QB, qB]. Since ν is fixed, this

gives a canonical [QB, qB] for all good B.

If h1 . . . hn ∈ exp[H,h] where n is even, define

Hbh1 . . . hnc :=Hhn \ {〈hn, hn+1, hn+2〉 : H(hn, hn+1, hn+2)} ∪

{〈νbh1 . . . hnc, hn+1, hn+2〉 : H(hn, hn+1, hn+2)}

In other words, [Hbh1 . . . hnc, νbh1 . . . hnc] is an isomorphic copy of [Hhn , hn] obtained

by replacing hn with νbh1 . . . hnc.
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If B is good, define B as the smallest set such that

• If bh1 . . . hn+2c ∈ B where n is odd, then 〈νbh1 . . . hnc, νbh1 . . . hn+1c, νbh1 . . . hn+2c〉 ∈
B.

• If bh1 . . . hnc ∈ B where n is even, then Hbh1 . . . hnc ⊂ B.

To explain the construction, informallyB is a reconstruction of the unraveled hypergraph

represented by B. We built B from the top down using the range of ν as the set of

vertices. If n is odd, then hn is the multiplicity of hn−1 in hn−2 so we made separate

copies of hn in B according to the different paths leading to hn in B. If n is even, then

hn is a member of hn−1 so we simply copied [Hhn , hn] over to B.

Above is an illustration of the construction. In the illustrated example, since h3 is the

multiplicities of both h2 and h′2 we made two distinct copies of h3 in B, each indexed

by the path leading to it from the top vertex h.

By the same reasoning as in the proof of Lemma 77, [B, νbhc] is accessible.

Furthermore if bh1 . . . hnc ∈ B and n is even, then by construction

[Bνbh1 . . . hnc, νbh1 . . . hnc] = [Hbh1 . . . hnc, νbh1 . . . hnc]

Suppose B(x, a, v) and B(x, b, w) where [Ba, a] ≡ [Bb, b].

If x = νbh1 . . . hnc where n is odd, then a = νbh1 . . . hn, an+1c and b = νbh1 . . . hn, bn+1c
for some an+1, bn+1 ∈ Dom[H,h].

But then [Ba, a] ∼= [Han+1 , an+1] and [Bb, b] ∼= [Hbn+1 , bn+1] by construction, so [Han+1 , an+1] ≡
[Hbn+1 , bn+1] and thus an+1 = bn+1 since [H,h] is extensional. This means a = b, so

v = w by construction of B.
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If x = νbh1 . . . hnc where n is odd or x ∈ Dom[H,h], then [Bx, x] ∈ H by construction

of B. But [Ba, a] ≡ [Bb, b], so a = b and thus v = w.

Let [QB, qB] be the extensional quotient of [B, νbhc] with quotient map π, then we have

proved that

[QB, qB] ∈ H

We employ Lemma 79 to show that [QB, qB] ⊂ [H,h]:

If bq1 . . . qnc ∈ exp[QB, qB], then qi+1 ∈ (QB)−1qi and qi+2 = QB(qi, qi+1) for all i odd.

Furthermore q1 = qB, so by construction of [QB, qB] there exists bh1 . . . hnc ∈ B such

that qi = πνbh1 . . . hic for all i.

If i is even, then [B
νbh1 . . . hic, νbh1 . . . hic] ∼= [Hhi , hi] by construction, so [QBqi , qi]

∼=
[Hhi , hi].

Since [H,h] is extensional, hi is unique for all i even, and thus bh1 . . . hnc is unique.

Therefore we can define a function φ : exp[QB, qB] → B by setting φbq1 . . . qnc :=

bh1 . . . hnc.

If φbq1 . . . qnc = φba1 . . . anc, then [QBqi , qi]
∼= [QBai , ai] for all i even. Hence qi = ai for all

i even, and so bq1 . . . qnc = ba1 . . . anc. This shows that φ is injective.

If bh1 . . . hnc ∈ B, let qi = πνbh1 . . . hic for all i. Then bq1 . . . qnc ∈ exp[QB, qB] by

construction of [QB, qB], so φ is surjective.

Since φ satisfies the conditions in Lemma 79, we have

[QB, qB] ⊂ [H,h]

Now given [Q, q] ⊂ [H,h] we construct a good B ⊂ exp[H,h] that encodes [Q, q].

There is an injection ψ : exp[Q, q] → exp[H,h] satisfying the conditions in Lemma 79,

so let B = ranψ. Clearly bhc ∈ B.

If bh1 . . . hn+1c = ψbq1 . . . qn+1c, let bv1 . . . vnc = ψbq1 . . . qnc. There exists vn+1 ∈
Dom[H,h] such that bv1 . . . vn+1c = ψbq1 . . . qn+1c, but ψ is injective so vi = hi for all i.

