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Abstract

A detailed and fairly elementary introduction is given to the techniques
used by Church to prove the consistency of his set theory with a universal
set by constructing models of it from models of ZF. The construction is
explained and some general facts about it proved.

Introduction

In 1974 Alonzo Church and Urs Oswald simultaneously and independently lit
upon a refinement of Rieger-Bernays permutation models which enabled them
to give elementary proofs of consistency for some set theories with a universal
set. My own interest began much later, when I made the aquaintance of Flash
Sheridan, a former student of Church’s who was then writing an Oxford D.Phil.



thesis on Church’s work in this area. I am greatly endebted to Flash for kindling
my interest in this engaging bywater, and for showing me some relevant and
(even now) unpublished material. This essay is substantially the same as the
version that has appeared in the Church festschrift: I have corrected a few errors,
reversed the American spellings introduced by the editors of that volume, and
updated the notation and the bibliography.

Church was not generally known for having an interest in set theory, and
one might wonder what moved him to write this late and isolated piece. An
interest in set theory with a universal set was even less mainstream twenty years
ago than it is now, but the consistency question for such theories is something
that those whose interest in set theory was purely philosophical might well have
mused about at any stage in its history, and I suspect that Church’s motive
was to make a small polemical point to the effect that there are consistent set
theories with a universal set. It is a point worth making to students even now.
Against this view is that fact that there were already two papers making the
same point, and we know that one of them (Jensen [1969]) was known to Church.
(The manuscript of Ward Henson’s review of Jensen [1969] in The Journal of
Symbolic Logic archives has comments on it in Church’s hand.) However it is
possible that Church felt that this paper did not make the point convincingly,
since the system whose consistency is proved therein is not a pure set theory, but
admits urelemente. The other, Grishin [1969], (which proves the consistency of
NF3, a pure set theory with a universal set and no urelemente) was apparently
not known to Church. I am endebted to Herb Enderton for historical details
about The Journal of Symbolic Logic.

1 Rieger-Bernays permutation models

We will start by swiftly recapitulating and updating a treatment of Rieger-
Bernays models from Forster [1995]. If (V, R) is a structure for the language
of set theory, and 7 is any (possibly external) permutation of V', then we say
x Ry yiff x R w(y). (V,Ry) is a permutation model of (V, R). We call it V™.
Alternatively we could define @™ as the result of replacing every atomic wif
x € yin ® by z € 7(y). We do not rewrite equations in this operation: = is
a logical constant not a predicate letter. The result of our definitions is that
(V,R) E @™ iftf (V,R,) E ®.

A wif ¢ is stratified iff we can find a stratification for it, namely a map f
from its variables (after relettering where appropriate) to IN such that if the
atomic wif ‘z = 3’ occurs in ¢ then f(‘z’) = f(‘y’), and if ‘x € 3’ occurs in ¢
then f(‘y’) = f(‘z’) + 1. Variables receiving the same integer in a stratification
are said to be of the same type. Values of f are types.

To discuss these topics properly we will also need j =g¢ AfAz.(f“x). The
map j is a group homomorphism: j(mwo) = (§(r))(j(c)). A (possibly external)
permutation o of a set X is setlike if, for all n, j"(o) is defined and is a per-



mutation of P™(X) (if this last thing exists). ZF proves that every definable
permutation is setlike. This is actually a formulation of the axiom scheme of
replacement! This is related to—but to be distinguished from—the set theo-
rists’ concept of an amenable class: one all of whose initial segments is a set.
We shall start with a lemma and a definition, both due to Henson [1973]. The
definition arises from the need to tidy up ®7. A given occurrence of a variable
‘z’ which occurs in ‘@7’ may be prefixed by ‘7’ or not, depending on whether
or not that particular occurrence of ‘x’ is after an ‘€’. This is messy. If there
were a family of rewriting rules around that we could use to replace z € 7(y)
by o(x) € y(y) for various other o and 7 then we might be able to rewrite our
atomic subformula to such an extent that for each variable, all its occurences
have the same prefix.

Why bother? Because once a formula has been coerced into this form, every
time we find a quantifier Qy in it, we know that all occurrences of y within its
scope have the same prefix. As long as that prefix denotes a permutation then
we can simply remove the prefixes! This is because (Qz)(...o(x)...) is the same
as (Qz)(...xz...). If we can do this for all variables, then 7 has disappeared
completely from our calculations and we have an invariance result. When can
we do this?

Henson’s insight was as follows. Suppose we have a stratification for ¢ and
permutations 7, (for all n used in the stratification) related somehow to 7, so
that, for each n,

z € 1(y) it 7,(z) € Tri1(y).

then by replacing ‘ z € 7(y) ’ by ¢ 7,(z) € Th4+1(y) > whenever ‘z’ has been as-
signed the subscript n, every occurrence of ‘z’ in ¢ ®7 ’ will have the same prefix.
Next we will want to know that 7, is a permutation, so that in any wiff in which
‘z” occurs bound—(Vz)(. .. 7,(x) .. .)—it can be relettered (Vz)(...x...) so that
‘7’ has been eliminated from the bound variables. It is not hard to check that
the definition we need to make this work is as follows

DEFINITION 1 7y = identity, 7,11 = (7(7)) © Tp.

This definition is satisfactory as long as j™(7) is always a permutation of
V' whenever 7 is, for each n. For this we need 7 to be setlike. The trick of
relettering variables that this facilitates is of crucial importance and will be
used often.

This gives us immediately a proof of the following result.

LEMMA 2 Henson [1973]. Let ® be stratified with free variables ‘x1’, ...,
‘r,’, where ‘x;’ has been assigned an integer k; in some stratification. Let T be
a setlike permutation and V' any model of NF. Then

(VE)V E ((Z)" «—— (15, (21) .. . Tk, (T0)))-



In the case where ® is closed and stratified, we infer that if 7 is a setlike
permutation, then

VE®— .

This was proved by Scott in [1962]. We can actually prove something with
the flavour of a completeness theorem about these things: a formula is equivalent
to a stratified formula iff the class of its models is closed under permutation
models using setlike permutations. The proof of this is too long to be done
here, but see Forster [1995], where it is theorem 3.0.4.

REMARK 3 If(V,€) = ZF and 7~ is a setlike permutation of V then (V, €,) |=
ZF.

Proof: The stratified axioms are no problem. The only unstratified axiom
scheme is replacement. It is easy enough to check for any ¢ that if Va3ly¢ then
Vz3lyg™, so that for any set X the image of X in ¢7 is also a set. Call it Y.
But then 771(Y) is the image-of-X-under-¢ (in the sense of V7). ]

We will also need the following observation, due to Coret.

LEMMA 4 If f is a stratification of ® thought of as the partial function IN—
IN that sends the variable’s subscript (rather than the variable itself) to the type
then

O(z1, ... 2x) = (/D (0) (@), .., (5TM () (ar)).

Proof: It might be an idea to have an illustration before a full proof. For
example, the lemma tells us that

x €y o(x) € ay.

The theorem is simply a more general assertion true for the same reasons.

Now for a full proof. By definition of j we have = € y iff 7(z) € (j(7))(y)
for any permutation 7. In particular if ‘z’ has been assigned type n and ‘y’ the
type n+ 1, we invoke the case where 7 is j*(0) to get x € y «— (j"(0))(x) €
(771 (0))(y). By substitutivity of the biconditional we can do this simulta-
neously for all atomic subformulae in ®(z1,...,2x). Variables ‘y’ that were
bound in ‘®(z; ...xx)’ now have prefixes like ‘5™ (0)’ in front of them but, since
‘D(xq,...,x) was stratified, they will be constant for each such variable ‘y’.
We then use the fact that j™(o) is a permutation of V' so that any formula

(Qy)(-..(™(0))(y)...) (Q a quantifier) is equivalent to (Qy)(...y...). |

DEFINITION 5 A P-embedding from A into B is an injection ¢ : A — B for
which the power set operation is absolute. “No new members or subsets of old
sets.” If 4 is the identity we say B is a P-extension of A.



THEOREM 6 Let M = (M, €) be a wellfounded model of ZF, and let o be a
setlike permutation of M. Let i : M — M?7 be recursively defined by i(z) =:
o~ Y(i“x). Then (i) i is a P-embedding and (ii) i is elementary for stratified
formule.

