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ABSTRACT

It is shown that, according to NF, many of the assertions of ordinal
arithmetic involving the T -function which is peculiar to NF turn out
to be equivalent to the truth-in-certain-permutation-models of asser-
tions which have perfectly sensible ZF-style meanings, such as: the
existence of wellfounded sets of great size or rank, or the nonexis-
tence of small counterexamples to the wellfoundedness of ∈. Every-
thing here holds also for NFU if the permutations are taken to fix all
urelemente.

NF is Quine’s system of set theory, axiomatised by extensionality and those
instances of the näıve set existence scheme that are stratified. A formula of the
language of set theory is stratified if the variables within it can be labelled with
integers in such a way that all occurrences of each variable receive the same label,
and if x ∈ y appears in it then the label of x must be one less than the label of y,
and if x = y occurs then the label of x must be the same as the label of y.

In NF we can implement ordinals as isomorphism classes of wellorderings, and
this has the effect that NO—the collection of all ordinals—is a set. If 〈X,R〉 is a
wellordering of length α then {{x} : x ∈ X} wellordered by the relation induced
on it by R is likewise a wellordering (as one would expect) but of a length possibly
not equal to α. Its length is said to be Tα. T is a definable endomorphism of the
ordinals. It then turns out (using the definition of ordered pair appropriate to NF)
that {β ∈ NO : β < α} is naturally of length T 2α rather than α. The expression
‘α = Tβ’ is stratified but inhomogeneous: that is to say ‘α’ is not of the same type
as ‘β’. Since the formula ‘α = Tα’ is not stratified, the graph of T is not prima
facie a set, and we cannot use induction to prove (∀α)(α = Tα).

If the singleton function restricted to NO were a set then the graph of T would
be a set and we would be able to prove by transfinite induction that T was the
identity relation, and we would be able to obtain the Burali-Forti paradox. If the
singleton function restricted to x exists we say x is strongly cantorian. If there
is a bijection between x and {{z} : z ∈ x} (not guaranteed to be the restriction of
the singleton function) then we say x is cantorian.

We have just seen how the sethood of a particular collection defined by an
unstratified condition (to wit {α ∈ NO : α = Tα}) would enable us to prove
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an assertion in ordinal-arithmetic-with-T (namely the Burali-Forti paradox). Are
there converses? That is to say, do particular assertions about ordinal-arithmetic-
with-T ever imply particular set-existence assertions? We have some familiarity
with the phenomenon of assertions about ordinal-arithmetic-with-T if not actually
implying nevertheless at least having the same consistency strength as particular
formulæ that are—if not actually set existence assertions, at least combinatorial
assertions about sets.

The results about consistency strength arise from considerations of Rieger-
Bernays permutation models. If M = 〈M,∈,=〉 is a structure for the language of
set theory, and σ is a permutation of M , then Mσ = 〈M,∈σ,=〉 is another such
structure, where ∈σ is {〈x, y〉 : x ∈ σ(y)}. We can now write 3φ for (∃σ)(V σ |= φ).
(Notice that this means that σ must be a set of the model in question; see chapter
3 of [2] for details.) We use 2 in the obvious dual sense. If φ ←→ 3φ we say φ is
invariant. All stratified sentences are invariant, though the converse is not true.

We have known for some time a number of equivalences of the form

ψ ←→ 3φ

where ψ is an assertion in arithmetic-with-T and φ is an unstratified combinatorial
assertion about ∈. The axiom of counting (which says that n = Tn for all finite
ordinals n) affords an early and easy example, being equivalent to 3(IN is strongly
cantorian). In [2] I wrote up the nicest example then known to me of this phe-
nomenon: theorem 3.1.28 on page 113 states that (∀n ∈ IN)(n ≤ Tn) (hereafter
written “AxCount≤” as usual) is equivalent to the assertion that there is a per-
mutation model in which {Vn : n < ω} is a set. That is to say, an assertion in
ordinal-arithmetic-with-T was equivalent to the existence of a permutation model
in which not only some cute combinatorial fact holds, but where that cute combina-
torial fact is the existence of a particular definable wellfounded set whose existence
makes perfect sense and has a standard meaning in a ZF context.

There is another class of unstratified combinatorial assertion we might be in-
terested in. If x = {x} we say x is a Quine atom. Quine atoms seem to be objects
one could well do without: they represent failure of the axiom of foundation on a
scale that seems quite uncalled-for. In [6] Dana Scott showed inter alia that it was
consistent with NF that there should be no Quine atoms.

So we are going to try to tie together

(1) Good behaviour of the T -function;
(2) Existence of large wellfounded sets, or of wellfounded sets of high rank;
(3) Wellfoundedness of ∈ restricted to small sets.

Let us discuss each of these briefly.