Hence bh1 . . . hnc = ψbq1 . . . qnc.

If bh1 . . . hn+1c = ψbq1 . . . qn+1c where n is odd, then bh1 . . . hn+2c = ψbq1 . . . qn+2c
where hn+ 2 = H(hn, hn+1) and qn+2 = H(qn, qn+1).

Therefore B is good, so we can construct [QB, Qb] and φ : exp[QB, qB] → B as earlier

in the proof.
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It is straightforward to see that the maps φ−1ψ : exp[Q, q] → exp[QB, qB] and ψ−1φ :

exp[QB, qB]→ exp[Q, q] both satisfy the conditions in Lemma 79.

Hence [Q, q] ⊂ [QB, qB] and [QB, qB] ⊂ [Q, q], so

[Q, q] ∼= [QB, qB]

This means the set of [QB, qB] for all good B ⊂ exp[H,h] contains one representa-

tive from each isomorphism class of multigraph [Q, q] ⊂ [H,h], allowing us to use the

supertransitivity of H to obtain the power set of [H,h] in the sense of H.

Define a constant function δ on {[QB, qB] : B ⊂ exp[H,h] ∧ B is good} by δ[Q, q] =

[H,h].

We have proved that for any [Q, q] ∈ H

[Q, q] ⊂ [H,h]⇔ (∃[QB, qB] ∈ dom δ)[Q, q] ∼= [QB, qB]

Therefore by Lemma 78 there exists [D, d] ∈ H such that

(∀[Q, q] ∈ H)([Q, q] ⊂ [H,h]⇔ [Q, q] ∈ [D, d])

.

Lemma 81. Axiom schema of Multiplicity Replacement

Let [H,h] ∈ H and φ(x) be a formula in LH (see Definition 22) with parameters in H.

Suppose for any [Q, q] ∈ [H,h] there is a unique [A, a] ∈ H (up to isomorphism) such

that H |= φ([Q, q], [A, a]). Then there exists [D, d] ∈ H such that

(∀[Q, q] ∈ H)([Q, q] ∈ [D, d]⇔ [Q, q] ∈ [H,h])

and

(∀[Q, q] ∈ [D, d])φ([Q, q], [D,d]
[Q,q] )

Proof. By Collection and Comprehension in V , there is a set M ⊂ H such that

H |= M = {[A, a] : (∃[Q, q] ∈ [H,h])φ([Q, q], [A, a])}

Without loss of generality we can arrange for all members of M to have disjoint domains,

and that they are all disjoint from Dom[H,h]. We construct a pointed hypergraph [B, b]

as follows:

• Let B :=
⋃
{Hx : x ∈ H−1h} ∪

⋃
{A : [A, a] ∈M}
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• Add to B a new vertex b and edges 〈b, x, a〉 for each pair x ∈ H−1h and [A, a] ∈M
such that φ([Hx, x], [A, a]).

Then [B, b] satisfies the condition in Lemma 72, so its extensional quotient [D, d] is a

multigraph. By the Quotient Lemma, it is straightforward to verify that [D, d] is the

required multigraph.

Lemma 82. Axiom schema of Comprehension

Let [H,h] ∈ H and φ(x) be a formula in LH with parameters in H. Then there exists

[D, d] ∈ H such that

(∀[Q, q] ∈ H)([Q, q] ∈ [D, d]⇔ ([Q, q] ∈ [H,h] ∧H |= φ([Q, q])))

and

(∀[Q, q] ∈ [D, d])( [D,d]
[Q,q]

∼= [H,h]
[Q,q] )

Proof. Let

A := {[Ha, a] : a ∈ H−1h ∧H |= φ([Ha, a])}

and define δ : A→ H by δ([Ha, a]) := [H,h]
[Ha,a]

.

If [Ha, a], [Hb, b] ∈ A such that [Ha, a] ∼= [Hq, q], then a = q by extensionality of [H,h]

so δ([Ha, a]) = δ([Hq, q]).

Hence by Lemma 78 we have [D, d] ∈ H as required.

It is easy to see that with the presence of Multiplicity Replacement, the axiom of Col-

lection below implies the axiom of Replacement as formulated in the theory MS.

Lemma 83. Axiom of Collection

Let [H,h] ∈ H and φ(x, y) be a formula in LH with parameters in H such that

(∀[Q, q] ∈ [H,h])(∃[A, a] ∈ H)H |= φ([Q, q], [A, a])

Then there exists [D, d] ∈ H such that

(∀[Q, q] ∈ [H,h])(∃[A, a] ∈ [D, d])H |= φ([Q, q], [A, a])

Proof. By Collection in V , let B be a set such that

(∀q ∈ H−1h)(∃[A, a] ∈ B)H |= φ([Hq, q], [A, a])

By Comprehension we have a set

dom δ := {[A, a] ∈ B ∩H : (∃[Q, q] ∈ [H,h])H |= φ([Q, q], [A, a])}
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Define δ on dom δ by δ([A, a]) := [H,h]. By Lemma 78 we have [D, d] ∈ H as required.