Proof:

(i) If x €, i(y) then z is a value of 7 so i is an end-extension. Suppose (z C
i(y))?: we want x to be a value of i. (x Ci(y))? is just o(x) C o(i(y)) = i“y so
o(x) is a set of values of i so x is a value of i.

(ii) Let ¢(Z) be a stratified formula whose free variables are precisely the Z,
a tuple of length k. Assume

M ': ¢(i($1),i(1‘2), cee Z(.Tk))

We now need the following fact, due to Coret.

Let M <p K be structures for set theory and suppose that for all x € K
there is y € M such that there is a setlike permutation 7 of K with 7%y = «.
Then the inclusion embedding is elementary for stratified formulee.

Let’s concentrate on the hard case of the existential quantifier. We want to
show that if (Jy)¢(Z,y) where ¢ is stratified and the & are in M, then there is
y € M witnessing the quantifier. We will use the lemma which in Forster [1992]
called “Boffa’s lemma on n-formulae” but which I suspect is really due to Coret.
To keep things readable, let us suppose there are only two x variables, that y is
of type 5, and that x; is of type 2 and x5 of type 4. To invoke Boffa’s lemma
we must find a permutation 7 such that (j(7))(z1) = z1, (j3(7))(z2) = 22 and
(54(m))(y) is something wellfounded. We must think of the action of 7 on the
things in |J* 21 and J* 22 and |J° y. 7 must fix everything in (J* 21 and |J* 22
and must send everything in U5 y to something wellfounded. It will be sufficient
for [J° y to be the same size as something in M.

Actually this is easy, and appeals to a sort of inside-out pigeonhole principle,
which says something like: when there is enough room, you can do whatever
you like. We have to be confident that once we have specified 7 at least to the
extent of saying it must fix everthing in U2 x1 and U4 29 there are nevertheless
still enough M-sets that can be moved for us to be able to send all the non-
M members of |J°y to them. (Notice that in ZF no illfounded set can be
symmetrical, since (Boffa again) if x is symmetrical and illfounded, then | J" z =
V for some n, and of course this cannot happen in ZF'.)

The instance of Coret’s lemma that is of interest to us is the case where
K is V° and M is V. Notice that in V7 every set is (externally) the same
size as a wellfounded set, since the members (in V7) of z are the members (in
V) of o~ 1(x), and o~1(z) is certainly in V. But in ZF any bijection between
sets can be extended to a setlike permutation of the universe. (This relies on
replacement and is not true of weaker theories!)*

IThe proof of this result in the version of this paper appearing in the Church festschrift is
flawed: thanks to Randall Holmes for spotting the error.



COROLLARY 7 The axiom of foundation is independent of ZF.

Proof: Use the transposition (@, {0}). In the new model the old empty set has
become a Quine atom: an object equal to its own singleton. [ ]

The completeness theorem for setlike permutations and stratified formulee is
a powerful and satisfying piece of 1950’s-style model theory, not unlike Birkhoff’s
theorem in flavour, but it is actually a nuisance. It is all very well if one has
a model of a stratified theory, and want to generate further models of it, but
it does mean that if one starts with a model of a theory that does not have a
universal set, then the result will not have a universal set either. (After all, the
assertion that there is no universal set is stratified, and if it starts off false will
remain false). It gives us the independence of the axiom of foundation, but not
the relative consistency of a universal set. If we want a universal set we have to
enrich the construction slightly.

[HOLE Think in terms of di Giorgi models. It’s obvious that if there is a
bijection between X and some ideal in P(X) then there will be a bijections
between X and the union of that ideal and its dual filter—at least as long as
|X| =2-|X|. Less than blindingly obvious that this bijection can be coded in
the di Giorgi model arising from the bijection with the ideal. However, we can
make this explicit.)

2 Church-Oswald models

Let (V, €) be a model of ZF and let k (for ‘kode’) be a bijection between V' and
V x {0,1}. Next we define

1. k(y) = (¢/,0) and = € ¢/, or
2. k(y)=(/,1) and z € ¢/.

This is the simplest version of the construction, and is the one in Oswald
[1976]—though Oswald considered specifically the case where V was V,, and
presented it very differently. (Oswald’s model is presented more fully in section
2.1.1.)

The first thing to notice is that every set has a complement in the sense of
€co- (Perhaps the first thing of all to notice is that €, really is extensionall).
In fact the resulting model is a model of a theory known as NF>, which Oswald
was studying at the time. The axioms of NF, are (i) Extensionality (ii) com-
plementation (—x is a set, always) (iii) z Ny and (iv) existence of {x}. This
axiomatisation is finite but it is perhaps more convenient to replace (iv) by the
scheme giving the existence, for each n € IN and for all n-tuples Z, of the set
{z1,29,... 2}

We took k to be a bijection between V and V x {0,1}, but it could have
been Vx anything K we like (‘K for ‘Kode’), as long as 0 € K and we have

a:ecoyiff{



suitable clauses for €¢o, « where the second component of k(x) is not 0. The
idea is that in general we define z €¢0 ¥ if either (i) snd(k(y)) = 0 and z €
fst(y) or? (ii) various other clauses concerning (new) membership in sets y
such that snd(k(y)) # 0. The idea is that other entries in K will correspond
to other operations on sets (in the case we have just seen 1 corresponds to
complementation). In general there is a problem of extensionality. There is of
course no difficulty in showing that x and z’ satisfy extensionality as long as
snd(k(z)) = snd(k(z’)) = 0, but there are other cases to consider. The task
of verifying extensionality in the new structure will be much easier if all z and
y such that snd(k(x)) # snd(k(y)) are so different that the possibility of them
having the same members in the new sense simply never arises. For example,
in the case we have just seen, if snd(k(x)) is 0 then z has only a set (in the old
sense) of members-in-the-new-sense, whereas if snd(k(x)) is 1 it has a proper
class (in the old sense) of members-in-the-new-sense. This tells us that if the
theory for which we are trying to obtain a model by this construction is T', then
the extensionality problem for the model is deeply related to the word problem
for T. In particular if we have a good notion of normal forms for T" words over
a set of generators then we will be able to take K to be (roughly) a set of such
normal words. What this reveals is that this technique is not a great deal of use
for constructing models of a theory T unless T has an easy word problem. Set
theories with an easily solvable word problem are unlikely to be of interest.

For the moment we will—in the name of generality—ignore the question of
what the remaining components of k(z) can be. We will assume that K is some
arbitrary collection such that 0 € K and there are rules to ensure that €, is
extensional and that when snd(k(y)) = 0 then z €co y «— = € £st(k(y)).
We will try to prove some general results about this construction. Let us call
structures built in this way CO structures. (“Church-Oswald”).

To summarise, there are three parts to a CO construction over a model
(V, €). There is a collection K of objects available to be used as second compo-
nents of ordered pairs; there is a bijection k between V and V x K, and finally
there is a family of rules telling us how possible membership (in the new sense)
of z in y depends on the second component of k(y). Rieger-Bernays permuta-
tion model constructions can be seen as those special cases of CO-constructions
where K is a singleton. Accordingly the only thing one is free to play with is
the bijection k.

Since we are assuming that one of the clauses in the definition of €. is
always snd(k(z)) = 0 — (Vy)(y €co * <« y € fst(k(x))) we can make the
following definition.

DEFINITION 8 A low set is a set x such that snd(k(z)) = 0.

This is at variance with other definitions in the literature, but it is the most
useful. This is not to be confused with the notion of a hereditarily low set,

2fst(x) and snd(z) are the first and second components of the ordered pair .



for this will turn out to be important as well.

DEFINITION 9 H),, is the greatest fixed point for the function that sends an
argument = to the set of low subsets of x. That is to say, Hioy is the collection
of sets x such that everything in the transitive closure of z is low.

(Notice that the least fixed point must consist entirely of wellfounded sets.)

DEFINITION 10 The Axiom scheme of Low Comprehension states that, for
any formula ¢(z,¥), and for all 7, if the collection of all x such that (V, €co) =
¢(x, ) is a set of the original model, then (V, €co) E “{x : ¢(z,7)} is a (low)
set”.