Good behaviour of T . The obvious way to formulate conjectures saying that
T is well-behaved is to take a formula of ordinal arithmetic which one expects to be
true, and mutilate it by prefixing some occurrences of some (ordinal) variables in
it by the letter ‘T ’. The result of thus spraying an innocent formula with mutagens
will be a (hopefully consistent) consequence of the (false) assumption that T is
the identity. (For example the formula (∀α)(α ≤ α) gives rise to two formulæ:
(∀α)(Tα ≤ α) (which is sensible) and (∀α)(α ≤ Tα) (which isn’t)). Adopting the
mutated formula as an axiom is thus an attempt to get T to behave in at least some
ways as if it were the identity. We then sift through the results of these mutations
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for sensible conjectures. Those that are not obviously inconsistent represent more-
or-less plausible attempts to recover as much normal behaviour of T as possible,
and thus to get the ordinals of NF to behave as much like the ordinals of ZF as
the hovering paradoxes will permit. This ought to be a sensible source of axioms,
and it was seen as such from the first days of work on NF. The first axiom of this
kind was Rosser’s “axiom of counting” (“AxCount” for short) that n = Tn for all
natural numbers n (which implies the consistency of NF). The second was Orey’s
axiom that if α = Tα, then β = Tβ for all smaller β. It implies the first, and a lot
more besides.

Some mutated assertions that arise in this way make sensible conjectures which
invite investigation on their own merits. However, even for those that—like ‘(∀α)(α ≤
Tα)’—are obviously false that is not necessarily the end of the story. There is a
systematic way of weakening these extreme assertions into sensible conjectures.
This first arose in the context of Boffa’s proof that if the axiom of counting held,
then there was a permutation model in which no self-membered set could be finite.
Friederike Körner and I both noticed that the assumption could be weakened to
AxCount≤, and then further noticed that it could be weakened even to the existence
of a function f : IN→ IN such that (∀n)(n ≤ f(Tn)).

The result of the second of these two weakening steps can also be seen instead
as the result of a mild mutagen experiment. The mild mutagen experiment first
replaces selected occurrences of ‘α’ (not by ‘Tα’ but) by ‘f(Tα)’, and then prefixes
‘(∃f)’ at the start of the formula. So for example the mutagen experiment that
took ‘(∀n ∈ IN)(n ≤ n)’ and gave us ‘(∀n ∈ IN)(n ≤ Tn)’ has a mild version that
takes ‘(∀n ∈ IN)(n ≤ n)’ and gives us ‘(∃f : IN → IN)(∀n ∈ IN)(n ≤ f(Tn))’. If
AxCount≤ fails, then T−1 is a very fast-growing function indeed, and on the face
of it might grow faster than any function whose graph is a set. The weak version
of AxCount≤ says that there are enough sets to prevent this happening, so that
T−1 ∈ O(f) for some function f whose graph is a set. The conjectures arising in
this way are much weaker: ‘(∀n ∈ IN)(n ≤ Tn)’ appears to be quite strong, but
the mild version ‘(∃f : IN→ IN)(∀n ∈ IN)(n ≤ f(Tn))’ is consistent relative to NF.
A mutagen experiment turns (∀α)(α ≤ α) into (∀α)(α ≤ Tα) which is refutable,
but the mild version gives us (∃f : NO → NO)(∀α)(α ≤ f(Tα)) whose status is
unclear.

Körner not only saw the use to which these functions f : IN → IN s.t. (∀n ∈
IN)(n ≤ f(Tn)) could be put but also ([5]) showed how to obtain models of NF
containing them. Accordingly functions f : IN → IN such that (∀n)(n ≤ f(Tn))
will here be called Körner functions, as will their generalisations to larger initial
segments of the ordinals.

These two flavours of “Good-behaviour-of-T” conjecture will be mirrored else-
where, as we will see.

Existence of large wellfounded sets. Let Pκ(X) be {Y ⊆ X : |Y | < κ}.
κ does not have to be an aleph for this definition to make sense, but in all cases
here it will be; indeed it will be a cantorian aleph. Hκ is the collection of sets
hereditarily of size less than κ. We are not assuming foundation (this is NF after
all), so we need to be clear that we mean here the wellfounded sets hereditarily of
size less than κ. Thus

Hκ =: {x : (∀X)((Pκ(X) ⊆ X)→ x ∈ X)}
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and we will be interested in the assertion “∃Hκ” that Hκ exists, and in the assertion
“3∃Hκ” that there is a permutation model in which Hκ exists.

Now, since NF lacks unstratified separation we cannot be sure of the existence
of the partition of Hκ into levels according to (set-theoretic) rank, even if Hκ

exists. It is this partition that we need, or rather, we need what one might call the
segregation: the cumulative family of unions of initial segments of the wellordered
partition. We will notate this Πκ.

The natural way to define this would be Πκ =: {Vα ∩ Hκ : α ∈ On} but an
obvious drawback is that although this represents our desired set as the image of
On in a function that function is not obviously well-defined. We need a direct
inductive definition. We say that Πκ is the ⊆-least collection X containing ∅,
containing Pκ((x) whenever it contains x, and closed under unions, minus its last
element (which is Hκ)

Πκ := {x : (∀X)((∅ ∈ X ∧ Pκ“X ⊆ X ∧
⋃

“(P(X)) ⊆ X)→ x ∈ X)} \ {Hκ}

It turns out that it is the existence of Πκ (rather than of Hκ) that has natural
equivalences in ordinal-arithmetic-with-T . Let us abbreviate to ‘∃Πκ’ the assertion
that Πκ exists.