Lemma 84. Axiom of Infinity

There is a well-ordered multigraph ω that satisfies Axiom 17.

Proof. Let α0 := [∅, 0], an empty multiset in the sense of H.

If αn = [A, a], define αn+1 := [B, b] where b /∈ Dom[A, a] and

B = A ∪ {〈b, x, 0〉 : x ∈ A−1a} ∪ {b, a, 0}

By induction on n, it is straightforward to show that αn ∈ H and

H |= αn+1 = αn ∪ {αn ⊗ ∅}

Define a function φ : {αn : n ∈ ω} → H by φ(αn) = [∅, 0], then Lemma 78 gives us the

required multigraph.

We have shown that the given interpretation of the language of multisets in H produces

a model of MS+, whence

Theorem 7. If ZF is consistent, then MS+ is consistent.

Furthermore within the theory MS+ we can implement accessible pointed hypergraphs

and define bisimilarity just like in ZF. Then our model satisties the following anti-

foundation axiom in the language of multisets.

Axiom 24. Multiset AFA

If H is a hypergraph such that

(∀a, b, c, d, e ∈ DomH)
(

(H(a, b, c) ∧H(a, d, e) ∧ [Hb, b] ≡ [Hd, d])⇒ [Hc, c] ≡ [He, e]
)

then there exists a unique function φ such that domφ = DomH and

(∀x ∈ DomH)(∀a, b)
(
a ∈b x⇔ (∃〈x, y, z〉 ∈ H)(φ(y) = a ∧ φ(z) = b)

)
Lemma 85. Under the given interpretation, H is a model of multiset AFA.

Proof. Suppose H believes [H,h] is a hypergraph satisfying the condition of multiset

AFA. Define a hypergraph G as follows

(∀x, y, z ∈ Dom[H,h])(〈x, y, z〉 ∈ G⇔ H |= 〈[Hx, x], [Hy, y], [Hz, z]〉 ∈ [H,h])
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It is straightforward to verify that [Gx, x] satisfies the conditions of Lemma 72 for any

x ∈ DomG, so its extensional quotient is a multigraph.

Moreover for all x, y, z ∈ DomG

(H |= [Gy, y] ∈[Gz ,z] [Gx, x])⇔ (H |= 〈[Hx, x], [Hy, y], [Hz, z]〉 ∈ [H,h])

For each x ∈ DomG we can define a canonical Mx ∈ H such that

H |= Mx = 〈[Hx, x], [Gx, x]〉

Define a constant function ψ : {Mx : x ∈ DomG} → H by φ(Mx) = [∅, 0]. Then the

supertransitivity lemma (Lemma 78) gives the required object in H.

3.2.1 A model where the inclusion relation is not antisymmetric

In any well-founded model of MS an induction on the recursive definition of ⊂ will show

it to be antisymmetric, hence the axiom of Foundation implies the axiom of Subset.

However as an application of the anti-foundation property of our model H, we will

modify it slightly to obtain a model of MS+ where ⊂ is not antisymmetric. Thus the

axiom of Subset is not redundant if we want to enforce antisymmetry of the inclusion

relation, since it does not follow from the other axioms of MS+.

Consider the semi-Quine atom x where ∅ ∈x x and x has no other member in the sense

of H. If there are two distinct semi-Quine atoms x and y, then Extensionality still holds

since the multiplicity of ∅ is different in x and y. On the other hand it is easy to check

that x ⊂ y and y ⊂ x, so ⊂ is no longer antisymmetric. Although the model H contains

only one semi-Quine atom, we will create one more by dividing its equivalence class into

two.

Let H be the class of hypergraphs as defined in Definition 53. In this section we will

redefine multigraphs by strengthening the notions of a bisimulation as follows:

Definition 61. Let A := [〈1, 0, 1〉, 1], i.e. the pointed hypergraph depicted below.

Definition 62. A relation ∼ ⊂ Dom[G, g]×Dom[H,h] is a bisimulation between [G, g]

and [H,h] if all of the following hold:

• It is a bisimulation in the old definition, i.e. Definition 49.
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• If 1 ∼ x and [G1, 1] = A, then 1 ∈ Dom[Hx, x] and [H1, 1] = A.

• If x ∼ 1 and [H1, 1] = A, then 1 ∈ Dom[Gx, x] and [G1, 1] = A.

Informally speaking, under this new definition A is no longer equivalent to its other

isomorphic images. Therefore the former equivalence class of any hypergraph containing

a semi-Quine atom is now divided into many smaller equivalence classes.