Thus it is by no means obvious that low comprehension is axiomatisable.
For this reason the most profitable approach to this topic is to think of the
CO constructions as things that give us models, rather than to attempt to be
specific in saying what the axioms are of the theory whose consistency we have
proved.

The following triviality is central to what is to come.

THEOREM 11 All CO structures satisfy low comprehension.

Proof: Let ¢(xz,y) satisfy the antecedent, and consider the class of all z such
that (V, €co) E ¢(z,7y) which is a set of the original model, X, say. Then
{x : ¢(x,7)} in the sense of the new model is simply k(~ Y ((X,0)), and is of
course low. [ ]

In particular we have an axiom of pairing.
In a typical CO construction there will be plenty of new sets containing all
low sets: V for one. However

PROPOSITION 12 No new set containing all low sets can be low.

Proof: Suppose there were a low set containing all low sets. Then, by low
comprehension, the collection of all low sets is low. That is to say, there is an
x such that (Vy)(y €co © «— snd(k(y)) = 0). But there is certainly a proper
class of y such that snd(k(y)) = 0, so this = has a proper class of members and
is therefore not low. [ |

Attempts to reconstruct the usual paradoxes in this new context give rise
to demonstrations that certain sets are not low. Take Russell’s paradox for
example. The new model cannot contain the set of all things that are not
members of themselves. If the collection of x such that —(z €¢o x) were a set of
the original model then the Russell class would be a set of the new model. So
there is a proper class of x such that —(z €¢o ).

COROLLARY 13 FEvery surjective image of a low set is low and every subset of
a low set is low.



Proof: The first part follows from replacement in the original model and the
second from comprehension. [ ]

The first follows from the second by AC but a proof without AC is preferable
since we will not otherwise be making any use of AC in this development.

COROLLARY 14 FEwery low set has a power set, which is also low.

Proof: When z is low, P(z (in the sense of €¢,) must be

KD (KD AP((Est(k(2))) x {0}),0)). u

COROLLARY 15 If x is a low set of low sets, then it has a sumset, which is
low.

Proof: The object we need to play the role of |z is
E~ Y J(fst o k)“(fst o k)(x),0).

This depends only on the availability of the axiom of sumset in the model we
start with, and doesn’t tell us about stronger, less restricted forms of the axiom.
|

This seems to be an argument for setting up this theory with low compre-
hension in the way I have done it rather than with low replacement in the way
Church originally did. Low replacement in the form “The image of a wellfounded
set in a function is a set” certainly implies existence of power set for low sets
and sumset, but we seem to need AC to deduce sumset for low sets of low sets.
This is very messy.

2.1 Applications of the technique
2.1.1 Models of NF,

Oswald did not set up his first illustration with the apparatus of K and k as
here. Instead he defined a binary relation on IN as follows:

n E m iff either

1. m is even and the nth bit of the binary expansion of m/2 is 1;
or

2. m is odd and the nth bit of the binary expansion of (m — 1)/2
is 0.

This obviously derives from the old trick (due to Ackermann) of defining n E m
(n,m € IN) iff the nth bit of the binary expansion of m is 1.

It might be an idea to concentrate briefly on the three salient features of this
the simplest possible case.



K ={0,1}, and the other clause gives us complements;
The € relation of the original model is wellfounded;
The rank of fst(k(z)) is no greater than the rank of z.

When these conditions are met we can say a lot.
DEFINITION 16 An antimorphism is a permutation 7 of the universe satisfying
(Vay)(z € y «— m(x) & 7 (y)).

REMARK 17 Under the three assumptions above the new model admits an an-
timorphism.

Proof: Declare the following recursive definition

o(z) = k™' ({o“(fst(k(2))), (1 — snd(k(2))))).
By considering putative counterexamples of minimal rank we can show that
this is everywhere defined.
Suppose 0(y) €co o(x). This is
7(y) €co k™ ({0 “(£5t(k(2))), (1 — snd(k())))).
Now either snd(k(x)) = 0 or snd(k(x)) = 1.
0 If snd(k(x)) = 0 the displayed formula becomes

a(y) €co k™ ({0 “(Est(k(2))), 1)),
which is
o(y) & o (fst(k(x))),
which is y & (fst(k(x))). But if snd(k(x)) = 0 this becomes y €¢o .

1 On the other hand if snd(k(x)) = 1 then
7(y) €co k™ ({0 (£t (k(2))), (1 — snd(k(x)))))

is

o(y) €co k™ ((0“(£5t(k(2))),0))
This is o(y) € o“(fst(k(z))) which of course simplifies to y € £st(k(x))
and (since snd(k(x)) = 1) this becomes y €¢o .

So either way we have o(y) €co 0(x) «— Yy &eo . ]

There is another nice result we get as a reward for making these assumptions.
Consider the game G, played as follows, by two players, I and II. I picks
x1 € z, IT picks x5 € z1, I picks x3 € x5 ..., with the first player unable to
move (you can’t pick a member of the empty set!) losing. Clearly the axiom
of foundation implies that G, is always determinate in the sense of admitting
a winning strategy for one player or the other. This is €-determinacy. The
axiom of foundation is obviously implicated because if z = {2} G, is clearly not
determinate. The converse is not true, however, and we can prove the following.

10



REMARK 18 Under the three assumptions above, the new model obeys €-deter-
minacy.

Proof: G, is a win for player I if thereis a y € z s.t. G, is a win for player II.
Similarly G, is a win for player II iff for every y € x, G is a win for player I.

First we prove that there are x of arbitrarily high rank such that x is hered-
itarily low and G, is a win for player II. (And player I, but we don’t need
that.) This is because under the assumptions given H),y is an isomorphic copy
of the original model and there are clearly x of arbitrarily high rank with those
properties.

Next we prove by induction on rank of x that (in the sense of the new
model) G is determinate (admits a winning strategy for I or II). Suppose this
is not true, and let = be a counterexample of minimal rank. Then k(z) = (y, 1)
or k(z) = (y,0), for some y. If k(x) = (y,0) for some y then by induction
hypothesis G, is determinate for every z €., x and G, must be determinate
as well. If k(z) = (y,1) then there is some ordinal o (namely rank of y + 1)
such that, for all z, if z is an element of the original model of rank at least «,
then z ¢ y, so (since k(z) = (y,1)) 2z €co ©. Now we have just proved that at
least some of these z give rise to GG, that are wins for player II. So there is at
least one z €¢q @ such that IT has a winning strategy for G,. But then I has a
winning strategy for G, which he launches by picking z. [ |

2.1.2 An elementary example

We are going to consider two models, more complicated than the original Oswald
model, in which in addition to complements for all z, we also have B(x) for all
x. B(x)is {y : © € y}.? The theory that has boolean axioms (U, N and —),
singleton and B is NFO. (The ‘O’ is intended to suggest Open. This theory
is more naturally axiomatised as Extensionality plus existence of {z : ¢(x, %)}
where ¢ is stratified and quantifier-free. It is a relatively straightforward exercise
to check that these axiomatisations are equivalent.) The second model will
satisfy all the boolean axioms (and so is a model of NFO), but we start with
the first, which doesn’t.

Consider SS = the set of reduced words in the semigroup-with-unity with
two generators ¢ and b, and the equation c? = 1gg. ‘c’ is intended to recall
“Complement” and ‘b’ to recall “B(x)”. We now let k be a bijection between
V and V x SS5. We define €., by recursion by cases:

DEFINITION 19
1. If snd(k(x)) = cw for some word w € SS then
: -1
Y €co @ iff Y Feo K™V (E5t(k(2)), w).
3T use this notation because it was Boffa who first impressed on me the importance of this

operation. I learned later that the first use of this operation was by Quine, and Whitehead
suggested to him that {y : © € y} should be called the essence of z.

11



2. If snd(k(z)) = bw for some word w € SS then
Y €co x iff KTV ((Est(k(z)), w)) Eco ¥

3. If snd(k(z)) is 1ggs then y €co x iff y € £st(k(x)).
PROPOSITION 20 The € of definition 19 is extensional.

Proof: The proof is an inductive proof (by cases) on the construction of words in
SS. The situation we are contemplating is two distinct £ and x5 which have the
same €co-members. Naturally we will be interested in the second components
of k(x1) and k(x3). There are several cases to consider:

1. The second components are both 1gg, the unit of the semigroup. In this
case the first components must be the same, and x7 = x5 follows.

