## PART III ELLIPTIC CURVES <br> FORMULA SHEET

A Weierstrass equation, over a field $K$, is an equation of the form

$$
\begin{equation*}
y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6} \tag{1}
\end{equation*}
$$

with coefficients $a_{1}, \ldots, a_{6}$ in $K$. If $\operatorname{char}(K) \neq 2$ then we may replace $y$ by $\frac{1}{2}\left(y-a_{1} x-a_{3}\right)$ to obtain an equation of the form

$$
y^{2}=4 x^{3}+b_{2} x^{2}+2 b_{4} x+b_{6}
$$

where

$$
b_{2}=a_{1}^{2}+4 a_{2}, \quad b_{4}=2 a_{4}+a_{1} a_{3}, \quad b_{6}=a_{3}^{2}+4 a_{6} .
$$

If further $\operatorname{char}(K) \neq 3$ then we may replace $x$ by $\frac{1}{36}\left(x-3 b_{2}\right)$ and $y$ by $\frac{1}{108} y$ to obtain

$$
y^{2}=x^{3}-27 c_{4} x-54 c_{6}
$$

where

$$
c_{4}=b_{2}^{2}-24 b_{4}, \quad c_{6}=-b_{2}^{3}+36 b_{2} b_{4}-216 b_{6} .
$$

The discriminant $\Delta \in \mathbb{Z}\left[a_{1}, \ldots, a_{6}\right]$ is defined by

$$
\Delta=-b_{2}^{2} b_{8}-8 b_{4}^{3}-27 b_{6}^{2}+9 b_{2} b_{4} b_{6}
$$

where

$$
b_{8}=a_{1}^{2} a_{6}+4 a_{2} a_{6}-a_{1} a_{3} a_{4}+a_{2} a_{3}^{2}-a_{4}^{2} .
$$

It can be shown that (1) defines a smooth projective curve (and hence an elliptic curve, with origin the point at infinity) if and only if $\Delta \neq 0$. If $\operatorname{char}(K) \neq 2$ then this already follows from the usual formula for the discriminant of a cubic polynomial. A separate argument is required in the case $\operatorname{char}(K)=2$.

The following relations may also be verified

$$
4 b_{8}=b_{2} b_{6}-b_{4}^{2}, \quad c_{4}^{3}-c_{6}^{2}=1728 \Delta .
$$

The $j$-invariant is $j=c_{4}^{3} / \Delta$.
If $\operatorname{char}(K) \neq 2,3$ it suffices to consider elliptic curves of the form

$$
\begin{equation*}
y^{2}=x^{3}+a x+b \tag{2}
\end{equation*}
$$

in which case

$$
\Delta=-16\left(4 a^{3}+27 b^{2}\right), \quad j=\frac{1728\left(4 a^{3}\right)}{4 a^{3}+27 b^{2}} .
$$

Date: 26th January 2024.

Any two Weierstrass equations for the same elliptic curve $E$ over $K$ are related by substitutions of the form

$$
\begin{aligned}
& x=u^{2} x^{\prime}+r \\
& y=u^{3} y^{\prime}+u^{2} s x^{\prime}+t
\end{aligned}
$$

where $u, r, s, t \in K$ with $u \neq 0$. The coefficients $a_{i}^{\prime}$ of the new Weierstrass equation are related to the coefficients $a_{i}$ of the old via

$$
\begin{align*}
u a_{1}^{\prime} & =a_{1}+2 s \\
u^{2} a_{2}^{\prime} & =a_{2}-s a_{1}+3 r-s^{2} \\
u^{3} a_{3}^{\prime} & =a_{3}+r a_{1}+2 t  \tag{3}\\
u^{4} a_{4}^{\prime} & =a_{4}-s a_{3}+2 r a_{2}-(r s+t) a_{1}+3 r^{2}-2 s t \\
u^{6} a_{6}^{\prime} & =a_{6}+r a_{4}+r^{2} a_{2}+r^{3}-t a_{3}-t^{2}-r t a_{1} .
\end{align*}
$$

The various associated quantities are transformed by

$$
\begin{align*}
u^{2} b_{2}^{\prime} & =b_{2}+12 r \\
u^{4} b_{4}^{\prime} & =b_{4}+r b_{2}+6 r^{2} \\
u^{6} b_{6}^{\prime} & =b_{6}+2 r b_{4}+r^{2} b_{2}+4 r^{3}  \tag{4}\\
u^{8} b_{8}^{\prime} & =b_{8}+3 r b_{6}+3 r^{2} b_{4}+r^{3} b_{2}+3 r^{4}
\end{align*}
$$

and $u^{4} c_{4}^{\prime}=c_{4}, u^{6} c_{6}^{\prime}=c_{6}, u^{12} \Delta^{\prime}=\Delta, j^{\prime}=j$.
Let $P_{1}=\left(x_{1}, y_{1}\right)$ and $P_{2}=\left(x_{2}, y_{2}\right)$ be points on (1) with $P_{1}, P_{2}, P_{1}+$ $P_{2} \neq 0_{E}$. Then $P_{3}=P_{1}+P_{2}=\left(x_{3}, y_{3}\right)$ is given by

$$
\begin{aligned}
x_{3} & =\lambda^{2}+a_{1} \lambda-a_{2}-x_{1}-x_{2} \\
y_{3} & =-\left(\lambda+a_{1}\right) x_{3}-\nu-a_{3}
\end{aligned}
$$

where if $x_{1} \neq x_{2}$ then

$$
\lambda=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}, \quad \nu=\frac{y_{1} x_{2}-y_{2} x_{1}}{x_{2}-x_{1}},
$$

and if $x_{1}=x_{2}$ then

$$
\lambda=\frac{3 x_{1}^{2}+2 a_{2} x_{1}+a_{4}-a_{1} y_{1}}{2 y_{1}+a_{1} x_{1}+a_{3}}, \quad \nu=\frac{-x_{1}^{3}+a_{4} x_{1}+2 a_{6}-a_{3} y_{1}}{2 y_{1}+a_{1} x_{1}+a_{3}} .
$$

It is sometimes convenient to work with formulae in $x$ only. Specialising to the shorter Weierstrass form (2), assuming $P_{1} \neq P_{2}$, and putting $P_{4}=P_{1}-P_{2}=\left(x_{4}, y_{4}\right)$, we obtain

$$
\begin{aligned}
x_{3}+x_{4} & =\frac{2\left(x_{1} x_{2}+a\right)\left(x_{1}+x_{2}\right)+4 b}{\left(x_{1}-x_{2}\right)^{2}}, \\
x_{3} x_{4} & =\frac{x_{1}^{2} x_{2}^{2}-2 a x_{1} x_{2}-4 b\left(x_{1}+x_{2}\right)+a^{2}}{\left(x_{1}-x_{2}\right)^{2}} .
\end{aligned}
$$