Using the result of Lemma 68 for the old definition of bisimulation, it is trivial to show

that the same lemma holds for the new definition since we only need to check the extra

clauses. We restate the Lemma below for ease of reference.

Lemma 86.

i If ∼ is a bisimulation between [G, g] and [H,h], then the relation x ' y ⇔df y ∼ x
is a bisimulation between [H,h] and [G, g].

ii If ∼ is a bisimulation between [G, g] and [H,h] and ' a bisimulation between

[H,h] and [Q, q], then the relation x ≈ d⇔df (∃a)(x ∼ a∧a ' d) is a bisimulation

between [G, g] and [Q, q].

iii If ∼ is a bisimulation between [G, g] and [H,h], then its restriction to Dom[Gx, x]×
Dom[Hy, y] is a bisimulation between [Gx, x] and [Hy, y].

iv Any bisimulation between [Gx, x] and [Hy, y] is a bisimulation between [G, g] and

[H,h].

v Let ∼ be a bisimulation between [G, g] and [H,h] such that g ∼ h. If [G, g] and

[G, h] are accessible, then for any y ∈ Dom[H,h] there is x ∈ Dom[G, g] such that

x ∼ y, and for any x ∈ Dom[G, g] there is y ∈ Dom[H,h] such that x ∼ y.

Definition 63. Say [H,h] is extensional if any bisimulation on [H,h] is the identity.

The proof of Lemma 69 depends only on the truth of Lemma 68, so it also carries over

to the new definition trivially and we have the following result.

Lemma 87.

i If [H,h] is extensional, then so is [Hx, x] for any x ∈ Dom[H,h].

ii If [H,h] is extensional and [Hx, x] ∼= [Hy, y] for x, y ∈ Dom[H,h], then x = y.
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From this point on we construct the model in exactly the same way as before except for

a minor subtlety. Firstly we redefine the class H of multigraphs using the new definition

of bisimulation, and define relations on H to stand in for the identity and membership

relations:

Definition 64. Say [G, g] ≡ [H,h], i.e. they are bisimilar, if there is a bisimulation ∼
between them such that g ∼ h.

Definition 65. Say [G, g] ∈ [H,h] if there exists x ∈ Dom[H,h] such that [G, g] ≡
[Hx, x].

If [G, g] ≡ [H,h], then it is easy to see that their extensional quotients are isomorphic.

However unlike in the old model, even isomorphic multigraphs need not be bisimilar .

For example let [G, g] be a distinct but isomorphic copy of A, then their extensional

quotients are just themselves but there is no bisimulation between them that relates

the top vertices to each other (since by Definition 62 we would then have g = 1 and

[G, g] = A). Nevertheless we can easily check that ≡ is an equivalence relation that

respects ∈ using Lemma 86. Thus when reproving previous results in the new model

we need to replace all instances of isomorphism with the bisimilarity relation.

Remark 56. We could have developed the previous model in the same way, using the

bisimilarity relation instead of the isomorphism relation, since the two relations are the

same for extensional pointed hypergraphs. If we had followed that approach, much of

the cosmetic changes in the following section could have been avoided. It is however my

personal opinion that using the isomorphism relation to interpret the identity relation for

multisets is more intuitively clear, thus I have chosen to use the isomorphism relation in

the previous section for the sake of a better exposition. In any case, most of the changes

that arise from that choice are conceptually trivial.

The Quotient Lemma requires a bit of care. If we simply use the extensional quo-

tient given under the old definition, we may collapse more than allowed under the new

definition. Instead we mirror the proof of the old Quotient Lemma.

Lemma 88. For any pointed hypergraph [H,h], there exists an extensional pointed hy-

pergraph [Q, q] and a surjective quotient map π : Dom[H,h] → Dom[Q, q] such that

q = π(h), (∀a, b, c ∈ Dom[Q, q](Q(a, b, c) ⇔ (∃x, y, z ∈ Dom[H,h])(a = π(x) ∧ b =

π(y) ∧ c = π(z))), and the relation π(x) = y is a bisimulation between [H,h] and [Q, q].

Furthermore:

i [Q, q] is the unique hypergraph satisfying the conditions above.
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ii Dom[Qπ(x), π(x)] = {π(y) : y ∈ Dom[Hx, x]} for any x ∈ Dom[H,h]. In partic-

ular if [H,h] is accessible, then so is [Q, q].

iii For any x ∈ Dom[H,h], the extensional quotient of [Hx, x] given by the first part

of the lemma is precisely [Qπ(x), π(x)].

iv If [Hx, x] is extensional, then [Qπ(x), π(x)] ∼= [Hx, x].

Proof. First we define the extensional quotient and show that the quotient map is a

bisimulation. If 1 /∈ Dom[H,h] or [H1, 1] 6= A, then the new definition of bisimulation

on [H,h] reduces to the old definition and we proceed exactly as in Lemma 70. Therefore

we only need to consider the case where [H1, 1] = A.