2. One of the second components is 1gs and the other isn’t. Suppose snd(k(z1))l}
= lgs and snd(k(x2)) is bw or cbw. (We cannot have two adjacent ¢’s since
the words are reduced and c? = 1gg.) Then the collection of y such that
Y €co 1 is £st(k(x1)), which is a set in the sense of (V,€). In con-
trast the collection of y such that y €., @2 is either (i) the collection
of y such that y €eo k(~ D (fst(k(z2)),b(w))—which is to say, by an ap-
plication of part 2 of definition 19—the same as the collection of y such
that k(=D (fst(k(22)),w) &eo ¥y, or (ii) is the collection of y such that
kD ((fst(k(z2)),w)) Eeo y. The collection in case (i) cannot be a set
because for any object a we can easily find proper-class-many unordered
pairs which do not have a as a member. The collection in case (ii) cannot
be a set because for any object a we can easily find proper-class-many
unordered pairs which do have a as a member.

3. snd(k(z1)) = c(wy) and snd(k(z2)) = c(w2) where the first letter of both wy
and wy is b. Assume (Vy)(y €co L1 «— Y Eco T2) With a view to deducing
r1 = x3. We can expand this in accordance with part 2 of definition 19:

(Vy)(y ¢c0 k(i 2 <fSt(/€(£L‘1)),w1> Y €C0 k(i 2 <fSt(/€(£L’2)),w2>),
which is to say
(V) (Y €co kK V{(Est(k(21))w1) «— ¥y €co k™D (£t (k(22)),w2)).

That is to say, if we have distinct x; and xo with the same members-in-
the-sense-of-€¢o, where the first letter of snd(k(x1)) is the same as the first
letter of snd(k(x2)), namely c, then there are distinct y; and yo (namely
kG (£st(k(x1)),w1) and kD (fst(k(zz)),w)) satisfying (V2)(z €eco U1
—— 2z €¢o Y2) and snd(k(y1)) and snd(k(y2)) are shorter than snd(k(z1))
and snd(k(z2))—indeed they are terminal segments.

This clearly reduces to the case where the two words in question are w;
and wy both beginning with b, which we now treat.
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4. The second components of k(x1) and k(xy) are words b(wy) and b(ws).
We have (Vy)(y €co T1 +— Y Eco T2). Expanding this by clause (2) in
definition 19 we obtain

(¥y) (D (£t (k(21)).b(w1))) Eco z§ — KD ({st(k(22)),b(2))) €co
Y).

Now as long as
kD ((Est(k(x1))b(wn))) # kD ((Est(k(a2)),b(w2)))

we can falsify this biconditional by taking y to be the singleton of one of
these two. Singletons exist by low comprehension: the singleton of = (in
the sense of €¢) is just k(— D (({z},0)).

5. k(x1) has second component cbwy and k(z2) has second component b(ws).
This is really the case where one word begins with a ¢ and the other begins
with a b but since the words are all reduced we also know that the letter
following the ¢ in the word beginning with a ¢ must be a b. If we have

(VY)(Y Eco 1 Y Eco 22),
this becomes
(VY)Y Feo KD (Est(k(21))b(w1))) —— k=D ({5t (k(22)),w2)) Eco )-
This is the same as
(V) (y €co kD (Est(k(21)),bw1)) «— kD ({5t (k(22))w2)) Fco y)-
Now ¥y €co k™ (fst(k(x1)),b(wy)) iff (by clause (2) in definition 19)
ECD (fst(k(x1))w1) €co ¥
and substituting this for ‘y € k(7 (£st(k(21)),b(w;))’ in
(YY) (y €co k™ Est(k(21)),b(w1)) «— kD ({Est(k(22))w2)) Feo y)
we obtain

(Vy) (K D (g5t (k(21))91)) €co y > kD ({Est(k(22)).W2)) Feo )-

Now anything like (Vy)(a € y «— b ¢ y) must always be false because of
the existence of the empty set. [ ]
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The rest is easy:

PROPOSITION 21 With €¢o as in definition 19, (V,Eco) = (Va)(—x exists)
and (Vz)(B(z) exists).

Proof: The complement of z will be k(~ 1) (fst(k(z)),csnd(k(x))), for, by clause
(1) in definition 19, we have

Y €co KTV (£st(k(2)),csnd(k(x))) iff
Y éco ECD(fst(k(x)), snd(k(x))) iff
Y €eo .

B(z) will be k=D (£st(k(x)),bsnd(k(x))), for, by clause (2) in definition 19,

Y €co K™V (£st(k(x)),bsnd(k(x))) iff
ECD(£st(k(x)), snd(k())) €co ¥ iff
X €co Y-

2.1.3 P-extending models of Zermelo to models of NFO

Before we contemplate the second construction (which gives us a model contain-
ing x Ny and x Uy for all  and y) we had better ask ourselves why we didn’t
get it last time. After all, these axioms hold when K = {0,1}. The point is that
in that case everything is the same size as an old set or the complement of an
old set. Also if x and y are both the same size as an old set or the complement
of an old set, then so are x Ny and z Uy, and so N and U do not construct
anything that isn’t already there. Once we have B(x) this breaks down, and if
we want x Uy and x Ny in general we have to construct them specially. This
makes the task of constructing models of NFO altogether more daunting.

THEOREM 22 FEvery model of ZF+ foundation has a P-extension that is a
model of NFO + low comprehension.

Proof: (We certainly need not restrict ourselves to models of ZF, for this is
certainly true for well-founded models of Z and presumably weaker theories as
well.)

The idea of the construction was originally that k(z) is to be a pair (y, w)
where y is a set and w is a reduced word in some algebra with operations that
correspond to the operations we want the universe of the new model to be
closed under. Although this can be made to work, the approach it gives is very
much less smooth than an approach that creates a gigantic free NFO model
over a proper class of generators where there is one generator for each set of the
old model. Unfortunately this second, smoother approach is not really a CO
construction, and so strictly doesn’t belong here as an illustration. The excuse
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for putting it in here is that the construction is, in spirit, very close to the CO
constructions that precede it and will succeed it, and its presence here will help.

In the last case the only operations in which we were interested were unary
(complementation and B) so the case had a spurious simplicity. Recall that
the axioms of NFO are (apart from extensionality) existence of {x} and closure
under B, U and N. If this were a CO construction au pied de la lettre we would
get closure under singleton free because of low comprehension, so we could
explicitly forget about it. Here too we can forget about it, and will indeed do
so—for the moment. Later we will see why this is all right after all. We should
be able to make do with only one of N and U, but conjunctive and disjunctive
normal forms for boolean words are so useful that we will retain both.

Our language of terms has a constant term g, for each old set z. The
constants will eventually correspond to low sets of the new model. We also
have function letters U, N — and B. We have to do a bit of work to find the
correct notion of reduced word for this algebra. There is the irritating feature
that we do not want to have both a Nb and b N a but we can get round that
by wellordering the alphabet and extending the order lexicographically to the
words. It will turn out that we will want to augment the language by adding A
(symmetric difference).

DEFINITION 23 A restricted word is either a constant, or is WAg where W
is a boolean combination of Bs of restricted words, and g is a constant. If g is
the empty set we can drop it and speak of a pure restricted word.

Now we have to show that everything that we wish to construct can be
denoted by a restricted word.

We can think of a word w as a union of intersections, where the things
being intersected are constants or Bs and complements of either. Consider an
intersection like

anNbnend....

If even one of these is a constant (i.e., will correspond to an low set) then the
whole intersection can be represented by just one (new) constant. Intersections
of any number of complements of low sets can be represented as one complement
of a low set. Thus the intersections are either constants, or intersections of Bs
and — Bs with the complement of a low set, which is to say, an intersection of
Bs and — Bs minus some low set.

Thus w can be rewritten in the form

[(w1 NgT) U (we NG2) U (w3 NG3)] U gni1 (1)

where the w; are intersections of values of B or complements of values of B,
and the g; are low sets. We will work through this in the case where n = 3,
so that the reader than see how to do the general case. (This is probably more
helpful than a rigorous proof of the general case would be!) For the moment we
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are interested only in the stuff inside the square bracket of formula 1:
(w1 Ngr) U (waNgz) U (wsNgs).
This expands to an intersection of 23 = 8 subformula as follows:
(w1 Uwg Uwsz) N seven other terms.

