1. Alter building Vadic priests in India knew by about 800 BC how to construct rational right-angled trianges with areas $6,15,21$ and 210. Repeat their discovery.
2. Find rational parametrisations for the plane conic $x^{2}+x y+3 y^{2}=1$ and for the singular plane cubic $y^{2}=x^{2}(x+1)$.
3. Consider the curve $C_{d}=\left\{U^{d}+V^{d}=W^{d}\right\} \subset \mathbb{P}^{2}$ defined over \mathbb{Q}.
(i) Find the points of inflection on C_{3}, and then put this curve in Weierstrass form.
(ii) Let $x, y \in \mathbb{Q}\left(C_{4}\right)$ be given by $x=W^{2} / U^{2}$ and $y=V^{2} W / U^{3}$. Show that $y^{2}=x^{3}-x$, and hence find all the \mathbb{Q}-rational points on C_{4}.
4. Let K be an algebraically closed field with $\operatorname{char}(K) \neq 2$. Let C be the projective closure of the affine curve with equation $y^{2}=f(x)$, where $f(x) \in K[x]$. Show that if $\operatorname{deg}(f)=3$ then C is smooth if and only if f has distinct roots. [It's probably simplest to work with the affine equation, and then check the point at infinity separately.] What happens if $\operatorname{deg}(f)>3$?
5. Let E be the elliptic curve over \mathbb{Q} defined by $y^{2}+y=x^{3}-x$. Draw a graph of its real points. Let $P=(0,0)$. Compute $n P$ for $n=2,3,4,5,6,7,8$. What do you notice about the denominators? Can you prove anything in this direction?
6. Show that the congruent number elliptic curve $D y^{2}=x^{3}-x$ has Weierstrass equation $y^{2}=x^{3}-D^{2} x$. Now use the group law to find two rational right-angled triangles of area 5 .
7. Let E be an elliptic curve over \mathbb{Q} with Weierstrass equation $y^{2}=f(x)$.
(i) Put the curve $E_{d}: d y^{2}=f(x)$ in Weierstrass form.
(ii) Show that if $j(E) \neq 0,1728$ then every twist of E is isomorphic to E_{d} for some unique square-free integer d. [A twist of E is an elliptic curve E^{\prime} defined over \mathbb{Q} that is isomorphic to E over $\overline{\mathbb{Q}}$.]
8. The elliptic curve E_{λ} over \mathbb{C} with equation $y^{2}=x(x-1)(x-\lambda)$ has j-invariant

$$
j=\frac{2^{8}\left(\lambda^{2}-\lambda+1\right)^{3}}{\lambda^{2}(\lambda-1)^{2}}
$$

Find the complex numbers λ^{\prime} for which $E_{\lambda} \cong E_{\lambda^{\prime}}$.
9. (i) Find a formula for doubling a point on the elliptic curve $E: y^{2}=x^{3}+a x+b$. [You should fully expand the numerator of each rational function in your answer.]
(ii) Find a polynomial in x whose roots are the x-coordinates of the points T with $3 T=0_{E}$. [Hint: Write $3 T=0_{E}$ as $2 T=-T$.]
(iii) Show that the polynomial found in (ii) has distinct roots.
10. Let C be the plane cubic $a X^{3}+b Y^{3}+c Z^{3}=0$ with $a, b, c \in \mathbb{Q}^{*}$. Show that the image of the morphism $C \rightarrow \mathbb{P}^{3} ;(X: Y: Z) \mapsto\left(X^{3}: Y^{3}: Z^{3}: X Y Z\right)$ is an elliptic curve E, and put E in Weierstrass form. [You should try to give an answer that is symmetric under permuting a, b and c.] What is the degree of the morphism from C to E ?
11. Let E / \mathbb{F}_{2} be the elliptic curve $y^{2}+y=x^{3}$. Show that the group $\operatorname{Aut}(E)$ of automorphisms of E is a non-abelian group of order 24. [An automorphism of E is an isomorphism from E to itself. In this example all the automorphisms are defined over $\mathbb{F}_{4}=\mathbb{F}_{2}(\omega)$ where $\left.\omega^{2}+\omega+1=0.\right]$
12. Let $C \subset \mathbb{P}^{2}$ be a smooth plane cubic defined over \mathbb{Q}. Show that if $C(K) \neq \emptyset$ for K / \mathbb{Q} a quadratic field extension then $C(\mathbb{Q}) \neq \emptyset$. Can you generalise this result to field extensions of degree n for other integers n ?