For ∼ ⊂ Dom[H,h]2 we redefine ∼+ as follows

a ∼+ x⇔df (∀b, c ∈ Dom[H,h])(H(a, b, c)⇒ (∃y, z ∈ Dom[H,h])(H(x, y, z) ∧ b ∼ y ∧ c ∼ z))∧

(∀y, z ∈ Dom[H,h])(H(x, y, z)⇒ (∃b, c ∈ Dom[H,h])(H(a, b, c) ∧ b ∼ y ∧ c ∼ z))∧

[Ha, a] = A⇒ a ∈ Dom[Hb, b]∧

[Hb, b] = A⇒ b ∈ Dom[Ha, a]

It is simple to check that ∼1 ⊂ ∼2 implies ∼+
1 ⊂ ∼

+
2 and ∼ is a bisimulation if and

only if ∼ ⊂ ∼+. Since the redefined operation is still monotonic, as before by the

Knaster-Tarski theorem the following relation

x ≈ y ⇔df (∃ ∼)(∼ ⊂ ∼+ ∧ x ∼ y)

is the greatest fixed point, i.e. ≈ = ≈+.

Using Lemma 86, it is easy to show that ≈ is an equivalence relation, and note that the

equivalence classes of 0 and 1 are singletons.

As usual we let Dom[Q, q] be the set of equivalence classes of ≈, q the equivalence class

of h and let π : Dom[H,h]→ Dom[Q, q] the corresponding quotient map.

However, due to the restricted definition of bisimulation we now replace the equivalence

classes of 0 and 1 by 0 and 1 respectively, i.e. let π(0) = 0 and π(1) = 1. Note that π is

still bijective since previously 0 /∈ ranπ and 1 = {0} = π(0).

Define the relation Q on Dom[Q, q] by

Q(a, b, c)⇔df (∃x, y, z ∈ Dom[H,h])(H(x, y, z) ∧ π(x) = a ∧ π(y) = b ∧ π(z) = c)

As in the proof of Lemma 70, if π(x) = a and Q(a, b, c), then there are y, z ∈ Dom[H,h]

such thatH(x, y, z) and π(y) = b, π(z) = c. Conversely ifH(x, y, z), thenQ(π(x), π(y), π(z)).
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Since π fixes 0 and 1 by construction, we have shown the relation π(x) = y is a bisimu-

lation with the updated definition.

If ∼Q is a bisimulation on [Q, q], define a relation ∼H on Dom[H,h] by

x ∼H y ⇔df π(x) ∼Q π(y)

Since π(x) = y is a bisimulation, Lemma 86 shows that ∼H is a bisimulation on [H,h].

This means ∼H ⊂ ≈ so

(∀x, y ∈ Dom[H,h])(x ∼H y ⇒ π(x) = π(y))

and thus ∼Q is the identity. We have shown that [Q, q] is extensional.

The rest of the proof proceed exactly as in Lemma 70, using Lemma 86 in place of

Lemma 68.

We sketch a proof of the basic extensionality result for our new model, from which the

axiom of Extensionality trivially follows.

Lemma 89. Let [G, g], [H,h] ∈ H. Suppose

(∀〈g, x, y〉 ∈ G)(∃〈h, a, b〉 ∈ H)([Gx, x] ≡ [Ha, a] ∧ [Gy, y] ≡ [Hb, b])

and

(∀〈h, a, b〉 ∈ H)(∃〈g, x, y〉 ∈ G)([Gx, x] ≡ [Ha, a] ∧ [Gy, y] ≡ [Hb, b])

Then [G, g] ≡ [H,h].

Proof. Define a relation ∼ ⊂ Dom[G, g]×Dom[H,h] by

x ∼ y ⇔df (x = g ∧ y = h) ∨ [Gx, x] ≡ [Hy, y]

We prove that ∼ is a bisimulation between [G, g] and [H,h].

Suppose x ∼ a and G(x, y, z).

If x = g and a = h, by the hypothesis there are b, c ∈ Dom[H,h] such that H(a, b, c)

and [Hb, b] ≡ [Gy, y], [Hc, c] ≡ [Gz, z]. Then y ∼ b and z ∼ c as required.

If [Gx, x] ≡ [Ha, a], there is a bisimulation that relates x to a. By definition of bisimu-

lation there are b, c ∈ Dom[H,h] such that y ≡ b, z ≡ c and H(a, b, c) as required.

If [Gx, x] = A and x 6= g, then x ∈ Dom[Gv, v] for some v ∈ G−1g or G−2g. In either case

there exists p ∈ Dom[H,h] such that [Gv, v] ≡ [Hp, p], so by definition of bisimulation

1 ∈ Dom[H,h] and [H1, 1] = A.
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If [G, g] = A, then G(g, 0, 1) and we proceed exactly as in the previous case.