The connection with arithmetic arises from otp(Πκ), the length of Πκ (in its
natural order), or (which is the same if κ is cantorian) the supremum of the ranks of
the sets hereditarily of power less than κ: we will be interested in the generalisation
of AxCount≤ to the ordinals below otp(Πκ).

The fact that there is this obvious prima facie difference in NF between the
strength of ∃Hκ and ∃Πκ may not be as bizarre as it first appears. The existence of
Πκ is equivalent to the existence of the (set-theoretic) rank function restricted toHκ

and it is a well established (but not widely known) fact that there are facts about
wellfounded sets that can be proved by induction on rank but not—apparently—by
induction on ∈. The most natural example of this is the phenomenon that from
the assumption that the power set of any wellordered set can be wellordered one
can prove by induction that every set is wellordered, and this induction is on rank
not on ∈.

No gratuitous failures of ∈-foundation. We have already seen how Scott
showed that there need be no Quine atoms. There is a sense in which this is an
attractive result, in that although NF clearly proves the existence of illfounded
sets—V ∈ V is inescapable after all—there is no obvious reason why there should
be small sets that violate foundation. Can one rein in failure of foundation even
further than Scott did? We can get rid of self-membered singletons; can we perhaps
get rid of self-membered finite sets? I raised this question in [2], and the answer
turned out to be ‘yes’. The path to this solution was shown us by Boffa, by means
of a style of permutation which we will see below.

Now “no self-membered finite sets” is just a special case of “no ∈-loops of length
n involving only finite sets” and that in turn is just a special case of “∈ restricted to
finite sets is wellfounded”, and finiteness is merely one notion of smallness among
others. So we have been led to the family of conjectures: “∈ restricted to small sets
is wellfounded”.

It turns out that there is a connection between “∈ restricted to small sets is
wellfounded” and another suite of conjectures about NF, but to see it we have to
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turn back briefly from our headlong rush to the generality of “∈ restricted to small
sets is wellfounded” and branch off at the point where we passed “no ∈-loops of
length n involving sets of size less than k” (where k and n are concrete natural
numbers) for these conjectures are syntactically quite special. Let us say a formula
in the language of set theory is ∃∗ if, once coerced into prenex normal form, all
its quantifiers are existential, and ∀∗∃∗ if, once coerced into prenex normal form,
its quantifier prefix consists of universal quantifiers followed by existential. (That
is, we do not give restricted quantifiers special treatment). Hinnion showed many
years ago that NF proves every consistent ∃∗ formula. This result has been refined
and improved in a variety of ways, and it is natural to wonder how many of these
results apply also to ∀∗∃∗ formulæ in NF. We cannot conjecture that NF proves
every consistent ∀∗∃∗ formula, since (as Scott showed in [6]) the ∀1∃1 sentence
‘(∀x)(x 6= {x})’ is independent of NF. However there seems no obvious obstruction
to a conjecture that

(1) If φ is a stratified ∀∗∃∗ formula consistent with NF then NF ` φ; and
(2) If φ is an unstratified ∀∗∃∗ formula consistent with NF then NF ` 3φ.

There are some partial positive results and—so far—not even the faintest hint
of counterexamples. The significance of this conjecture here is that many “no
gratuitous failures of ∈-foundation” assertions are unstratified ∀∗∃∗ formulæ (for
example: “no ∈-loops of length n involving sets of size less than k” [where k and
n are concrete natural numbers as before]) or ∀∗∃∗ schemes, such as “No ∈-loops
involving only finite sets”.

We have to be quite careful how to formulate conjectures embracing the idea
that there should be no gratuitous failures of foundation, for {V } is a small set
that violates foundation. However it is not hereditarily small, so we might toy with
conjectures like “every hereditarily small set is wellfounded”, or perhaps “no finite
set is self-membered”. However, the strongest natural conjectures suggested by this
line of thought are things like “∈ restricted to small sets is wellfounded” (for some
suitable notion of smallness): perhaps every collection with no ∈-minimal element
contains a large set.

A little further thought reveals that sentences like “∈ restricted to small sets
is wellfounded” admit the same kind of strengthening that we saw in the preced-
ing section, namely the strengthening that took us from “∃Hκ” to “∃Πκ”. This
strengthens “∈ restricted to small sets is wellfounded” to “the graph exists of the
rank function of ∈ restricted to small sets” or—equivalently—to “∆κ exists”. Here
∆κ is inductively defined as the ⊆-least collection X containing ∅ and—if we write
bκ(x) for {y : |y| < κ ∧ (∀z ∈ y)(|z| < κ → z ∈ x}—containing bκ(x) whenever it
contains x, and closed under unions. ∆κ is naturally wellordered by ⊆: its bottom
element is ∅; then comes the set of all sets of size < κ that have no members of size
< κ; then comes the set of those sets of size < κ all of whose members of size < κ
have already appeared; . . . .

We let ∃∆κ be the assertion that ∆κ exists.

