MATHEMATICAL TRIPOS PART III (2023–24)

Elliptic Curves - Example Sheet 3 of 4

T.A. Fisher

1. Let *E* be the elliptic curve over \mathbb{Q} given by

$$y^2 + xy = x^3 - 2x + 1,$$

for which the discriminant Δ is equal to -61. For each prime p, let \widetilde{E}_p be the reduction of E modulo p. (i) Compute the cardinality of $\widetilde{E}_p(\mathbb{F}_p)$ for p = 2, 3, 5, 7. (ii) Prove that the torsion subgroup of $E(\mathbb{Q})$ is trivial. (iii) Prove that the torsion subgroup of $E(\mathbb{Q}_2)$ has order dividing 8. (iv) If P = (1,0) in $E(\mathbb{Q})$, prove that 7P and 9P do not have integral coordinates.

- 2. Find the torsion groups over \mathbb{Q} for the elliptic curves (i) $y^2 + xy + y = x^3$, (ii) $y^2 - xy - 4y = x^3 - 4x^2$,
 - (iii) $y^2 = x^3 + 5x^2 + 4x$.
- 3. Let E/\mathbb{Q} be the elliptic curve $y^2 = x^3 + \lambda x$ where λ is an integer. For p a prime not dividing 2λ we write $\#\widetilde{E}(\mathbb{F}_p) = p + 1 - a_p$. Show that if p = 4k + 1 then

$$a_p \equiv \lambda^k \binom{2k}{k} \pmod{p}.$$

Deduce that $a_p \equiv 0 \pmod{p}$ if and only if $p \equiv 3 \pmod{4}$.

- 4. (i) Prove that the torsion subgroup of the group of \mathbb{Q} -points on the elliptic curve $y^2 = x^3 + d$ has order dividing 6.
 - (ii) Show that the elliptic curve $y^2 = x^3 + 5$ has infinitely many Q-points.
- 5. Show that if E has Weierstrass equation

$$y^2 = x^3 + ax^2 + bx$$

with $a, b \in \mathbb{Z}$ and $P = (x, y) \in E(\mathbb{Q})$ is a point of finite order, then either x = 0 or x divides b and x + a + b/x is a perfect square. [Thinking about how the proof of Lutz-Nagell works might help you find a short proof.]

6. Let $p \ge 5$ be a prime, and let K be a finite extension of \mathbb{Q}_p . Show that every elliptic curve E/\mathbb{Q}_p has a minimal Weierstrass equation of the form $y^2 = x^3 + ax + b$ with $a, b \in \mathbb{Z}_p$. What are the conditions on $v_p(a)$ and $v_p(b)$ for this to be a minimal Weierstrass equation? Show that if E/\mathbb{Q}_p has good reduction then E/K has good reduction? Is the corresponding statement true if we replace "good" by "multiplicative"? What about the additive case?

- 7. Let K be a field of characteristic not 2. Let E/K be the curve defined by the singular Weierstrass equation $y^2 = x^2(x+1)$. Find a rational parametrisation $t \mapsto (\phi(t), \psi(t))$ with $t = 0, \infty$ mapping to the singular point and t = 1 mapping to the point at infinity. Use this to show that $E_{ns}(K) \cong K^{\times}$. [For the last part, try to find a method similar to the one used in lectures in the additive case.]
- 8. Let p be a prime number of the form $u^2 + 64$ for some integer u (e.g. $p = 73, 89, 113, 233, \ldots$). Choose the sign of u so that $u \equiv 1 \pmod{4}$. Consider the two elliptic curves

$$E : y^{2} = x^{3} + ux^{2} - 16x$$
$$E' : y^{2} = x^{3} - 2ux^{2} + px$$

Prove that E and E' are isogenous, and that both curves have good reduction at all primes different from p. Can you say anything about the Tamagawa numbers $c_p(E)$ and $c_p(E')$?

- 9. (i) Let E be an elliptic curve over an algebraically closed field K. Let φ : E → E be a morphism of curves (not necessarily an isogeny). Show that if φ has no fixed points, then φ (and hence also φⁿ) is a translation map.
 (ii) Let C/F_q be a smooth projective curve of genus one. Show that C(F_q) ≠ Ø.
- 10. Let E/\mathbb{Q}_p be as in Question 6, with minimal discriminant Δ_E . Show that $v_p(\Delta_E)$ can take any positive integer value, but that if $v_p(\Delta_E) \ge 12$ then either E or its quadratic twist by p has multiplicative reduction.
- 11. (Some group theory needed for Question 12.) For A an abelian group and $n \ge 2$ an integer we define

$$q(A) = \frac{\#\operatorname{coker}([n]: A \to A)}{\#\ker([n]: A \to A)}.$$

(It is undefined if either group is infinite.) Show that if $A \subset B$ is a subgroup of finite index, and either q(A) or q(B) is defined, then they are both defined and q(A) = q(B).

12. Let K be a finite extension of \mathbb{Q}_p . Let E/K be an elliptic curve and $n \ge 2$ an integer. Use Question 11 and the theory of formal groups to show that (i) $\#(\mathcal{O}_K^{\times}/(\mathcal{O}_K^{\times})^n) = \#\mu_n(K) \cdot \#(\mathcal{O}_K/n\mathcal{O}_K),$ (ii) $\#(E(K)/nE(K)) = \#E(K)[n] \cdot \#(\mathcal{O}_K/n\mathcal{O}_K).$