A typical example of these other terms is wi U ws U g3. It is typical in that it
contains at least one entry of the kind g;. Now wi U ws U g3 is the same as

—(w1 Nwz N g3).

This is the complement of a low set so we can think of this as Gnovel, for some
novel low set gnovel,- This can be done to all the six remaining terms so the
stuff-inside-the-square-bracket in formula 1 now looks like

(wl U w2 U wS) N Gnovely N Gnovel, N Gnovels n... Gnovel,

subtracting finitely many low sets is the same as subtracting one, so the stuff-
inside-the-square-bracket in formula 1 is now

(wl U w2 U ’LU3> N Inovel -

So, in the general case, we have reduced w to

(U Wy \gnovel) Ugiti-

i<n

This is actually

(| wi)AG,

i<n

where G is

((U wn) N gnovel) U (gn+1 N _(U wi))7

i<n i<n

which is a low set.

Notice that we started with w as a boolean combination of B’s and con-
stants and have ended up with something rather simpler: | J,.,, w; is a boolean
combination of B’s and G can be taken to be a constant.

This tidying-up process has not turned w into a restricted word, but if we
invoke a notion of rank (where the rank of a word is simply the maximal depth
of nesting of Bs in it) then we can see that none of the manipulations involved
in the foregoing increases the rank of w, so that is we perform these manipu-
lations successively on words of increasing rank, every word will eventually be
manipulated into a restricted word.
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Every word is equivalent to a restricted word. Verifying extensionality in
this model will depend on our being able to show that it is equivalent to a
unique restricted word. (note that it has not yet been made clear quite how it
will depend on this uniqueness!) To do this it will be sufficient to show that
if w; and wo are two pure restricted words then w; A wy is not low. Suppose
this were not so. Then there is some word W which evaluates to a low set.
Without loss of generality we can think of W as a union of lots of terms each of
which of course must themselves evaluate to something low and each such term
is of the form B(wi) N B(wz) N...B(wy,) N — B(u1) N — B(uz) N ... — B(ug).
(where the @ and the « are all distinct) which is supposed to be a low set. (Here
“B(x)” means the set (in the sense of (V, €)) of those y such that x €¢o y). Now
{w1,...w,} U{z} belongs to this collection as long as x is not a u or a w, and
there is certainly going to be a proper class of such x so it is clear that this
collection must be a proper class (in the sense of (V, €)).

Now we have to define a new membership relation €.o. There is a bijection
between the words of this new algebra and the sets of our old model. We may
as well call this k as before. The elements of the model will be the words of the
algebra. We will have to define €., by recursion on the structure of the terms.

If w is a molecular term of rank n then, in full generality, it is w’Ag for
some constant g and some boolean combination w’ of B(z;) for various i. We
then say & €¢o w iff (2 €co g) < (the obvious boolean combination of things
like 2; €co x)* This is a recursive definition that appeals to a rank function on
NFO terms, where rank is the depth of nesting of Bs. What are we to make
of ‘T €co gy’, where g, is a constant? This is defined to be k~!(z) € y. This
ensures that every constant corresponds to a low set and vice versa. As before
we can define an injection ¢ from the old model into the new, by recursion. This
time the recursion is i(x) = g~ 1)05)«p-

We had better verify that this does actually define a P-extension. Suppose
Y €co i(x). Then y €co (- 1ojs,; Which is to say k™ '(y) € (K=Y o)z
whence y € i“x and y is a value of i. So the range of i is transitive. Next
suppose i(y) Eco i(x). This is i(y) €co J(k(- Do)« Which in turn is k= (i(y)) €
(k‘(_ Do i)“x which is just y € z. So ¢ is an isomorphism. Finally let y be a
low set of values of i. Then i(y) will have to be g- 1)), if this last thing
is defined. But (k(-1 04)%y is certainly a set so I(k(~ Doi)sy is defined and is
available to be i(y).

|

One corollary of this is that any fragment of Z strong enough to execute this
construction proves every I17 theorem of NFO. See Forster-Kaye [1991] for an
explanation of IIT expressions.

4where the 7 are of course the free variables occurring in words of rank n — 1 in w.
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2.1.4 Church’s Model

Church’s models are all rough CO constructions in which every hereditarily low
set has an n-cardinal. What is an n-cardinal? The 1-cardinal of z is the cardinal
of x in the usual sense. And for larger n? Actually it doesn’t matter a great
deal what happens for larger n, since whatever we decide to mean by it it can
be made to work. Sheridan is developing a construction that accomodates a
version different from the one here (with the effect that the singleton function,
considered as a set of Wiener-Kuratowski ordered pairs, is a union of finitely
many of these cardinals). One natural version of the idea of n-cardinal is quite
well-developed in NF studies. Recall that j is the operation on permutations
defined by (j(m))(x) = m“xz. Then we say x is n-equivalent to y if there is some
permutation 7 of V' so that (j™(m))(x) = y. See Forster [1995] for more on this
sort of n-cardinal. These ideas are anticipated in the eminently readable Tarski
[1986].

In the version used here, two sets have the same n + 1-cardinal iff there is a
bijection between them such that the elements paired by the bijection have the
same n-cardinal. We start off with the case n =1 for simplicity’s sake.

As with the example of the last section, this is not a strict CO construction.
We need a bijection (k, as ever) between V and a set of codes for objects. We
will use the notation ‘|z| = |y|’ to mean that 2 and y are the same size. We
will see very soon how these fake terms (‘|z|” etc.) can be treated as genuine
denoting terms.

DEFINITION 24 The things that are are values of k are either:

1. ordered pairs (z,i) where z is an arbitrary set and 4 is 0 or 1 (this will
provide low sets and complements of low sets as usual), or

2. ordered pairs (i, k) where k is a cardinal (other than 0) and i is either
I or II. T and IT are two unspecified distinct objects that weren’t in the
original ground model. The idea is that these objects are to be cardinals
(and complements of cardinals) in the new model.

Now we say y €¢o T iff

1. snd(k(x)) =0 and y € fst(k(x)), or

2. snd(k(z)) =1 and y & £st(k(x)), or

3. fst(k(z)) =T and snd(k(y)) = 0 (so y is low) and |£st(k(y))| = snd(k(x)),
or

4. f£st(k(x)) =1II and snd(k(y)) # 0 (so y is low) or |£st(k(y))| # snd(k(x)).

Clauses 1 and 2 make sure that every low set has a complement. Notice that
nothing has been said about what cardinal numbers are. Notice also that this
does not matter! All we need is that there should be a definable class C and a
definable relation belongs-to between sets and members of C satisfying
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(Vz)(Jly € C)(z belongs-to y),
(VaVy)(|z| = |y| < (Vz € C)(x belongs-to z <« y belongs-to z)).

The term |z| can then be taken to denote the appropriate member of C. We
do not need the axiom of choice to define cardinal numbers since as long as we
have foundation (which we are assuming here) we can use Scott cardinals. The
Scott cardinal of x is the set of all things the same size as x that are of minimal
rank with this property.

Clause 3 will ensure that every low set has a cardinal in the new model (in
the strong sense that for every low set x, the collection of all sets that have the
same cardinal as x is a set of the new model). We stipulate that cardinals used
do not include 0. We do this for two reasons: (i) to keep 0 free to signal low
sets as usual, also (ii) because the extension of the cardinal number 0 (the set
of all empty sets) is a set by low comprehension anyway, and we do not wish it
to make difficulties for ourselves with extensionality by manufacturing it twice.
Clause 4 ensures that the complement of every such cardinal is a set.

The usual apparatus of low comprehension can now be taken for granted.
It should by now be clear that this model is a model of complementation. It is
the existence of cardinals that we had better spend a bit of time verifying.

PROPOSITION 25 The clauses of definition 24 give a model in which every low
set x has a cardinal: {y : ly| = |z|}.