1. The results

Consider the seven assertions drawn from these three areas of concern.
(1) ∃Hκ: Hκ exists;
(2) ∃Πκ: Πκ exists;
(3) 〈{x : |x| < κ},∈〉 is wellfounded;
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(4) ∃∆κ: ∆κ exists;
(5) (∀α < κ∗)(α ≤ Tα);
(6) Sizes of wellfounded sets are not bounded below κ;
(7) There is a κ-Körner function: f : {α : α < κ} → {α : α < κ} s.t

(∀α < κ)(α ≤ f(Tα)).

The precise meaning of κ∗ (in 5) will become clear as we go on. It’s either κ or
κ+. In what follows we will assume without further comment that κ is a cantorian
aleph.

Throughout the above one can replace ‘|x| < κ’ with ‘|x| 6≥∗ κ’ and—although
on the whole it doesn’t make much difference to the implications between the for-
mulæ above—it does make the inference of (the modified version of) 6 from (the
modified version of) 1 slightly easier, as follows. Hκ is wellfounded, and so is not
self-membered. But it is a set of wellfounded sets hereditarily of size < κ so the
only way it can avoid being hereditarily of size < κ itself is to be of size 6< κ. But
then one does not need much extra information to infer that it has subsets of all
sizes below κ. This inference becomes easier if we consider instead H∗

κ: the set of
all wellfounded sets hereditarily too small to map onto a set of size κ, for then we
know that there is a wellfounded set (to wit: H∗

κ) that has a partition of length κ.
On the whole we will not pursue the extra generality to be achieved by extend-

ing proofs to the |x| 6≥∗ κ case.
The following implications are all obvious.
2 → 1, 4 → 3, 4 ∧ 1 → 2 and 5 → 7
These implications are not obvious, and will be proved below:
32→ 5; 32→ 3 4; 34→ 5; 5→ 32; 31→ 33. 6→ 33 holds if κ is strongly

inaccessible; 7 → 33 holds as long as κ is regular.
Further strengthenings of these implications arise from the fact that 33A →

3A, so whenever we have proved A→ 3B then we have also proved 3A→ 3B.
The burden of the preceding discussion is that one would expect 1- 7 to divide

into two bundles of equivalent propositions, namely {31, 33, 7} and {32, 34,
5}, corresponding to the mild and to the basic mutagen experiment respectively,
and where each bundle contains one representative from each of the three classes
of proposition in the list on page 2. However a number of implications remain
unproved for the moment.

Some notation

Our ordered pairs will be Quine ordered pairs, and we will write them with
angle brackets: 〈x, y〉. (The chief feature of Quine ordered pairs that concerns us is
that |〈x, y〉| = |x|+ |y|; other details can be found in [2]). fst(x) and snd(x) are the
first and second components of the ordered pair x. Round brackets—(x, y)—denote
the transposition swapping x with y, so∏

Φ(x,y)

(x, y)

is the product of all transpositions that swap x with y as long as Φ(x, y), and fixing
everything else. (This notation can be safely used only when all these transpositions
are disjoint, and this disjointness will need to be argued for in each case).
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1.1. Boffa permutations. The chief tool we use here to obtain relative con-
sistency results is Rieger-Bernays permutation models, and specifically a family of
permutations whose prototypical member was discovered by Boffa [1] and used by
him to give a partial solution to my question “Is it consistent relative to NF that
no finite set can be a member of itself?” It is the mark of good mathematicians
that they have good ideas, and it is the mark of good ideas that they outrun the
purposes for which they were dreamed up. We will now never know how much of
what we now know we can prove with Boffa permutations was foreseen by Boffa,
for he is no longer with us to explain.

A Boffa permutation has four ingredients:
(1) A notion of smallness. This will be a property whose extension is closed

under subsets and surjective images, so that in particular π is a permu-
tation of the universe, and x is small, so is π“x. This last will ensure
that, for any permutation π, V π believes x to be small if and only π(x)
is small. We also want complements of small things to not be small,
and finite unions of small things to be small. Finally, since we are using
Quine ordered pairs, we find that the foregoing implies that an ordered
pair is small iff both its components are small (since |〈x, y〉| = |x|+ |y| as
remarked earlier).

(2) A structure 〈S,E〉 where E is (i) stratified-but-inhomogeneous in the sense
that {〈{x}, y〉 : x E y} is a set, and (ii) wellfounded in the sense that every
subset of S has an E-minimal element.

(3) A function f from Psmall(S) (the small subsets of S) to S such that
whenever x ∈ X and X is a small subset of S then x E f(X). We want
this f to be homogeneous so that its graph is a set. f is not required to
be injective.

Finally, we have not so far considered whether the elements of S themselves—
considered as sets—are small or not. It doesn’t matter one way or the other (as
long as they are all small or all not small) but we have to know which it is. If
elements of S are not small then we set π to be the permutation∏

small(x)

(x, 〈x, f((snd“x) ∩ S)〉)

that swaps every small x with 〈x, f((snd“x) ∩ S)〉. On the other hand if elements
of S are small we set π to be the permutation∏

small(x)

(x, 〈−x, f((snd“x) ∩ S)〉)

The idea is that π shall always swap small things with things that are not
small. It is elementary to check that all these transpositions are disjoint, and that
the product is well-defined.

The following lemma is the means of application of Boffa permutations.

