
Asenjo’s System LP has no connective obeying

Modus Ponens

Thomas Forster

April 9, 2012

This brief note is the result of a talk given by Jc Beall in Auckland in 2011,
in which he asked the question answered in the title. I am indebted to him for
showing me this amusing puzzle and for supplying historical background.

A much expanded version of this note (co-authored with Jc Beall and Jeremy
Seligman) which includes some speculative material on the significance of the
result for the dialethist project, and a very nice strengthening by Seligman of
the main result here (quoted at the end of the paper) has been accepted by
NDJFL.

We consider the system LP of [1]. It has connectives ¬, ∧ and ∨. There are
two truth-values, 0 and 1 (false and true). A valuation for LP is a function v
from the primitive propositions to P({0, 1}) \ {∅}. That is to say, a value of a
valuation must be {0} or {1} or {0, 1}. A deterministic valuation is one that
doesn’t ever take the value {0, 1}.

This semantics is equivalent to the usual semantics that takes LP-valuations
to have three truth-vales: 0, 1/2 and 1. In our scheme 0 corresponds to our {0};
1/2 corresponds to {0, 1} and 1 to {1}.

Eval is a function that takes a valuation and an LP-formula and returns a
truth-value. We define it by the obvious recursion:

eval(v, p) = v(p) when p is a propositional letter;
eval(v,¬φ) = {1− n : n ∈ v(φ)};
eval(v, ψ ∧ φ) = {min{n,m} : n ∈ v(φ) and m ∈ v(ψ)};
eval(v, ψ ∨ φ) = {max{n,m} : n ∈ v(φ) and m ∈ v(ψ)}.

We say that a valuation satisfies a formula—“sat(v, ψ)”—iff 1 ∈ eval(v, ψ).
(This matches the definition of satisfaction in [1].)

If a valuation v sends a propositional letter p to {0, 1} we say v equivocates
on p.

We will need the following elementary observation:

REMARK 1 For any valuation v and any formula φ, we must have at least
one (and possible both) of sat(v, φ) and sat(v,¬φ).

1

Proof: The recursive definition of eval enables us to prove by structural in-
duction that eval(v, φ) is never the empty set, so if eval(v, φ) doesn’t contain
1 [that is to say, we do not have sat(v, φ)] then it must contain 0. But, if
0 ∈ eval(v, φ), the recursion tells us that 1 ∈ eval(v,¬φ)—which is to say
sat(v,¬φ).

Conditionals obeying Detachment

We say a formula φ (in the language L(p, q) of formulæ containing only the
propositional letters p and q) obeys detachment iff every valuation that sat-
isfies both p and φ also satisfies q. We can write this as {p, φ} |= q, using the
notation γ |= φ to mean that every valuation satisfying everything in Γ will also
satisfy φ.

It is well-known that the obvious candidate for a φ obeying detachment—
to wit ¬p ∨ q—fails to obey detachment because of the valuation v defined by
v(p) = {0, 1} and v(q) = {0}. This annoying valuation will be the key to
showing the result below. We need one more notion. A formula φ might obey
detachment trivially, for example if it is p ∧ q. “Trivially”? Every valuation
that satisfies this φ satisfies q—even if it does not satisfy p. These cases are of
no interest to us: we will say that they are trivial.

