MATHEMATICAL TRIPOS PART III (2023-24)
Elliptic Curves - Example Sheet 3 of 4

1. Let E be the elliptic curve over \mathbb{Q} given by

$$
y^{2}+x y=x^{3}-2 x+1,
$$

for which the discriminant Δ is equal to -61 .
For each prime p, let \widetilde{E}_{p} be the reduction of E modulo p.
(i) Compute the cardinality of $\widetilde{E}_{p}\left(\mathbb{F}_{p}\right)$ for $p=2,3,5,7$.
(ii) Prove that the torsion subgroup of $E(\mathbb{Q})$ is trivial.
(iii) Prove that the torsion subgroup of $E\left(\mathbb{Q}_{2}\right)$ has order dividing 8 .
(iv) If $P=(1,0)$ in $E(\mathbb{Q})$, prove that $7 P$ and $9 P$ do not have integral coordinates.
2. Find the torsion groups over \mathbb{Q} for the elliptic curves
(i) $y^{2}+x y+y=x^{3}$,
(ii) $y^{2}-x y-4 y=x^{3}-4 x^{2}$,
(iii) $y^{2}=x^{3}+5 x^{2}+4 x$.
3. Let E / \mathbb{Q} be the elliptic curve $y^{2}=x^{3}+\lambda x$ where λ is an integer. For p a prime not dividing 2λ we write $\# \widetilde{E}\left(\mathbb{F}_{p}\right)=p+1-a_{p}$. Show that if $p=4 k+1$ then

$$
a_{p} \equiv \lambda^{k}\binom{2 k}{k} \quad(\bmod p)
$$

Deduce that $a_{p} \equiv 0(\bmod p)$ if and only if $p \equiv 3(\bmod 4)$.
4. (i) Prove that the torsion subgroup of the group of \mathbb{Q}-points on the elliptic curve $y^{2}=x^{3}+d$ has order dividing 6 .
(ii) Show that the elliptic curve $y^{2}=x^{3}+5$ has infinitely many \mathbb{Q}-points.
5. Show that if E has Weierstrass equation

$$
y^{2}=x^{3}+a x^{2}+b x
$$

with $a, b \in \mathbb{Z}$ and $P=(x, y) \in E(\mathbb{Q})$ is a point of finite order, then either $x=0$ or x divides b and $x+a+b / x$ is a perfect square. [Thinking about how the proof of Lutz-Nagell works might help you find a short proof.]
6. Let $p \geqslant 5$ be a prime, and let K be a finite extension of \mathbb{Q}_{p}. Show that every elliptic curve E / \mathbb{Q}_{p} has a minimal Weierstrass equation of the form $y^{2}=x^{3}+a x+b$ with $a, b \in \mathbb{Z}_{p}$. What are the conditions on $v_{p}(a)$ and $v_{p}(b)$ for this to be a minimal Weierstrass equation? Show that if E / \mathbb{Q}_{p} has good reduction then E / K has good reduction? Is the corresponding statement true if we replace "good" by "multiplicative"? What about the additive case?
7. Let K be a field of characteristic not 2 . Let E / K be the curve defined by the singular Weierstrass equation $y^{2}=x^{2}(x+1)$. Find a rational parametrisation $t \mapsto(\phi(t), \psi(t))$ with $t=0, \infty$ mapping to the singular point and $t=1$ mapping to the point at infinity. Use this to show that $E_{\text {ns }}(K) \cong K^{\times}$. [For the last part, try to find a method similar to the one used in lectures in the additive case.]
8. Let p be a prime number of the form $u^{2}+64$ for some integer u (e.g. $p=$ $73,89,113,233, \ldots)$. Choose the sign of u so that $u \equiv 1(\bmod 4)$. Consider the two elliptic curves

$$
\begin{aligned}
& E: y^{2}=x^{3}+u x^{2}-16 x \\
& E^{\prime}: y^{2}=x^{3}-2 u x^{2}+p x
\end{aligned}
$$

Prove that E and E^{\prime} are isogenous, and that both curves have good reduction at all primes different from p. Can you say anything about the Tamagawa numbers $c_{p}(E)$ and $c_{p}\left(E^{\prime}\right) ?$
9. (i) Let E be an elliptic curve over an algebraically closed field K. Let $\phi: E \rightarrow E$ be a morphism of curves (not necessarily an isogeny). Show that if ϕ has no fixed points, then ϕ (and hence also ϕ^{n}) is a translation map.
(ii) Let C / \mathbb{F}_{q} be a smooth projective curve of genus one. Show that $C\left(\mathbb{F}_{q}\right) \neq \emptyset$.
10. Let E / \mathbb{Q}_{p} be as in Question 6, with minimal discriminant Δ_{E}. Show that $v_{p}\left(\Delta_{E}\right)$ can take any positive integer value, but that if $v_{p}\left(\Delta_{E}\right) \geqslant 12$ then either E or its quadratic twist by p has multiplicative reduction.
11. (Some group theory needed for Question 12.) For A an abelian group and $n \geqslant 2$ an integer we define

$$
q(A)=\frac{\# \operatorname{coker}([n]: A \rightarrow A)}{\# \operatorname{ker}([n]: A \rightarrow A)} .
$$

(It is undefined if either group is infinite.) Show that if $A \subset B$ is a subgroup of finite index, and either $q(A)$ or $q(B)$ is defined, then they are both defined and $q(A)=q(B)$.
12. Let K be a finite extension of \mathbb{Q}_{p}. Let E / K be an elliptic curve and $n \geqslant 2$ an integer. Use Question 11 and the theory of formal groups to show that
(i) $\#\left(\mathcal{O}_{K}^{\times} /\left(\mathcal{O}_{K}^{\times}\right)^{n}\right)=\# \mu_{n}(K) \cdot \#\left(\mathcal{O}_{K} / n \mathcal{O}_{K}\right)$,
(ii) $\#(E(K) / n E(K))=\# E(K)[n] \cdot \#\left(\mathcal{O}_{K} / n \mathcal{O}_{K}\right)$.