Lemma 1.1. If we write ‘SMALLπ’ for the collection of those sets which V π

believes to be small, then snd is a homomorphism from 〈SMALLπ,∈π〉 to 〈S,E〉.

Proof: There are two cases to consider, depending on whether or not elements of
S are small. The argument is essentially the same in both cases, so we will treat
only one. Let’s assume that, as in the original case, elements of S are not small.
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Suppose that x and y are both believed by V π to be small, and that x ∈π y.
We will prove snd(x) E snd(y).

Since x and y are both believed by V π to be small, π(x) and π(y) are both small.
We have cooked up π so that 〈x, f((snd“x) ∩ S)〉 cannot be small. (It’s an ordered
pair one of whose components is in S and is accordingly not small.) Therefore,
since π(x) is small, x must be not-small and must be 〈π(x), f((snd“π(x)) ∩ S)〉.
Similarly y must be 〈π(y), f((snd“π(y)) ∩ S)〉.

Now x ∈ π(y) so snd(x) ∈ snd“(π(y)). Also snd(x) = f(snd“(π(x))∩S), which
is in S (being a value of f), so snd(x) is in snd“(π(y)) ∩ S. Now snd“(π(y)) ∩ S is
a small subset of S, and so an argument to f . But now (since x E f(X) whenever
x ∈ X and X is a small subset of S) we can infer snd(x) E f(snd“(π(y)) ∩ S).
Finally f(snd“(π(y)) ∩ S) = snd(y) so snd(x) E snd(y) as desired.

Thus we have shown that: whenever V π thinks that x ∈ y and that both x and
y are small, then snd(x) E snd(y), and we also know that both of these things are
in S.

The effect of this is to ensure that V π believes that ∈ restricted to small sets
is wellfounded, (every set of small sets has an ∈-minimal element) since there is a
homomorphism from the small sets of V π onto 〈S,E〉

(The alert reader may have spotted that we could have achieved the same
effect by swapping our ordered pairs round and using fst instead of snd. The
extra flexibility will not be exploited here, but one hopes it will be one day.)

In the original case discovered by Boffa the notion of smallness was finitude;
S was IN; E was {〈{n},m〉 : Tn < m}; and f(X), for X a finite set of natural
numbers, was T (inf(IN \ X)). Boffa assumed the axiom of counting, with which
he could prove that E is wellfounded. (AxCount≤ is in fact sufficient). I do not
believe he ever published this result. Using T (sup(X)) instead of T (inf(IN \ X))
is the crucial change that gives results about wellfoundedness instead of mere self-
membership.

1 implies 33 and 2 implies 34

Let us start with a simple application of the machinery we have just seen. In
fact the same permutation will do for both implications.

For 1 → 33 take 〈S,E〉 to be 〈Hκ,∈〉, take smallness to be |x| < κ, and f
to be the identity. Then things in S are small, and we need the flavour of Boffa
permutation where we complement the first component of the ordered pair. Then
we have a straightforward instance of lemma 1.1.

It is slightly more work to verify that the resulting permutation model satisfies
4 if we start with one that satisfies 2. Let σ be the permutation we have just
characterised. It will be sufficient to locate the set which in V σ is ∆κ. This set
must be

{{y : snd“y ∩ (
⋃

Πκ) ∈ x} : x ∈ Πκ}

32 is equivalent to 5

First we need some definitions, in order to redeem the pledge of κ∗.
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We will be interested in isomorphism types of structures called BfExts. What
is a BfExt? The word is an abbreviation of ‘Bien fondée extensionnelle’. If x is a
wellfounded set, then 〈TC({x}),∈, x〉 is the prototypical example of a BfExt. (At
least if ∈ |TC({x}) exists!) That is to say a BfExt is a binary structure 〈X,R, x∗〉
with a binary relation R and a distinguished element x∗ satisfying the conditions
that

(1) R is wellfounded and extensional;
(2) x∗ is the unique x ∈ X such that t(R)“{x} = X \ {x}.
t(R) is the transitive closure of R. x∗ is the “top” element: x is the “top”

element of 〈TC({x}),∈, x〉.
We also need a binary relation between isomorphism classes of BfExts. This

is the one that is motivated by the relation that holds—in ordinary set theory—
between the two BfExts 〈TC({x}),∈, x〉 and 〈TC({y}),∈, y〉 when x ∈ y. We say
〈X,R, x∗〉ε〈Y, S, y∗〉 when there is an element y† of Y such that 〈y†, y∗〉 ∈ S and
the BfExt obtained from 〈Y, S, y∗〉 by cutting Y down to {y ∈ Y : 〈y, y†〉 ∈ t(S)}
(t(S) is the transitive closure of S), restricting S to this set, and taking y† as the
new top point, is isomorphic to 〈X,R, x∗〉. We will overload ‘ε’ to mean both the
relation between BfExts and the induced relation between the isomorphism types
of BfExts.

It is an important elementary fact that ε is wellfounded and so has a rank
function, and we write ‘ρ’ for that rank function.