The other direction is similar, so ∼ is a bisimulation.

Let us now address a small inconvenience. In the old model, given any collection of

multigraphs we can easily create a copy in which all the multigraphs have disjoint

domains. This was crucial in the proof of many axioms such as Collection, where a

large multigraph needs to be created. However the special status of A in our new model

means that we are longer allowed to replace it by isomorphic copies. Thus we have to

slightly weaken the conditions of disjoint domains.

Definition 66. If A ⊂ H is a collection of multigraphs, say A is almost disjoint if the

following hold for any [G, g], [H,h] ∈ A:

• if 1 ∈ Dom[G, g], 1 ∈ Dom[H,h] and [G1, 1] = [H1, 1] = A, then Dom[G, g] ∩
Dom[H,h] = {0, 1};

• otherwise Dom[G, g] ∩Dom[H,h] = ∅.

Say B is an almost disjoint copy of A if B is almost disjoint and there is a bijection

π : A↔ B such that [G, g] ≡ π[G, g] for all [G, g] ∈ A.

Note that this definition also works for classes if we allow the bijection to be a function-

class, but for our current purposes it suffices to consider only sets.

Lemma 90. For any collection A ⊂ H there is an almost disjoint copy.

Proof. If 1 6∈ Dom[G, g] or [G1, 1] 6= A, define π[G, g] as follows:

For any a ∈ Dom[G, g] let â := 〈a, [G, g]〉, then trivially a 6= 0 and a 6= 1.

Let Ĝ := {〈â, b̂, ĉ〉 : 〈a, b, c〉 ∈ G} and π[G, g] := [Ĝ, ĝ]. Then π[G, g] ∼= [G, g] and the

isomorphism is a bisimulation between them.

If 1 ∈ Dom[G, g] and [G1, 1] = A, define â for a ∈ Dom[G, g] as above except that 0̂ = 0

and 1̂ = 1 and define π[G, g] as above.

Then π[G, g] ∼= [G, g] and the isomorphism is a bisimulation since both 0 and 1 are fixed.

It is straightforward to check that the range of π is almost disjoint.

Remark 57. Let A be an almost disjoint set of multigraphs, and let H be the hypergraph

obtained by taking the union of all hypergraphs in A. Then for any [G, g] ∈ A, [G, g] =

[Hg, g].
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The counterpart to Lemma 72 can be proved with exactly the same proof as before, so

we only state the result below.

Lemma 91. Let [H,h] be accessible and

(H(a, b, c) ∧H(a, d, e) ∧ [Hb, b] ≡ [Hd, d])⇒ [Hc, c] ≡ [He, e]

for all a, b, c, d, e ∈ Dom[H,h]. Then the extensional quotient [Q, q] of [H,h] is a multi-

graph.

Now the new supertransitivity lemma can be proved in exactly the same way as Lemma

78.

Lemma 92. Let φ : H → H be a function in the ZF model V such that

(∀[G, g], [H,h] ∈ domφ)[G, g] ≡ [H,h]⇒ φ[G, g] = φ[H,h]

Then there exists [Q, q] ∈ H such that

(∀[H,h] ∈ H)
(

[H,h] ∈ [Q, q]⇔ (∃[G, g] ∈ domφ)[G, g] ≡ [H,h]
)

and

(∀[H,h] ∈ domφ) [Q,q]
[H,h] ≡ φ[H,h]

Proof. By taking a copy if necessary, assume without loss of generality that domφ∪ranφ

is almost disjoint. The rest of the proof follows exactly as with Lemma 78, replacing

the isomorphism relation ∼= with ≡.

Having proved these preliminary results, we can carry over the proofs of Lemmata 82, 81,

83 and 84 to obtain the axioms of Comprehension, Multiplicity Replacement, Collection

and Infinity.

Next we turn to the inclusion relation and related axioms. First we give the updated

definition of ⊂ and outline a proof of its basic properties.

Definition 67. Say [G, g] ⊂ [H,h] if there is a relation C ⊂ Dom[G, g] × Dom[H,h]

such that g C h and

xC y ⇒ (∀a ∈ G−1x)(∃b ∈ H−1y)([Ga, a] ≡ [Hb, b] ∧G(x, a)CH(y, b))

for all x ∈ Dom[G, g], y ∈ Dom[H,h].
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Lemma 93. If [G, g] ≡ [H,h], [P, p] ≡ [Q, q] and [G, g] ⊂ [P, p], then [H,h] ⊂ [Q, q].

