MATHEMATICAL TRIPOS PART III (2023-24)
Elliptic Curves - Example Sheet 4 of 4
T.A. Fisher

1. Let E and E^{\prime} be the elliptic curves (defined over a number field K) given by

$$
E: y^{2}=x^{3}+a x^{2}+b x \quad E^{\prime}: y^{2}=x^{3}+a^{\prime} x^{2}+b^{\prime} x
$$

with $a^{\prime}=-2 a, b^{\prime}=a^{2}-4 b$. Let $\phi: E \rightarrow E^{\prime}$ be the 2-isogeny given by $\phi(x, y)=$ $\left(y^{2} / x^{2}, y\left(x^{2}-b\right) / x^{2}\right)$.
(i) Show that $T^{\prime}=(0,0)$ belongs to $\phi(E(K))$ if and only if $b^{\prime} \in\left(K^{\times}\right)^{2}$.
(ii) Let $P=(x, y)$ in $E^{\prime}(K)$ with $P \neq 0, T^{\prime}$. Let $t \in \bar{K}$ be a square root of x. Show that $\phi^{-1}(P)=\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right\}$ where

$$
x_{1}=\frac{1}{2}(x-a+y / t), \quad y_{1}=x_{1} t, \quad x_{2}=\frac{1}{2}(x-a-y / t), \quad y_{2}=-x_{2} t .
$$

(iii) Define $\alpha: E^{\prime}(K) \rightarrow K^{\times} /\left(K^{\times}\right)^{2}$ via $\alpha(0)=1, \alpha\left(T^{\prime}\right)=b^{\prime}$ and $\alpha(x, y)=x$ if $x \neq 0$. Show that $\operatorname{ker} \alpha=\phi(E(K))$.
(iv) Suppose the line $y=\lambda x+\nu$ meets the curve E^{\prime} in points P_{1}, P_{2}, P_{3} (counted with multiplicity). Show that if $P_{i}=\left(x_{i}, y_{i}\right)$ for $i=1,2,3$ then $x_{1} x_{2} x_{3}=\nu^{2}$.
(v) Deduce that α is a group homomorphism. [There will be some special cases you need to check.]
2. Prove that 2 is not a congruent number.
3. Compute the rank of $E(\mathbb{Q})$ for each of the following elliptic curves E / \mathbb{Q}.
(i) $y^{2}=x^{3}+6 x^{2}-2 x$
(ii) $y^{2}=x^{3}+8 x^{2}-7 x$
(iii) $y^{2}=x^{3}-3 x^{2}+10 x$
(iv) $y^{2}=x^{3}-377 x$.
4. Find the rank of $y^{2}=x^{3}-p^{2} x$ for p a prime with $p \equiv 3(\bmod 8)$.
5. Let $\nu(x)$ be the number of distinct prime factors of an integer x. Show that if E / \mathbb{Q} is an elliptic curve with Weierstrass equation $y^{2}=x^{3}+a x^{2}+b x$ with $a, b \in \mathbb{Z}$ then

$$
\operatorname{rank} E(\mathbb{Q}) \leqslant \nu(b)+\nu\left(a^{2}-4 b\right) .
$$

By considering real solubility, show that the inequality is strict. [This last part is easier if $a=0$, so assume that if you like.]
6. Let E be an elliptic curve over \mathbb{Q} and let $P \in E(\mathbb{Q})$. Show that P is a torsion point if and only if $\widehat{h}(P)=0$. [This gives another proof that the torsion subgroup is finite.]
7. Show that if $\phi: E \rightarrow E^{\prime}$ and $\psi: E^{\prime} \rightarrow E^{\prime \prime}$ are isogenies defined over a number field K, then there is an exact sequence

$$
E^{\prime}(K)[\psi] \rightarrow S^{(\phi)}(E / K) \rightarrow S^{(\psi \phi)}(E / K) \rightarrow S^{(\psi)}\left(E^{\prime} / K\right)
$$

Deduce from results proved in lectures that $S^{(\phi)}(E / K)$ is finite.
8. Let E be an elliptic curve over \mathbb{Q}. Let $K=\mathbb{Q}(\sqrt{d})$ where d is a square-free integer. The quadratic twist E_{d} of E by d was defined in Question 7 on Example Sheet 1. Show that there is a group homomorphism $E(\mathbb{Q}) \times E_{d}(\mathbb{Q}) \rightarrow E(K)$ with finite kernel and cokernel. Deduce that

$$
\operatorname{rank} E(K)=\operatorname{rank} E(\mathbb{Q})+\operatorname{rank} E_{d}(\mathbb{Q}) .
$$

9. Let E be an elliptic curve over \mathbb{C}. Let ω be an invariant differential on E. Show that the map $\operatorname{End}(E) \rightarrow \mathbb{C} ; \phi \mapsto \phi^{*} \omega / \omega$ is an injective ring homomorphism. Use this to check that the 2-isogenies ϕ and $\widehat{\phi}$ (as defined in Question 1 and in lectures) are indeed dual isogenies.
10. Let E / \mathbb{Q} be the elliptic curve $y^{2}=x(x+1)(x+4)$.
(i) Compute the rank and torsion subgroup of $E(\mathbb{Q})$. [For the latter you may quote your answer from Question 2 on Example Sheet 3.]
(ii) Show that if $r, s, t \in \mathbb{Q}^{\times}$with $r^{2}, s^{2}, 1, t^{2}$ in arithmetic progression then

$$
\left(-2 s^{2}, 2 r s t\right) \in E(\mathbb{Q}) .
$$

(iii) Deduce the result of Euler that there are no non-constant four term arithmetic progressions of square numbers.
11. Let E be an elliptic curve defined over a number field K with $E[2] \subset E(K)$, say $y^{2}=f(x)=\left(x-e_{1}\right)\left(x-e_{2}\right)\left(x-e_{3}\right)$ with $e_{1}, e_{2}, e_{3} \in K$.
(i) Define a group homomorphism $\delta: E(K) \rightarrow K^{\times} /\left(K^{\times}\right)^{2} \times K^{\times} /\left(K^{\times}\right)^{2}$ with kernel $2 E(K)$. Using your answer to Question 1, or otherwise, show that it is given by

$$
(x, y) \mapsto \begin{cases}\left(x-e_{1}, x-e_{2}\right) & \text { if } x \neq e_{1}, e_{2} \\ \left(f^{\prime}\left(e_{1}\right), e_{1}-e_{2}\right) & \text { if } x=e_{1} \\ \left(e_{2}-e_{1}, f^{\prime}\left(e_{2}\right)\right) & \text { if } x=e_{2}\end{cases}
$$

(ii) Let E / \mathbb{Q} be the elliptic curve $y^{2}=x^{3}-x$. Compute $\delta(T)$ for each $T \in E(\mathbb{Q})[2]$. Show, by adapting the proof in the first lecture, that these elements generate the image of δ. Deduce that $\operatorname{rank} E(\mathbb{Q})=0$.