BfExts are interesting in general, but here we will be specifically interested in
the set K of relational types of what one could call “κ-like BFexts’, where every
element has fewer than κ “immediate predecessors”. When x ∈ Hκ, 〈TC({x}),∈, x〉
is the prototypical example of a κ-like BfExt. To be precise: 〈X,R, x∗〉 is κ-like
when, for all x ∈ X, |R−1“{x}| < κ.

Theorem 1.2. Let κ be a cantorian aleph, K the set of relational types of κ-like
BfExts, and κ∗ the rank of 〈K,ε〉. Then the following are equivalent

(∀α < κ∗)(α ≤ Tα); 5
3∃Πκ. �2

Proof:

5 implies 32. In ([4]) Jech showed—without any use of AC—that every ele-
ment of Hℵ1 has rank < ω2. We here spice up the elegant argument he used there,
and use it to establish that κ∗ is defined and is κ+ at most.

Lemma 1.3. Everything in K is of rank < κ+.

Proof:
We define a function F : NO<ω → K → NO as follows, using ordlist as a

variable for lists of ordinals and ‘::’ for the operation of consing an ordinal onto
the front of a list of ordinals. [] is the empty list.

F [ ] x =: ρ(x);
F (α::ordlist) x=: αth member of {(F ordlist y) : y ε x}

or 0, if this is undefined.

Let K be the set of ordinals below κ and identify Kn with the set of lists of
length n whose elements are ordinals below κ. We will need the following observa-
tion:
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Lemma 1.4. For n ∈ IN+ and x ∈ K, every element of {ρ(y) : y εn x} is a
value for argument x of one of the functions in F“Kn.

Proof: When n = 1 we observe that, since x ∈ K there are α ordinals that are ranks
of membersε of x for some α < κ so every one of them is F [α] x for some suitable
α.

In the general case suppose xn ε xn−1 ε . . . x0 = x. We want to find a list
[αn, αn−1, . . .] of ordinals below κ such that ρ(xn) = F [αn, αn−1, . . .] x.

αn must clearly be that α such that ρ(xn) is the αth member of {ρ(y) :
y ε xn−1}, so F [αn] xn−1 = ρ(xn), and xn−1 is the argument.

By the same token αn−1 must be that α such that (F [αn] xn−1 is the αth
member of {(F [αn] y) : y ε xn−2}, so F [αn;αn−1] xn−2 = ρ(xn), and xn−2 is the
argument.

Again αn−2 must be that α such that F [αn;αn−1] xn−2 is the αth member of
(F [αn;αn−1] y) : y ε xn−3}, so F [αn;αn−1;αn−2] xn−3 = ρ(xn), and xn−3 is the
argument.

The subscript on the argument gets smaller at each stage. . .
This completes the proof of lemma 1.4.

This algorithm for calculating F assigns a list of ordinals below κ to every finite
sequence xn ε xn−1 ε . . .x. So for every x′εnx there is at least one (and possibly
many) such lists corresponding to it. Clearly for fixed x the function λl.(F l x) is
total (there is a failure-trapping clause after all), and so it is a surjection from K<ω

onto {ρ(y) : ((∃n)(y εn x)}. So κ = |K<ω| ≥∗ |{ρ(y) : (∃n)(y εn x)}| = |ρ(x)|.
That is to say κ is at least as big as the initial ordinal corresponding to ρ(x). In
other words, for x ∈ K, ρ(x) < κ+, as we claimed.

This completes the proof of lemma 1.3.

There is a T operation on BfExts, and T of a κ-like BfExt is another κ-like
BfExt (because κ = Tκ). We establish by induction on E that T commutes with
ρ.

We now know that κ∗ is defined, so let us assume (∀α < κ∗)(α ≤ Tα). This
is enough to show that the relation Tα ε β on relational types of κ-like BFexts is
wellfounded, as follows. Suppose X were a subset of K s.t. for all x ∈ X there is
y ∈ X with Ty ∈ x. Now let α be the least ordinal in ρ“X. α = ρ(x) for some
x ∈ X and there is y ∈ X with Ty ε x. So ρ(y) ≥ α > ρ(Ty) = Tρ(y). So α > Tα
contradicting (∀α < κ∗)(α ≤ Tα).

Now we can exhibit the permutation which will make 3∃Πκ true. Let σ be∏
α∈K

(Tα, {β : β ε α}).

The product is well-defined since the transpositions are all disjoint: nothing is
both a κ-like BfExt and a set of κ-like BfExts. In V σ K has become a set of sets
hereditarily of size less than κ and, because (∀α < κ∗)(α ≤ Tα), it is precisely the
sets of wellfounded sets hereditarily of size less than κ, which is to say Hκ.

Finding Πκ in V σ is slightly harder. The critical fact here is that the prewellorder-
ing of sets according to set-theoretic rank (x related to y iff ρ(x) ≤ ρ(y) where ρ
here is—for once, confusingly—set-theoretic rank as usual) is the least fixed point
for the ‘+’ operation on quasiorders, defined so that, for a quasiorder ≤, X ≤+ Y
iff (∀x ∈ X)(∃y ∈ Y )(x ≤ y).
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The set which will be Πκ in V σ is the cumulative version of the partition of
K according to the rank function for T ◦ ε (the relation {〈x, y〉 : Tx ε y}). We
certainly have the partition of K according to the rank function for ε, and it turns
out that this is the same partition.