Proof: Notice that the cardinals that we have created by this means are demon-
strably neither low nor are the complements of low sets, which makes life much
easier. Let = be any low set. Consider the ordered pair (I, |fst(k(z))|). We
will check that k(— D ((I, |fst(k(x))|)) is the cardinal of = (in the sense that it is
the set of all things the same size as x) in the new model. By clause 3 we have
Y €co KTV, |£st(k(x))])) iff v is low and |fst(k(y))| = |£st(k(x))|. Since
x and y are both low this is the same as saying that the set (in the old sense)
of things €¢o y is the same size (in the old sense) as the set of things €¢0 z,
so there is a bijection between these two (old) sets. This bijection is an (old)
set of (old) ordered pairs. By low comprehension (theorem 11) the correspond-
ing (new) set of (new) ordered pairs is also a set, so z and y are of the same
size in the new sense as well. The other direction is easy. Therefore k(~1 (I,
|£st(k(x))])) is indeed the cardinal of = in the new model. Correspondingly
EC DL, |fst(k(x))])) is the complement of that cardinal, which we have to
have if complementation is to be true. [ ]

We have to do a littl bit of work to see how to generalise this correctly to the
case n = 2, the model where every low set of low sets has a 2-cardinal. What
Church actually claims is that for each n his construction gives us a model where
every well-founded set has an n-cardinal. I prefer the statement in terms of low
sets, low sets of ..."™ low sets.
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For the case n = 2 we have to add two more clauses 5 and 6 to definition
24 in the same style. We will need two more novel constants in the style of I
and II, which we may as well write ‘III’ and ‘IV’. Objects x s.t. fst(k(z)) =
IIT will be 2-cardinals and objects = s.t. £st(k(x)) = IV will be complements of
2-cardinals. We will need the notation ‘2-card‘z’ for the 2-cardinal of z, and
we will use lower case greek letters to range over 2-cardinals as over cardinals.
Then there are to be two further kinds of ordered pairs in the range of k: pairs
whose first components are III and pairs whose first components are IV. In both
cases the second components are 2-cardinals. We will need the two following
new clauses in the definition of y €, .

DEFINITION 26

5 £st(k(z)) = III and y is a low set of low sets and
2-card({fst(k(z)) : z € £st(k(y))}) = snd(k(z)).

6 fst(k(x)) = IV and (y is not a low set of low sets or
2-card({fst(k(z)) : z € £st(k(y))}) # snd(k(z))).

Clause 6 of course ensures that 2-cardinals, too, have complements. The details
will be omitted.

PROPOSITION 27 The membership relation of definition 26 gives a model in
which each low set of low sets has a 2-cardinal.

Proof: Let x be a low set of low sets. Then the 2-cardinal (in the sense of €co)
of z will be k(=D ((ITI, 2-card‘{fst(k(z)) : z € fst(k(x))})). We had better
check this. Suppose y is a low set of low sets. Then

Y €co KTV ((ITT, 2-card{fst(k(2)) : z € £st(k(x))}))
iff
2-card({fst(k(z)) : z € £st(k(z))}) =2-card({fst(k(z)) : z € £st(k(y))}).

What we actually want is for z and y to have the same 2-cardinal in the new
sense. As before, if there is an (old) bijection between fst(k(z)) and fst(k(y))
there will be a new bijection between x and y by low comprehension. And
the same goes, not only for x and y, but for each ' €c, x and 3y’ €co y that
are paired by the bijection: if there is an (old) bijection between fst(k(z')) and
fst(k(y')) there will be a new bijection between z’ and y’ by low comprehension
as desired. [ |

It should now be clear how to tinker with this construction to add simul-
taneously for all n € IN, the assertion that every (low set of)™ low sets has
an n-cardinal. It is perhaps worth noting that it doesn’t seem to be necessary
to argue that, for each n € IN, we can do this for all m < n and then use
compactness.
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2.2 Wellfounded sets in CO-structures

The roots that this technique has in Rieger-Bernays permutation models still
have fruit to bear, as witness the following two theorems.

THEOREM 28 For a given choice of K and V' and rules, all CO structures are
permutation models of each other.

Proof: Suppose we have two CO structures over a model (V, €), with the same
K but different coding functions k and k' respectively. We wish to find o €
Symm(V) such that the first model thinks that « € y iff the second thinks
x € o(y). o must be (')~ ok. |

We also have the following:

PROPOSITION 29 Ewvery permutation model (V,Eco)’ of (V,Eco) is obtained
from it by replacing k by some k', with a corresponding new membership relation
€cor. If the permutation is o, then the new k' is o~ k.

Proof:
<V<eco§||zw€0( z 5
- . T CcoO
(V.€eo)” E €y iff (V,€) = & €cor v,
(Vico) Ea ey,

THEOREM 30

1. Hiow 1s always isomorphic to a permutation model of the original universe.

2. Whatever K we started with, for any permutation o of the old universe
we can find a coding function k so that (Higy, €co) = (V, Ey).

Proof:
(1) There will be a bijection 7 : V «— Hoy. We seek a o so that

(Vzy)(xz € o(y). «— 7(x) €Eco T(Y)).

What is o(y)? Clearly it has to be {z : 7(2) €co 7(y)}. This is a set, since 7(y)
is low. Must check that this definition gives us a ¢ that is 1-1 and onto. It is
certainly 1-1 by extensionality of €. Is it onto? Given z we must find a y so
that z = {z : 7(%) €co m(y)}. This y must be 7~ (k=1 ({r“2,0))).

(2) We know—however we choose k—that H,y, is a proper class whose
complement is a proper class, so let 7 be a bijection between V and such a class
and let us fasten on that class to be Hj,, and resolve to cook up k so that it
actually is the Hjoy of the new model. Dugald Macpherson has used the word
“moiety” for things that are both infinite and coinfinite: we will borrow it here
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to describe proper classes whose complements are proper classes. Let o be a
permutation of V. We want to cook up k so that (Hiow,€co) =~ (V,Ey). We
want

(Vzy)(xz € o(y). «— () Eco T(Y)).

The right hand side is m(x) € £st(k(7(y))) (and snd(k(7)(y)) = 0 since 7(y) is
a low set). Now fst(k(m)(y)) = 7“0 (y) so we want k(7)(y) = (m“o(y),0). It is
true that this only tells us what & should do to values of 7 but since the range
of w is a moiety and the range of ko 7 is also a moiety there will be no problem
extending this to a bijection between V and all the ordered pairs we need. ®

Analogously with the embedding i : V < V7 defined in theorem 6 we can
define a canonical injection from the original model into the new model (V, €.,)
defined by recursion on €:

DEFINITION 31 i(z) =: k(=D ((i“z,0)).
Like the i of theorem 6 this embedding is a P-embedding.

THEOREM 32 If (V, €) is well-founded then i is defined and is a P-embedding
from (V, €) into (V, Eco)-

Proof: First we prove by €-induction that ¢ is defined on all sets.

We must next check that 7 is an isomorphism so we want i(x) €co i(y) «—
x € y. Since the second component of k(i(y)) is 0, i(z) €co i(y) iff i(z) €
fst(k(i(y))) =i“y iff x € y.

Next we show that the range of i is transitive(€ee). Suppose y is in the range
of i, and y = i(2). So & €co i(2) = KTV ((i%2,0)) iff 2 € i“2 so = would also be
in the range of i.

Finally we must check that any subset of something in the range of 7 is
likewise in the range of i. Suppose z is in the range of i, so that k(z) = (i“z,0)
for some z. Suppose also that (Vw)(w €co Y — W Eco x). Consider the set (in
the sense of the original model) of those things that are €., y. This is indeed a
set of the original model, since it is a subset of i“z. If it is ¢ “u, then k(y) must
be (i“u,0) so y is in the range of i. [ |

(Essentially this proof is in Church [1974] though he prefers to say that the
well-founded sets form a model of ZF, and does not have the concept of a
P-embedding.)

The difference here from theorem 6 is that this time we cannot expect 7 to
be elementary for stratified formulae. (It is a good question which formulee it is
elementary for!) However we can at least derive the following

COROLLARY 33 The P-embedding i : (V,€) — (Hiow, Eco) is elementary for
stratified formule.
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Proof: Since Hyoy is isomorphic to a permutation model of V' (by theorem 30)
we can use theorem 6. [ ]

Does this mean that we can take the well-founded sets of the new model to
be the range of i? No, because we can arrange for the range of i to be a set of
the new model, and it will be in some sense well-founded.

PROPOSITION 34 The range of the canonical embedding can be a set of the
new model.

