MATHEMATICAL TRIPOS PART III (2023–24) Elliptic Curves - Example Sheet 4 of 4

1. Let E and E' be the elliptic curves (defined over a number field K) given by

$$E: y^2 = x^3 + ax^2 + bx$$
 $E': y^2 = x^3 + a'x^2 + b'x$

with a' = -2a, $b' = a^2 - 4b$. Let $\phi : E \to E'$ be the 2-isogeny given by $\phi(x, y) = (y^2/x^2, y(x^2 - b)/x^2)$. (i) Show that T' = (0, 0) belongs to $\phi(E(K))$ if and only if $b' \in (K^{\times})^2$. (ii) Let P = (x, y) in E'(K) with $P \neq 0, T'$. Let $t \in \overline{K}$ be a square root of x. Show that $\phi^{-1}(P) = \{(x_1, y_1), (x_2, y_2)\}$ where $x_1 = \frac{1}{2}(x_1 - a_1 + w/t), \quad w_2 = x_1 t, \quad x_3 = \frac{1}{2}(x_1 - a_2 - w/t), \quad w_4 = -x_5 t$

$$x_1 = \frac{1}{2}(x - a + y/t), \quad y_1 = x_1t, \quad x_2 = \frac{1}{2}(x - a - y/t), \quad y_2 = -x_2t.$$

(iii) Define $\alpha : E'(K) \to K^{\times}/(K^{\times})^2$ via $\alpha(0) = 1$, $\alpha(T') = b'$ and $\alpha(x, y) = x$ if $x \neq 0$. Show that ker $\alpha = \phi(E(K))$.

(iv) Suppose the line $y = \lambda x + \nu$ meets the curve E' in points P_1, P_2, P_3 (counted with multiplicity). Show that if $P_i = (x_i, y_i)$ for i = 1, 2, 3 then $x_1 x_2 x_3 = \nu^2$.

(v) Deduce that α is a group homomorphism. [There will be some special cases you need to check.]

- 2. Prove that 2 is not a congruent number.
- 3. Compute the rank of E(Q) for each of the following elliptic curves E/Q.
 (i) y² = x³ + 6x² − 2x
 (ii) y² = x³ + 8x² − 7x
 (iii) y² = x³ − 3x² + 10x
 (iv) y² = x³ − 377x.
- 4. Find the rank of $y^2 = x^3 p^2 x$ for p a prime with $p \equiv 3 \pmod{8}$.
- 5. Let $\nu(x)$ be the number of distinct prime factors of an integer x. Show that if E/\mathbb{Q} is an elliptic curve with Weierstrass equation $y^2 = x^3 + ax^2 + bx$ with $a, b \in \mathbb{Z}$ then

$$\operatorname{rank} E(\mathbb{Q}) \leqslant \nu(b) + \nu(a^2 - 4b).$$

By considering real solubility, show that the inequality is strict. [This last part is easier if a = 0, so assume that if you like.]

- 6. Let E be an elliptic curve over \mathbb{Q} and let $P \in E(\mathbb{Q})$. Show that P is a torsion point if and only if $\hat{h}(P) = 0$. [This gives another proof that the torsion subgroup is finite.]
- 7. Show that if $\phi: E \to E'$ and $\psi: E' \to E''$ are isogenies defined over a number field K, then there is an exact sequence

$$E'(K)[\psi] \to S^{(\phi)}(E/K) \to S^{(\psi\phi)}(E/K) \to S^{(\psi)}(E'/K).$$

Deduce from results proved in lectures that $S^{(\phi)}(E/K)$ is finite.

T.A.Fisher@dpmms.cam.ac.uk - 1 -

8. Let *E* be an elliptic curve over \mathbb{Q} . Let $K = \mathbb{Q}(\sqrt{d})$ where *d* is a square-free integer. The quadratic twist E_d of *E* by *d* was defined in Question 7 on Example Sheet 1. Show that there is a group homomorphism $E(\mathbb{Q}) \times E_d(\mathbb{Q}) \to E(K)$ with finite kernel and cokernel. Deduce that

$$\operatorname{rank} E(K) = \operatorname{rank} E(\mathbb{Q}) + \operatorname{rank} E_d(\mathbb{Q}).$$

- 9. Let E be an elliptic curve over \mathbb{C} . Let ω be an invariant differential on E. Show that the map $\operatorname{End}(E) \to \mathbb{C}$; $\phi \mapsto \phi^* \omega / \omega$ is an injective ring homomorphism. Use this to check that the 2-isogenies ϕ and $\widehat{\phi}$ (as defined in Question 1 and in lectures) are indeed dual isogenies.
- 10. Let E/Q be the elliptic curve y² = x(x + 1)(x + 4).
 (i) Compute the rank and torsion subgroup of E(Q). [For the latter you may quote your answer from Question 2 on Example Sheet 3.]
 (ii) Show that if r, s, t ∈ Q[×] with r², s², 1, t² in arithmetic progression then

$$(-2s^2, 2rst) \in E(\mathbb{Q}).$$

(iii) Deduce the result of Euler that there are no non-constant four term arithmetic progressions of square numbers.

11. Let E be an elliptic curve defined over a number field K with E[2] ⊂ E(K), say y² = f(x) = (x - e₁)(x - e₂)(x - e₃) with e₁, e₂, e₃ ∈ K.
(i) Define a group homomorphism δ : E(K) → K[×]/(K[×])²×K[×]/(K[×])² with kernel 2E(K). Using your answer to Question 1, or otherwise, show that it is given by

$$(x,y) \mapsto \begin{cases} (x-e_1, x-e_2) & \text{if } x \neq e_1, e_2\\ (f'(e_1), e_1 - e_2) & \text{if } x = e_1\\ (e_2 - e_1, f'(e_2)) & \text{if } x = e_2 \end{cases}$$

(ii) Let E/\mathbb{Q} be the elliptic curve $y^2 = x^3 - x$. Compute $\delta(T)$ for each $T \in E(\mathbb{Q})[2]$. Show, by adapting the proof in the first lecture, that these elements generate the image of δ . Deduce that rank $E(\mathbb{Q}) = 0$.