We establish this by proving that the prewellordering-according-to-ρ (which is
a set and which we write ≤ρ)

(i) is a superset of T ◦ ε;
(ii) is a pre-fixed point for the ε-version of the ‘+’ operation (where x R+ y iff

(∀x′)(Tz ε x→ (∃y′)(Ty ε y ∧ x′ R y′))) and
(iii) is a subset of all other pre-fixed points.
We prove these as follows.

(i) Tx ε y implies ρ(Tx) < ρ(y). T commutes with ε so this implies Tρ(x) <
ρ(y). But we are assuming ρ(x) ≤ Tρ(x) so we infer ρ(x) < ρ(y) as desired.

(ii) We must show that if (∀x′)(Tz ε x→ (∃y′)(Ty′ ε y∧ ρ(x′) ≤ ρ(y′)) then
ρ(x) ≤ ρ(y). Now T permutes K so the assumption is just (∀x′)(z ε x→
(∃y′)(y′ ε y ∧ ρ(x′) ≤ ρ(y′)) which is the recursion that defined ρ in the
first place.

(iii) Let R be a prefixed point for +. We will prove by induction on ε that it
is a superset of ≤ρ. Let x be ε-minimal such that there is y with x ≤ρ y
but ¬(x R y), and let y be ε-minimal for x. Then there is x′ ε x such
that for no y′ ε y do we have x′ R y′. But for any x′ ε x whatever there
is y′ ε y such that x′ ≤ρ y

′ whence x′ R y′ by minimality of x so x R+ y
and x R y because R is a prefixed point.

Now for the other direction of theorem 1.2.

32 implies 5. (This result follows from the facts that 32 → 34 and 34 →
5, but we retain the proof here since it might be felt to be of independent interest,
and helps to prepare us for the proof of 34 implies 5, which is closely analogous to
it.)

Assume 2 (so that Hκ and Πκ both exist) and let H : {α ∈ NO : α < κ∗} → Πκ

enumerate Πκ in its natural order, under ⊆. κ∗ is the length of Πκ. The assertion

(1.1) (∀α)(Pκ(H(α)) = H(Tα+ 1))

is weakly stratified and can be proved by an induction on α. Now suppose per
impossibile there were α < κ∗ with α > Tα. Then we would have

(1.2) Pκ(H(α)) = H(Tα+ 1)

Now α > Tα implies α > Tα + 1 since α = Tα + 1 is impossible. This gives
H(Tα+1) ⊆ H(α) and consequently Pκ(H(α)) ⊆ H(α). So the process has closed
at a stage < κ∗, contradicting the definition of κ∗ as the closure ordinal of this
construction.

So we have assumed ∃Πκ and proved (∀α < κ∗)(α ≤ Tα). But the conclusion
is invariant so it follows even from 3∃Πκ.
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34 implies 5

We don’t mean exactly that 34 implies 5: the bound that appears in 5 is
an ordinal defined rather in the way that κ∗ (from 2) was defined. The proof is
analogous to the proof of 32 implies 5 that we have just seen.

Assume 4, and let A : {α ∈ NO : α < λ} → ∆κ enumerate ∆κ in its natural
order, under ⊆. (λ is the closure ordinal, that stage at which bκ ceases to give any
new sets of size less than κ). We prove that

(1.3) (∀α)(A(Tα+ 1) = bκ(Aα))

by a careful induction as in the analogous case (formula 1.1 above) with 3∃Πκ.
Now suppose there is α < λ with α > Tα. Then we would have

(1.4) bκ(A(α)) = A(Tα+ 1)

by analogy with formula 1.1. Now α > Tα implies α > Tα + 1 since α = Tα + 1
is impossible as before. This gives A(Tα+ 1) ⊆ A(α) so bκ(A(α)) ⊆ A(α) and the
process has closed at a stage < λ contradicting the definition of λ as the closure
ordinal of this construction.

So we have assumed 4 and proved (∀α < λ)(α ≤ Tα). But the conclusion is
invariant so it follows even from 34.

If κ is regular then 7 implies 3 3

We use a Boffa permutation. Smallness is “smaller than κ”. There is a Körner
function g; we take S to be the ordinals below κ; E to be {〈{α}, β〉 : g(Tα) < β};
finally f(X), for X a set of ordinals below κ, is T (sup(X)). The assumption that
κ is regular is needed to ensure that f is well-defined.

Elements of S are not themselves small, so we use the first flavour of π, the one
that does not complement the first component of the ordered pair.

If κ is strongly inaccessible then 6 implies 3 3

Let κ be a strongly inaccessible cantorian aleph, and suppose that there are
wellfounded sets of arbitrarily large size below κ. We know anyway that every self-
membered power set contains all wellfounded sets, and so—in this setting—cannot
be of size < κ. Again, we know anyway that, if B is a collection of power sets with
no ∈-minimal member, then

⋂
B is a self-membered power set. So nothing in B

can have size less than κ. So ∈ restricted to {P(x) : |x| < κ} is wellfounded, and
we then use a Boffa permutation where S is {P(x) : |x| < κ}; E is the restriction
to S of {〈{x}, y〉 : x ∈ y}; smallness is |x| < κ; finally f(X), for X a small set of
small power sets, is P(

⋃
X). Things in S are small so we use the second flavour of

Boffa permutation, where we complement the first component of the ordered pair.

