1. Find all points defined over the field \mathbb{F}_{13} of 13 elements on the elliptic curve

$$
y^{2}=x^{3}+x+5,
$$

and show that they form a cyclic group. Find an example of an elliptic curve over \mathbb{F}_{13} for which this group is not cyclic. Are there any examples where the group requires more than two generators?
2. Let A be an abelian group. Let $q: A \rightarrow \mathbb{Z}$ be a map satisfying

$$
q(x+y)+q(x-y)=2 q(x)+2 q(y)
$$

for all $x, y \in A$. Show that q is a quadratic form.
3. Find a translation-invariant differential ω on the multiplicative group \mathbb{G}_{m}. Show that if $[n]: \mathbb{G}_{m} \rightarrow \mathbb{G}_{m}$ is the endomorphism $x \mapsto x^{n}$ then $[n]^{*} \omega=n \omega$.
4. Let E_{1} and E_{2} be elliptic curves over \mathbb{F}_{q}, and let $\psi: E_{1} \rightarrow E_{2}$ be an isogeny defined over \mathbb{F}_{q}. Let ϕ_{i} be the q-power Frobenius on E_{i} for $i=1,2$. Show that $\psi \circ \phi_{1}=\phi_{2} \circ \psi$ and deduce that $\# E_{1}\left(\mathbb{F}_{q}\right)=\# E_{2}\left(\mathbb{F}_{q}\right)$.
5. Let E / \mathbb{F}_{13} be the elliptic curve in Question 1. Without listing its elements, find the order of $E\left(\mathbb{F}_{13^{2}}\right)$ and determine whether this group is cyclic.
6. Show that if $\phi \in \operatorname{End}(E)$ then there exists $\operatorname{tr}(\phi) \in \mathbb{Z}$ such that

$$
\operatorname{deg}([n]+\phi)=n^{2}+n \operatorname{tr}(\phi)+\operatorname{deg}(\phi)
$$

for all $n \in \mathbb{Z}$. Establish the following properties:
(i) $\operatorname{tr}(\phi+\psi)=\operatorname{tr}(\phi)+\operatorname{tr}(\psi)$,
(ii) $\operatorname{tr}\left(\phi^{2}\right)=\operatorname{tr}(\phi)^{2}-2 \operatorname{deg}(\phi)$,
(iii) $\phi^{2}-[\operatorname{tr}(\phi)] \phi+[\operatorname{deg}(\phi)]=0$.
7. Let E be the elliptic curve $y^{2}=x^{3}+d$. We put

$$
\xi=\frac{x^{3}+4 d}{x^{2}}, \quad \eta=\frac{y\left(x^{3}-8 d\right)}{x^{3}} .
$$

(i) Show that $T=(0, \sqrt{d})$ is a point of order 3 , and that if $P=(x, y)$ then

$$
\xi=x(P)+x(P+T)+x(P+2 T) .
$$

(ii) Verify that $\eta^{2}=\xi^{3}+D$ for some constant D (which you should find).
(iii) Let E^{\prime} be the elliptic curve $y^{2}=x^{3}+D$, and $\phi: E \rightarrow E^{\prime}$ the isogeny given by $(x, y) \mapsto(\xi, \eta)$. Compute $\phi^{*}(d x / y)$.
8. Let E / \mathbb{F}_{q} be an elliptic curve and $K=\mathbb{F}_{q}(E)$. Show that ζ_{K} is meromorphic on \mathbb{C} and satisfies the functional equation $\zeta_{K}(1-s)=\zeta_{K}(s)$.
9. Let E / \mathbb{F}_{p} be an elliptic curve with p an odd prime. Show that there exists an elliptic curve $E^{\prime} / \mathbb{F}_{p}$ with

$$
\# E\left(\mathbb{F}_{p}\right)+\# E^{\prime}\left(\mathbb{F}_{p}\right)=2(p+1)
$$

Show further that the groups $E\left(\mathbb{F}_{p}\right) \times E^{\prime}\left(\mathbb{F}_{p}\right)$ and $E\left(\mathbb{F}_{p^{2}}\right)$ have the same order, but need not be isomorphic.
10. Let E be an elliptic curve over \mathbb{F}_{p} (p a prime) with $\# E\left(\mathbb{F}_{p}\right)=p+1-a$, and let $\phi: E \rightarrow E$ be the p-power Frobenius, i.e. $\phi:(x, y) \mapsto\left(x^{p}, y^{p}\right)$. Let $\psi=[a]-\phi$.
(i) Show that $\phi \circ \psi=\psi \circ \phi=[p]$.
(ii) Show that if ψ is separable then $E\left[p^{r}\right] \cong \mathbb{Z} / p^{r} \mathbb{Z}$ for all $r \geq 1$.
(iii) Show that if $p \geqslant 5$ and $E[p]=0$ then $\# E\left(\mathbb{F}_{p}\right)=p+1$.
11. Let $F \in R[[X, Y]]$ be a formal group over a ring R. Show that there is a unique power series $\iota(T)$ in $R[[T]]$ with $\iota(0)=0$ and $F(T, \iota(T))=0$. Find $\iota(T)$ for the multiplicative formal group $\widehat{\mathbb{G}}_{m}$.
12. Let R be an integral domain of characteristic zero, with field of fractions K. Suppose that $f(T)=\sum_{n=1}^{\infty}\left(a_{n} / n!\right) T^{n}$ and $g(T)=\sum_{n=1}^{\infty}\left(b_{n} / n!\right) T^{n}$ are power series in $K[[T]]$ satisfying $f(g(T))=g(f(T))=T$. Show that if $a_{1} \in R^{\times}$and $a_{n} \in R$ for all n, then $b_{n} \in R$ for all n. [Hint: You should repeatedly differentiate $f(g(T))=T$ and then put $T=0$.]