Proof: We use a slight modification of Oswald’s original construction from sec-
tion € H; if z is a finite subset of H then X,c,2"*t! € H. Then say z €co v iff
either y is 2n and the xth bit of n is 1; or y is 2n + 3 and the xth bit of n is 0;
ory=1and x € H.

To complete the proof we think of IN as a copy of V,, by associating with it
the Ackermann relation alluded to above. The canonical embedding i is then
defined on everything in V,, which is a set of the new model. [ |

However, although it is possible for the range of ¢ to be a set, it isn’t always
a set.

PROPOSITION 35 If the three conditions of section 2.1.1 are met the range of
1 45 not a set.

Proof: We want to show that if X satisfies (Vy €co X)(y is in the range of
i) then X is in the range of i too. The case snd(k(z)) = 0 we have already
considered. There remains the case snd(k(X) = 1).
We will show that this case cannot occur. If it did, z €co X iff & & £st(k(z)).
So X would be so big that there is only a set of things that aren’t members(€ee)
of it, and all the things that are would be values of i. But the collection
of values of i is not so big that its complement is a set, since if x € range
i, snd(k(z)) = 0, and there is a proper class of x such that snd(k(z)) = 1.
Therefore snd(k(z)) # 1.
|

The possibility of adding new well-founded sets in the new model in this
ad hoc way restricts the things we can say in general about well-founded sets,
at least if we take well-founded sets to be those defined in the natural way by
means of the inductive definition or as regular sets (definition 36).

The inductive definition is the obvious one: if we think of well-founded sets
as those over which we can do €-induction then we are led to the inductive
definition:

WE(x) «— (W) ((V2)(: Cy —z €y) >z €Y). (2)

The trouble with this definition is that if we have very little comprehension
there may be so few y such that (Vz)(z C y — z € y) that lots of sets might
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turn out to be well-founded that shouldn’t. In fact, in ZF there are no such sets
at all and this definition is completely useless! We talk of regular sets instead.

DEFINITION 36 =z is reqular iff (Vy)(x € y — (3z € y)(z Ny = 0)).
If we have an axiom of complementation we can prove:
PROPOSITION 37 A set is well-founded in the inductive sense iff it is reqular.

Proof: Suppose (Vy)((Vz)(z Cy — z € y) — x € y). Substitute —y for y
getting (Vy)((Vz)(zNy =0 — 2 € y) — x ¢ y). Contrapose getting (Vy)(z €
y—(V2)zNy=0—2¢y)). Thisis (Vy)(z €y — (F2)(zNy=0Az€y))
which says that x is regular. ]

The inductive definition enables us to prove that every well-founded set has
¢ as long as the extension of ¢ is a set and any set of things-which-are-¢ is
itself ¢. This is a lot less applicable than it might seem because of the extreme
unlikelihood that the extension of ¢ should be a set. We can prove that if z €
X1 € Tay... Ty € x then —{x,21...2,} is a set y such that (Vz)(z Cy — z € y)
and so no well-founded set is a member™ of itself, but one would expect to be
able to prove a lot more.

There is also a principle of induction for regular sets. This is standard in
modern treatments of set theory, and we do it as follows. Suppose we know
(Vz)((Vy € z)(¢(y)) — ¢(x)), and suppose there is a regular set z such that
—¢(z). Let Y be a transitive set containing z. Let X = {y € Y : —¢(y)}.
z € X and z is regular, so X must be disjoint from one of its members. But
this contradicts the induction hypothesis, so ¢(z).

How does this fare in the Church-Oswald context? If we know that any set
of things-which-are-¢ is itself ¢ and that for any regular z there is a transitive
set Y containing z such that {y € Y : =¢(y)} exists, then we can prove that
every regular set is ¢. Can we do this for all regular z and all ¢? If we could
show that for every regular z there is a low transitive Y with z € Y then we
can do the rest by low comprehension. We could do this if we knew that every
well-founded set is in the range of 4 but proposition 34 will tell us that this
might not be so.

How, the hereditarily low sets, might capture better the idea of sets well-
founded in the new model. Here we have to remember that foundation fails and
that therefore there are several notions of hereditarily low. In particular there
may be hereditarily low sets that are not well-founded, for example Quine atoms,
which are sets equal to their own singletons. Easy though this is to arrange,
it is also easy to avoid. We can arrange that every set that is hereditarily low
(in the sense that everything in its transitive closure is low) is also in the range
of i. Suppose (z, : n € IN) is a descending w-sequence under €., and that xg
is hereditarily low. Then for all n, snd(k(x,)) is 0, SO Zp4+1 €co Tn iS just
Tnt1 € £5t(k(xy)), 50 Tp41 is a set of lower rank than fst(k(x,)). If we set
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up k so that for all y the rank of fst(k(y)) is no greater than the rank of y
then there can be no such infinite descending sequence in the new model and all
hereditarily low sets are well-founded. In particular this will happen whenever
the three conditions of section 2.1.1 are met.

What this says is that we can arrange that the only sets that are illfounded
are big, or at least have something big in their transitive closure.® There is a
similar problem in NF: must self-membered sets be big? When I asked this
question in the first edition of Forster [1995], Maurice Boffa came up with a
permutation model which partly answered my question. The permutation he
used (and which he and Pétry reported in [1993]) uses a device a bit like a rank
function and it admits a great deal of refinement. It is now possible using results
of Koérner [1994] to show that it is consistent relative to NF that € restricted to
finite sets is well-founded. This is done by Rieger-Bernays permutation models.
It sounds a weaker result than arranging for € restricted to low sets to be well-
founded but bear in mind that in the present case all we have to do is prevent
the appearance of new ill-founded small sets in the new model, whereas in the
NF case we not only have to do that but we have to kill off any small ill-founded
sets in the model we started with, and—being a model of NF—it may have had
lots.

Nice though it is to know that the greatest fixed point for “set of all low
subsets of” and the least fixed point can be the same, what really matters is
that it is the least fixed point we want for our concept of well-founded in the
new model. A treatment now follows.

DEFINITION 38 Let us say « is well-founded* if (VX)((Vy)((low(y)Ay C X) —
yeX)—-zeX).

In other words the collection of well-founded* sets is the least fixed point
corresponding to the greatest fixed point Hgy.

We will justify a principle of unrestricted €-induction for well-founded* sets.

First we check (i) that the collection of well-founded* sets is transitive and
(ii) that everything in it is low.

(i) If z is well-founded*, and (Vy)((low(y) Ay C X) — y € X) then z € X.
It will suffice to show that z C X as well.

Suppose & € X. We will show that (Vy)(low(y) A (y C (X \ {z})) -y €
(X \ {z})) whence z € (X \ {z}) (since z is well-founded*). This is impossible.

Suppose y C (X \ {z}) and is low. Then y C X and y € X. To deduce
y € (X\{z}) it will suffice to show y # x, which would follow from = Z (X\{x}).
But we have assumed that © € X so a fortiori x € (X \ {z}).

(ii) Suppose z is well-founded* but not low, and that (Vy)((low(y) Ay C
X) — y € X). Let y be a low subset of (X \ {z}). Then y is a low subset of X
and is therefore a member of X. We want it to be a member of X \ {z} so we

5Big sets (French ‘gros’) are things like complements of singletons. They are not large
(French ‘grand’) in the way that, say, measurable cardinals are large.
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want y # x. But y is low and z isn’t. Therefore (Vy)((low(y) ANy C X) — y €
(X \{z})) and z € (X \ {z}) since x is well-founded*.

Next we need to know that T'C(z) exists if = is well-founded*. We prove
by induction on IN that if x is well-founded* then |J" = exists and is low. Low
comprehension tells us that a low set of low sets has a low sumset. The induction
is good because IN is a low set and so there is enough comprehension for full
induction over it. So the collection {{J" x : n € IN} is a low set of low sets and
its sumset—71'C(z)—is a low set.

Next by relativising the proof of proposition 37 we show that z is well-
founded* iff (Vy)(z € y — (Fz € y)(x Ny =0 Alow(z))).

Finally we prove €-induction as follows. Suppose we know (Vz)((Vy €
x)(¢(y)) — &(x)), and suppose there is a well-founded* set z such that —¢(z2).
Let X = {y € TC({z}) : =¢(y)} which exists by low comprehension. z € X
and z is well-founded*, so X must be disjoint from one of its members. But this
contradicts the induction hypothesis, so ¢(z). [ |

We can prove this unrestricted scheme of €-induction scheme for well-found-
ed* sets despite being unable to prove it for sets well-founded in the inductive
sense we began with because there may well be big well-founded sets about
which we know nothing.