2. Open Problems

There are various loose ends that later workers may tie up. The world would
be a pleasantly tidy place indeed if 1 - 7 were to divide (as indicated earlier) into
two bundles of equivalent propositions, namely {31, 33, 7} and {32, 34, 5}. We
have shown that the three formulæ in the second bundle are equivalent, but several
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conjectured equivalences within the first bundle remain to be proved. In particular
I cannot at this stage see any way of constructing Körner functions from large
wellfounded sets. However, I am endebted to the referee for the observation that
the methods of [5] will produce Körner functions on {α ∈ NO : α < κ} where κ is
a definable cantorian ordinal.

The extreme bottom and the extreme top of this scale (1-7) of propositions
both merit special attention.

At the bottom, where κ = ℵ0, we know that 7 is consistent relative to NF;
for all we know 36 and 33 could be theorems of NF. This has always seemed
unlikely, and now seems even more unlikely in the light of a recent result of Holmes
(to appear) to the effect that no consistent invariant extension of NF proves the
existence of infinite wellfounded transitive sets.

Although it is suspected that we can prove Con(NF) in the arithmetic of NF
+ AxCount≤ (2 becomes AxCount≤ when κ = ω) this has never been proved,
and AxCount≤ could be consistent relative to naked NF (though this seems highly
unlikely).

It is still open whether or not AxCount≤ implies the analogue 5(ℵ1) for count-
able ordinals.

At the top end (where κ is an aleph but no longer cantorian) one can ask:
might the collection of hereditarily wellorderable sets be a set? What about the
consistency strength of a Körner function over the whole of the ordinals? What
about Körner functions that commute with T? There are presumably analogues of
Körner functions for BfExts: do they give rise to any new mathematics?

Finally there are conjectures along the lines of 1-7 that arise if we consider
notions of smallness not parameterised by a cardinal. Strongly cantorian is one
such property, but there are others. Let a small set be one that does not map onto
V and a low set one that is the same size as a wellfounded set.

The analogues of 6 are: Is every wellfounded set small? (Is the set of small sets
itself small?) Is every wellfounded set strongly cantorian?

The analogues of 3 ask whether or not we can arrange for ∈ restricted to
small/low/strongly cantorian sets to be wellfounded. The standard methods of
constructing models for Church’s set theory (see Forster [3]) easily give models of
fragments of NF in which ∈ restricted to low sets is wellfounded, but the standard
methods do not construct models of NF and we do not know at present how to
obtain permutation models of NF in which ∈ restricted to low sets is wellfounded.
Boffa-Pétry [1] used a Boffa permutation to obtain a model in which there are no
strongly cantorian self-membered sets. Their proof uses the axiom of counting, and
although the result is unlikely to be best possible, I cannot at the moment see how
to drop this assumption nor how to strengthen the conclusion to get a permutation
making ∈ restricted to strongly cantorian sets wellfounded.

Finally one can wonder whether there is a table like 1-7, but using 2 instead
of 3. For example, we can prove the following

Remark 2.1. 2(∀x)(|x| ∈ IN→ P(x) 6⊆ x) is equivalent to AxCount≤

Proof:
¬R → ¬ L: If AxCount≤ fails, there is n > 2Tn ∈ IN. Since whenever x 6∈ x,

{y : x ∈ y} is a set of size |V | disjoint from its power set, we can find, for any
cardinal n, a set of size n disjoint from its power set. In particular if n is the finite
cardinal promised above (so that 2Tn < n) then we have a set x of size n disjoint
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from its power set and an injection p from P(x) into x. This can be extended to
a permutation π of V , and in V π every wellfounded set has size < n. This proves
3¬(∀x)(|x| ∈ IN→ P(x) 6⊆ x).

R→ L: If π is a permutation such that V π thinks that some set x is finite and
a superset of its power set, then V contains a map (namely a suitable restriction of
π) from some finite power set P(x) into x and therefore a natural number n = |x|
such that 2Tn < n, which contradicts AxCount≤.

Moral

People who think that Set theory is ZFC will probably feel that the moral
pointed by the equivalences announced in this paper is hardly news, and indeed
was known already to Horace: Naturem expelles furca, tamen usque recurret. In
seeking a resolution of the paradoxes, it matter not to what lengths you go to avoid
the cumulative hierarchy, driving it away with a fork, it will come back out of the
bush and bite your ankles.

But I think the true moral is more subtle and more interesting: what is coming
back with a vengeance is not the cumulative hierarchy, but the mathematics itself.
Your choice of formalisation will determine whether the solution to the paradoxes
comes out as funny-ordinals-with-a-T -function, or as the cumulative hierarchy, or
as the theory of types, or God-knows-what; but nothing can prevent these various
formalisations from being mutually interpretable. In a deep sense there is only one
solution.

Finally I would like to thank Randall Holmes and the anonymous referee for
helpful comments.
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