There are at least three ways of thinking of valuations in LP. The first (which,
it seems, is the most usual) is to think of valuations as functions from (the set of)
primitive propositions to the set {0, 1/2, 1} of three truth-values. The second,
which we have set out above, considers that there are only two truth-values
but views valuations as things whose values are sets of truth-values. A third
way—which is probably the most helpful in this context—regards valuations
as nondeterministic functions from (the set of) primitive propositions to the
set {0, 1} of two truth-values. We say an assignment of a truth-value to a
propositional letter is compatible with a valuation v if that truth-value is one of
the values that v can take at that propositional letter. It is helpful because of the
parallel with the study of nondeterministic finite state automata (NFAs). Just
as we describe the state of an NFA M started in state σ and given a string w as a
set of states of the NFA (to wit, the set of those states that M might be in after
having been started in σ and having been fed successively the characters in w)
so we can consider the truth-value of an LP-formula φ under a valuation v as a
set of truth-values, namely the set of those truth-values that φ can obtain under
all assignments of truth-values to propositional letters in φ that are compatible
with v. More fully: if v is a valuation and φ a formula, what is the truth-value
of φ according to v? Answer: it is the set of all those truth-values that can be
obtained in the following way. Assign to each occurrence of a propositional letter
in φ a truth-value compatible with v, then compute the resulting truth-value of
φ (in the usual way). Observe that, under a nondeterministic valuation, distinct
occurrences of any particular variable may receive differing truth values.

The second way of thinking about valuations in LP can be seen as arising
from the third way by the same ruse that is used in the standard demonstration

2

that to every nondeterministic finite automaton there corresponds a determin-
istic finite automaton with the same recognition behaviour.

THEOREM 2 No formula nontrivially obeys detachment.

Proof:
Let p and q be two propositional letters, and let φ be a formula in the

language L(p, q) and consider the valuation v defined by v(p) = {0, 1} and
v(q) = {0}. What is eval(v, φ)?

This is where we need the third way (see above) of thinking of valuations for
LP as nondeterministic (single-valued) functions from letters to {0, 1}. Comput-
ing eval of a valuation-and-a-formula is rather like computing a trajectory of a
nondeterministic finite automaton. The set eval(v, φ) of possible truth-values
of φ under the (nondeterministic) valuation v is simply the set of possible values
φ might take given the possible values given to p and to q by v. Consider the
various occurrences of ‘p’ inside φ. Since v(p) = {0, 1} we can think of them
as each being given truth value 0 or 1 independently. We want eval(v, φ) to
contain 1. (This will ensure that v is a valuation that is witness to the fact
that φ does not nontrivially obey detachment). It will do so as long as there
is even one allocation of 0 and 1 to the various occurences of p inside φ that
makes φ come out true (given that v(q) = {0}). So suppose there is no such
allocation. Now this is simply to say that no valuation that satisfies ¬q can
satisfy φ. So every valuation v′ that satisfies φ must fail to satisfy ¬q. But—by
remark 1—every valuation must either satisfy q or satisfy ¬q, so v′ must satisfy
q. So any valuation that satisfies φ also satisfies q—so φ obeys detachment only
trivially.

Here is an alternative proof for those who do not like NFAs.
Let v be the bad valuation, the one that sends q to false and equivocates

on p. One of two things must happen. Either v satisfies φ (in which case φ
does not obey detachment) or it doesn’t. If v doesn’t satisfy φ then there is
no way of assigning 0s and 1s to occurrences of p in φ to make φ come out
true. So in particular the two (deterministic) valuations v1 (which makes all
occurrences of p true and all occurrences of q false) and v2 (which makes all
occurrences of p false and all occurrences of q false) do not satisfy φ either. But
these three valuations we have just considered exhaust all valuations that do not
satisfy q (on the assumption that φ obeys detachment) so the only valuations
left are valuations that do satisfy q. So every valuation that satisfies φ satisfies
q. So: according to the first horn φ does not satisfy detachment; according to
the second horn φ satisfies detachment trivially.

On being shown the analysis above, Jeremy Seligman immediately refined it
to obtain the following result, included here with his permission.

Let us write ‘PROP(ψ)’ for the set of propositional letters occurring in ψ.

3

THEOREM 3 (“Strong Interpolation for LP”)

If Γ |= φ then {ψ ∈ Γ : PROP(ψ) ∩ PROP(φ) 6= ∅} |= φ.

References

[1] Asenjo, F. G., “A calculus of antinomies Notre Dame Journal of Formal
Logic, vol. 16 (1966), pp. 103105. 1

4

