Set Theory and Logic: Example Sheet 1

1. In lectures I usually give subsets of the reals of order types $\omega+\omega$ and ω^{2}. Write down subsets of the reals with those order types and also one of order type ω^{3}.
2. (i) Show that a partial order $(A,<)$ is total if and only if any two initial segments are comparable under \subseteq.
(ii) Suppose that A is a well-ordered set. Show that any subset $X \subseteq A$ is order isomorphic to an initial segment of A. Show conversely that if A be a totally ordered set such that every subset of A is order isomorphic to some initial segment of A, then A is a wellordering.
3. (i) Let A be a well-ordering of order type α. Show that the set of initial segments of A is well-ordered by inclusion and determine its order type.
(ii) Suppose that X is a set of ordinals with no maximal element. Show that $\sup X$ cannot be a successor ordinal.
4. For a well-ordered set A, write $\mu(A)$ for the corresponding (von Neumann if you wish) ordinal.
(i) Suppose that A is a well-ordered set. Consider $A \supseteq X_{0} \supseteq X_{1} \supseteq X_{2} \cdots$ a decreasing subsequence of subsets of A. Why is $\mu\left(X_{n}\right)$ eventually constant? Give an example to show that we do not necessarily have $\mu\left(\bigcap_{n} X_{n}\right)=\bigcap_{n} \mu\left(X_{n}\right)$?
(ii) Suppose that A is a well-ordered set. Consider $X_{0} \subseteq X_{1} \subseteq X_{2} \cdots \subseteq A$ an increasing subsequence of subsets of A. Give an example to show that we do not necessarily have $\mu\left(\bigcup_{n} X_{n}\right)=\bigcup_{n} \mu\left(X_{n}\right)$? What simple condition can you impose on the X_{n} to make this equation true?
5. What is the least ordinal α such that $1+\alpha=\alpha$? The next least? The one after that? What is the least ordinal α such that $\omega+\alpha=\alpha$? The next least? The one after that? What is the least ordinal α such that $\omega \cdot \alpha=\alpha$? The next least? The one after that? What about $\alpha \cdot \omega=\alpha$?
6. (i) Prove that $\alpha \cdot(\beta+\gamma)=\alpha \cdot \beta+\alpha \cdot \gamma$ and that $\alpha \cdot(\beta \cdot \gamma)=(\alpha \cdot \beta) \cdot \gamma$.

What about $(\alpha+\beta) \cdot \gamma=\alpha \cdot \gamma+\beta \cdot \gamma$?
(ii) Establish the following properties of ordinal subtraction

$$
(\alpha+\beta)-\alpha=\beta ; \quad \alpha-(\beta+\gamma)=(\alpha-\beta)-\gamma ; \quad \alpha \cdot(\beta-\gamma)=\alpha \cdot \beta-\alpha \cdot \gamma .
$$

Show that for any ordinal α there are only finitely many ordinals of the form $\alpha-\beta$.
7. Show that for ordinals α and $\beta \neq 0$ there are unique ordinals γ and δ with $\alpha=\beta . \gamma+\delta$ and $\delta<\beta$.
Are there always γ, δ with $\alpha=\gamma \cdot \beta+\delta$ and $\delta<\beta$?
8. Show that the synthetic definition of ordinal addition given in lectures is equivalent to the recursive definition

$$
\alpha+0=\alpha ; \quad \alpha+(\beta+1)=(\alpha+\beta)+1 ; \quad \alpha+\lambda=\sup _{\beta<\lambda}(\alpha+\beta) .
$$

Show that the synthetic definition of ordinal multiplication given in lectures is equivalent to the recursive definition

$$
\alpha \cdot 0=0 ; \quad \alpha \cdot(\beta+1)=(\alpha \cdot \beta)+\alpha ; \quad \alpha \cdot \lambda=\sup _{\beta<\lambda}(\alpha \cdot \beta) .
$$

9. Show that λ is a limit ordinal if and only if $\lambda=\omega \cdot \gamma$ for some $\gamma \neq 0$.

For what ordinal γ do we have $\epsilon_{0}=\omega \cdot \gamma$? For what ordinal γ do we have $\omega_{1}=\omega \cdot \gamma$?
10. An ordinal written as $\omega^{\alpha_{1}} . n_{1}+\ldots+\omega^{\alpha_{k}} \cdot n_{k}$, where $\alpha_{1}>\ldots>\alpha_{k}$ are ordinals (and k and n_{1}, \ldots, n_{k} are non-zero natural numbers), is said to be in Cantor Normal Form. Show that every non-zero ordinal has a unique Cantor Normal Form. What is the Cantor Normal Form for the ordinal ϵ_{0} ? And for ω_{1} ?
11. Let α be a countable (non-zero) limit ordinal. Prove that there exists an increasing sequence $\alpha_{1}<\alpha_{2}<\alpha_{3}<\ldots$ with supremum equal to α. Is this result true for $\alpha=\omega_{1}$?
12. Show that, for every countable ordinal α, there is a subset of \mathbb{Q} of order-type α. Why is there no subset of \mathbb{R} of order-type ω_{1} ?

Comments, corrections and queries can be sent to me at m.hyland@dpmms.cam.ac.uk.