Furthermore ⊂ is reflexive, transitive and

[G, g] ⊂ [H,h]⇔ (∀[Q, q] ∈ [G, g])
(

[Q, q] ∈ [H,h] ∧ [G,g]
[Q,q] ⊂

[H,h]
[Q,q]

)
Proof. For the first part let ∼1,∼2 be the bisimulations involved, and let C witness

[G, g] ⊂ [P, p]. Then the relation ≺ defined by

x ≺ y ⇔df (∃a ∈ Dom[G, g])(∃b ∈ Dom[P, p])(a ∼1 x ∧ b ∼2 y ∧ aC b)

witnesses that [H,h] ⊂ [Q, q] by a straightforward verification against the definition.

The rest of the proof is a straightforward adaptation of the arguments used for Lemma

76, replacing isomorphism with bisimilarity where applicable.

Note that we can no longer prove the antisymmetry of the inclusion relation. In Lemma

76 we constructed a bisimulation explicitly to show that ⊂ is antisymmetric, but that

construction fails to be a bisimulation in the new definition. In fact the purpose of this

new model is to break the antisymmetry of the inclusion relation:

Lemma 94. (∃[G, g], [H,h] ∈ H)([G, g] ⊂ [H,h] ∧ [H,h] ⊂ [G, g] ∧ [G, g] 6≡ [H,h])

Proof. Let [G, g] = A and [H,h] be a distinct but isomorphic copy. Since the empty

multigraph [∅, 0] is equivalent to any isomorphic copy of itself, the isomorphism witnesses

both [G, g] ⊂ [H,h] and [H,h] ⊂ [G, g] but clearly [G, g] 6≡ [H,h] (since by Definition

62 we would have h = 1 and [H,h] = A).

Next is the axiom of Union.

Lemma 95. For any [H,h] ∈ H the collection of [G, g] ∈ H such that [G, g] ∈ [H,h]

has a least upper bound with respect to ⊂.

Proof. We mirror the proof of Lemma 77, replacing ∼= with ≡ throughout.

The only part of the proof that does not carry over is the uniqueness of a if a ≺ X for a

given X. As with the antisymmetry of ⊂, that part of the proof explicitly constructs a

bisimulation which does not qualify under the new definition. However this uniqueness

is not necessary for the rest of the argument.

We reuse Definition 60 and state the following result, which has the same proof as

Lemma 79.
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Lemma 96. [Q, q] ⊂ [H,h] if and only if there is an injection φ : exp[Q, q]→ exp[H,h]

such that φbqc = bhc and:

• If φbq1 . . . qnc = bh1 . . . hnc and bq1 . . . qn+1c ∈ exp[Q, q], then φbq1 . . . qn+1c =

bh1 . . . hn+1c for some hn+1 ∈ Dom[H,h].

• If n is even and φbq1 . . . qnc = bh1 . . . hnc, then [Qqn , qn] ≡ [Hhn , hn].

We are now in a position to prove the axiom of Power Set.

Lemma 97. If [H,h] ∈ H, there exists [D, d] ∈ H such that for any [Q, q] ∈ H,

[Q, q] ∈ [D, d] if and only if [Q, q] ⊂ [H,h].

Proof. We adapt the construction in the proof of Lemma 80 by making provisions for

the updated definition of bisimulation.

By replacing [H,h] with a bisimilar copy if necessary, we can assume without loss of

generality that either Dom[H,h] ∩ {0, 1} = ∅ or [H1, 1] = A.

Let µ be a bijection such that domµ = exp[H,h] but ranµ is disjoint from both

Dom[H,h] and {0, 1}.

Suppose [Q, q] ⊂ [H,h]. Then there is an injection φ : exp[Q, q] → exp[H,h] satisfying

the conditions in the lemma above.

Define a function ν on ranφ by νφbq1 . . . qnc = µφbq1 . . . qnc if [Qqn , qn] 6= A and

νφbq1 . . . qnc = 1 if [Qqn , qn] = A.

If bh1 . . . hnc ∈ exp[H,h] where n is even, define

Hbh1 . . . hnc :=Hhn \ {〈hn, hn+1, hn+2〉 : H(hn, hn+1, hn+2)} ∪

{〈νbh1 . . . hnc, hn+1, hn+2〉 : H(hn, hn+1, hn+2)}

In other words, [Hbh1 . . . hnc, νbh1 . . . hnc] is an isomorphic copy of [Hhn , hn] obtained

by replacing hn with νbh1 . . . hnc.

One can easily check by the properties of φ as stated in the previous lemma that for n

even

[Hφbq1 . . . qnc, νφbq1 . . . qnc] ≡ [Qqn , qn]

Define a hypergraph D as the smallest set such that:

• If bq1 . . . qn+2c ∈ exp[Q, q] and n is odd, then

〈νφbq1 . . . qnc, νφbq1 . . . qn+1c, νφbq1 . . . qn+2c〉 ∈ D
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• If bq1 . . . qnc ∈ exp[Q, q] where n is even, then Hφbq1 . . . qnc ⊂ D.