Armed with this scheme of €-induction for well-founded* sets we can prove
that every well-founded™ set is in the range of i.

Perhaps the moral of this discussion is that we should restrict ourselves to
coding functions k£ which add no new well-founded sets. In those circumstances
“low” is definable in the new language as “same size as a well-founded set” as
Church originally intended, and the whole enterprise becomes axiomatisable. It
is true that we lose some generality by making this restriction, but we sacrificed
generality at the outset of this section by not considering models of ZF without
foundation. Neither of these seems a harsh sacrifice.

3 Open problems

3.1 The Axioms of Sumset and Power set

At present the only form of the axiom of sumset we can prove for this construc-
tion is that a low set of low sets has a sumset (which will be low). Can we
tweak this construction to get a less restricted axiom of sumset, dropping the
second or perhaps even the first occurence of ‘low’ in the above? Similarly the
only form of the axiom of power set that this construction apparently gives us
is power sets of low sets. With neither of these two axioms is there a standard
paradox obviously skulking in the wings waiting to cause trouble should we
adopt unrestricted forms of them. It is natural to see if we can do better than
this. Mitchell’s set theory allows power set, but has other disadvantages. For
example, ¢ Uy and x Ny do not exist in general.
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The question is also discussed in Sheridan’s thesis.

3.2 Natural strengthenings of theorem 22

This is the most general and the most important of the open problems in this
area. Such extensions would be theorems of the form “Every well-founded model
of T is the well-founded part of a model of T” (where T} is a theory consistent
with the axiom of foundation and 75 is a theory with an antifoundation axiom).
It is perhaps in this connection that Church’s remark in [1974] seems most
pertinant: “On source of added axioms to be studied for their consistency with
the basic axioms is ...Quine set theory. ...An interesting possibility ...is
a synthesis or partial synthesis of ZF and Quine set theory.” Let KF be the
subsystem of Zermelo set theory obtained by dropping the axiom of infinity and
restricting the assonderung (comprehension) scheme to stratified Ag formulee.
A natural conjecture for NFistes to make in this context would be that:

CONJECTURE 39 If NF' is consistent then every (well-founded) model of KF
1s the well-founded part of a model of NF.

Another possibility is:

CONJECTURE 40 FEvery model of KF has a P-extension that is a model of
NF+ low replacement.

There is a basic difficulty in the path of anyone trying to prove anything
like conjectures 39 and 40. The CO construction is a method which—on
being presented with (i) a robust method of constructing term models for a
trivial subsystem 7" of NF, and (ii) a model M | ZF—outputs a model of T
which has M as an initial segment of its well-founded part. To make this work,
we have to have the method of generating term models for T' in the hand, as
it were. It is not enough to know that 7' is consistent. (The system NFV of
Forster [1987] has a canonical term model so we might be able to use Church-
Oswald constructions to show that every (well-founded) model of KF is the
well-founded part of a model of NFV.) A fortiori we do not have a method of
proving conditionals of the kind: if 7" C NF' is consistent, and M is a model
of ZF then there is M' |= T of which M is the well-founded part. There are
plenty of interesting assertions of this kind, and it would be very nice to know
which of them were true.

3.3 Axiomatisability

We should axiomatise the theories that CO constructions give us: low com-
prehension is obviously important but not obviously axiomatisable. We could
do this if we could find in the language of €., and = a predicate which meant
“low”. We can do this if the model we started with satisifes the three condition
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of section 2.1.1 but it just may be possible to say something even without these
extra assumptions.

3.4 Constructive CO constructions

Another question is: is there a sensible constructive treatment of CO construc-
tions? The problem is the very classical nature of CO constructions: snd(k(zx))
is always equal to 0, or to something else. This seems to mean that if we want
to execute intuitionistic CO constructions we will have to assume tertium non
datur for atomics. It would be quite illuminating to develop CO construc-
tions inside intuitionistic ZF and see what happens to the transfinite recursive
versions of the negative interpretation. It is probably quite hard. Indeed, as
unpublished work of Dzierzgowski has shown, it is extraordinarily diffcult to get
nontrivial models for intuitionistic versions even of systems as straightforward
as NFs.

3.5 Schroder-Bernstein

The point has been made that in Church’s theory and its kin we have no com-
prehension to speak of for big sets. This means that even apparent banalities
can turn out to be hard to prove. For example can we prove Schroder-Bernstein
for big sets in Church’s set theory? There are various proofs of the Schroder-
Bernstein theorem. There is a slick one suitable for use with computer science
students and others who have been exposed to the Tarski-Knaster fixpoint the-
orem for complete lattices. Suppose f : A — B and g : B — A. Then
AA(A\ g“(B\ f“(A’)) is a continuous function on the complete lattice P(A
and must have a fixpoint. However this proof depends on the power set axiom,
which is not available in Church’s theory. There is a much more lo-tech proof
not using power set for which the outlook is slightly more hopeful. It goes like
this.
Consider the two sequences defined by a mutual recursion:

bo = B\ f“4; bnt1 = [ an,
ag = A\ g“B; Gnt1 = g“bp.
Set
A = U .-
nelN

The bijection we want is f|A" U g~ (A \ A").

There seem to be two major hurdles to making this work in Church’s set
theory. (i) Are all the b,, and the a, sets? If so then {a, : n € IN} is a set by
low comprehension. (ii) If {a, : n € IN} is a set, is its sumset a set? If A and
B are low, then, by low comprehension, all the b, and the a,, are low sets, so
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{an : n € IN} is a low set of low sets and its sumset is a low set, and there seems
no reason to expect that the bijection f|A" U g~ ![(A\ A’) won’t also be a low
set. However if A and B are merely sets, not low sets, there doesn’t seem to
be any reason to expect this proof to work. There may be some other way of
proving Schréder-Bernstein but there is no reason to expect that either.

One special case can be disposed of easily. In models satisfying the three
conditions of section 2.1.1, Schroder-Bernstein will be true, for the following
very unsatisfactory reason. In such models every set is either low or co-low.
Schroder-Bernstein will certainly hold for the low sets, and no low set will be
the same size as a co-low set. If A and B are two co-low sets then the model
cannot contain any injections from A into B or B into A since any such injection
would be neither low nor co-low (it will be a moiety) and must be absent from the
model. So Schréder-Bernstein will be vacuously true for non-low sets. (Indeed,
because of the absence of moieties, no non-low set can even be the same size as
itself!) This argument cannot be used in the case of Church’s model, because
there are plenty of moieties there.

3.6 Mitchell’s set theory

Emerson Mitchell’s Ph.D. Thesis [1976] contains a CO-like construction. His
system has power set for all sets (not just low sets) but does not have closure
under (binary) U and N.

3.7 Extensional quotients?

I close by raising an obvious but completely unexplored possibility. The endur-
ing difficulty with these constructions is extensionality. It is easy to show that
x and y have the same members (in the sense of €o) as long as snd(k(z)) =
snd(k(y)), but if snd(k(z)) # snd(k(y)) we have our work cut out, and it tends
to be feasible only for theories that have an easily solvable word problem. One
thing one could naturally do is start by being much more reckless in one’s choice
of K and membership conditions for non-low sets, and pick up the pieces later
by taking an extensional quotient of the result. It is hard to see what might be
preserved in a development like this, but that means that there may be many
consistency proofs waiting to be revealed by such an extension of the method.
My present feeling is that the possibility of developing CO techniques along
these lines is their most exciting feature. There is no obvious reason why this
should not hold the key that will one day unlock the consistency question of
NF. There is some work by Jamieson and by Antonelli on extensional quotients
which can be found on the NF bibliography.
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SErrata. p 327. Line 11 should read ‘and a € M such that M = |r‘a| = |P(al’. Line 13:
the expression following ‘M |’ should be ‘|w‘a| = |P(al. Line 26: ‘(not just m‘a = P(a)’
should read ‘(not just |7w‘a| = |P(a|)’. Line 28: ‘m‘a’ should read ‘|P(w‘a|.
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