• If 1 ∈ ran ν, then 〈1, 0, 1〉 ∈ D.

Let d := νφbqc, then [D, d] is accessible by construction of D.

Define a relation ∼ ⊂ Dom[Q, q]×Dom[D, d] by

x ∼ y ⇔df [Qx, x] ≡ [Dy, y] ∨ (∃bq1 . . . qnc ∈ exp[Q, q])(x = qn ∧ y = νφbq1 . . . qnc

We show that ∼ is a bisimulation.

Suppose x ∼ y.

If [Qx, x] ≡ [Dy, y], by definition of bisimilarity

(∀a, b)(Q(x, a, b)⇒ (∃v, w)(D(y, v, w) ∧ [Dv, v] ≡ [Qa, a] ∧ [Dw, w] ≡ [Qb, b]))

and vice versa.

If y = νφbq1 . . . qnc and x = qn, by construction of D we have:

• if n is odd, then

(∀a, b)(Q(x, a, b)⇒ D(y, νφbq1 . . . qn, ac, νφbq1 . . . qn, a, bc)

and

(∀v, w)(D(y, v, w)⇒ (∃a, b)(Q(x, a, b)∧v = νφbq1 . . . qn, ac∧w = νφbq1 . . . qn, a, bc))

• if n is even, then

[Dy, y] = [Hφbq1 . . . qnc, νφbq1 . . . qnc] ≡ [Qqn , qn] = [Qx, x]

so we are back to the case where [Dy, y] ≡ [Qx, x].

We have proved that

(∀a, b ∈ Dom[Q, q])(Q(x, a, b)⇒ (∃v, w ∈ Dom[D, d])(D(y, v, w) ∧ a ∼ v ∧ b ∼ w)) ∧

(∀v, w ∈ Dom[D, d])(D(y, v, w)⇒ (∃a, b ∈ Dom[Q, q])(Q(x, a, b) ∧ a ∼ v ∧ b ∼ w))

Now we show that

[Qx, x] = A⇒ (1 ∈ Dom[Dy, y] ∧ [D1, 1] = A)

and

[Dy, y] = A⇒ (1 ∈ Dom[Qx, x] ∧ [Q1, 1] = A)
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If [Qx, x] ≡ [Dy, y] the claim is trivial, so we need only consider the case where y =

νφbq1 . . . qnc and x = qn for n odd.

If [Qx, x] = A, then y = 1 by definition of ν and so [Dy, y] = A by the last clause in the

construction of D.

If [Dy, y] = A, then νφbq1 . . . qnc = 1 so by definition of ν it must be that [Qx, x] = A.

Therefore ∼ is a bisimulation. It is easy to show that the extensional quotient of [D, d]

is a multigraph, which is then bisimilar to [Q, q].

Let M be the set of all accessible pointed hypergraphs with vertices in ranµ∪Dom[H,h],

and let N be the set of extensional quotients of members of M . We have shown that

every [Q, q] ⊂ [H,h] must be bisimilar to a member of N .

Thus we can use the updated supertransitivity lemma to obtain the required multigraph

from the set {[Q, q] ∈ N : [Q, q] ⊂ [H,h]}.

Finally, note that the multigraph constructed in the proof of Lemma 84 still satisfies

the updated definition of multigraph and witnesses the truth of the axiom of Infinity in

this new model. Therefore we have proved:

Theorem 8. It is consistent with the rest of our multiset theory that the inclusion

relation is not antisymmetric.
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4 Index

4.1 Notations

∈ (multiset) 49

⊂ (multiset) 50
x
y (multiset) 49

ι 7

“ 7

H−1 (hypergraph) 72

H−2 (hypergraph) 72

H−1(x) (hypergraph) 72

H−2(x) (hypergraph) 72

Hx (hypergraph) 73

xH (hypergraph) 73

j 7

LH 48

R−1 (relation) 25

R � X (relation) 25

Rx (relation) 25

xR (relation) 25

TC(x) 7

Trans(R) 7, 25

4.2 Definitions

AFA 36

APG 25

Axiom of Preservation 26

Axiom of Quotient 26

Axiom of Stability 26

Axiom schema of Multiplicity Replacement

99

BFEXT 22

bisimulation 37, 74

Cantorian 8

closure condition 14

Coret’s Lemma 9

EPG 26

exp (multiset) 94

function (multiset) 54

HS 9

HSM 71

HSS 12

HWM 71

HWS 12

IO 24

MS 60

MS+ 64

NF 8

NFU 8

ordinal (multiset) 55

relation (multiset) 54

RPG 37

SPG 26

stabiliser 11, 70

stratification 8, 68

strongly Cantorian 8

strZF 8

strZF− 25

strZFG 26

Supertransitivity Lemma 90

symmetry 9, 12, 70

uniform symmetry 19
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