Lent Term 2009

Set Theory and Logic: Example Sheet 1

- 1. In lectures I usually give subsets of the reals of order types $\omega + \omega$ and ω^2 . Write down subsets of the reals with those order types and also one of order type ω^3 .
- 2. (i) Show that a partial order (A, <) is total if and only if any two initial segments are comparable under \subseteq .

(ii) Suppose that A is a well-ordered set. Show that any subset $X \subseteq A$ is order isomorphic to an initial segment of A. Show conversely that if A be a totally ordered set such that every subset of A is order isomorphic to some initial segment of A, then A is a well-ordering.

3. (i) Let A be a well-ordering of order type α . Show that the set of initial segments of A is well-ordered by inclusion and determine its order type.

(ii) Suppose that X is a set of ordinals with no maximal element. Show that $\sup X$ cannot be a successor ordinal.

4. For a well-ordered set A, write $\mu(A)$ for the corresponding (von Neumann if you wish) ordinal.

(i) Suppose that A is a well-ordered set. Consider $A \supseteq X_0 \supseteq X_1 \supseteq X_2 \cdots$ a decreasing subsequence of subsets of A. Why is $\mu(X_n)$ eventually constant? Give an example to show that we do not necessarily have $\mu(\bigcap_n X_n) = \bigcap_n \mu(X_n)$?

(ii) Suppose that A is a well-ordered set. Consider $X_0 \subseteq X_1 \subseteq X_2 \cdots \subseteq A$ an increasing subsequence of subsets of A. Give an example to show that we do not necessarily have $\mu(\bigcup_n X_n) = \bigcup_n \mu(X_n)$? What simple condition can you impose on the X_n to make this equation true?

- 5. What is the least ordinal α such that $1 + \alpha = \alpha$? The next least? The one after that? What is the least ordinal α such that $\omega + \alpha = \alpha$? The next least? The one after that? What is the least ordinal α such that $\omega . \alpha = \alpha$? The next least? The one after that? What about $\alpha . \omega = \alpha$?
- 6. (i) Prove that $\alpha . (\beta + \gamma) = \alpha . \beta + \alpha . \gamma$ and that $\alpha . (\beta . \gamma) = (\alpha . \beta) . \gamma$. What about $(\alpha + \beta) . \gamma = \alpha . \gamma + \beta . \gamma$?
 - (ii) Establish the following properties of ordinal subtraction

$$(\alpha + \beta) - \alpha = \beta; \quad \alpha - (\beta + \gamma) = (\alpha - \beta) - \gamma; \quad \alpha . (\beta - \gamma) = \alpha . \beta - \alpha . \gamma.$$

Show that for any ordinal α there are only finitely many ordinals of the form $\alpha - \beta$.

7. Show that for ordinals α and $\beta \neq 0$ there are unique ordinals γ and δ with $\alpha = \beta \cdot \gamma + \delta$ and $\delta < \beta$.

Are there always γ , δ with $\alpha = \gamma . \beta + \delta$ and $\delta < \beta$?

8. Show that the synthetic definition of ordinal addition given in lectures is equivalent to the recursive definition

$$\alpha + 0 = \alpha$$
; $\alpha + (\beta + 1) = (\alpha + \beta) + 1$; $\alpha + \lambda = \sup_{\beta < \lambda} (\alpha + \beta)$.

Show that the synthetic definition of ordinal multiplication given in lectures is equivalent to the recursive definition

$$\alpha.0 = 0$$
; $\alpha.(\beta + 1) = (\alpha.\beta) + \alpha$; $\alpha.\lambda = \sup_{\beta < \lambda} (\alpha.\beta)$.

- 9. Show that λ is a limit ordinal if and only if $\lambda = \omega . \gamma$ for some $\gamma \neq 0$. For what ordinal γ do we have $\epsilon_0 = \omega . \gamma$? For what ordinal γ do we have $\omega_1 = \omega . \gamma$?
- 10. An ordinal written as $\omega^{\alpha_1} . n_1 + \ldots + \omega^{\alpha_k} . n_k$, where $\alpha_1 > \ldots > \alpha_k$ are ordinals (and k and n_1, \ldots, n_k are non-zero natural numbers), is said to be in *Cantor Normal Form*. Show that every non-zero ordinal has a unique Cantor Normal Form. What is the Cantor Normal Form for the ordinal ϵ_0 ? And for ω_1 ?
- 11. Let α be a countable (non-zero) limit ordinal. Prove that there exists an increasing sequence $\alpha_1 < \alpha_2 < \alpha_3 < \ldots$ with supremum equal to α . Is this result true for $\alpha = \omega_1$?
- 12. Show that, for every countable ordinal α , there is a subset of \mathbb{Q} of order-type α . Why is there no subset of \mathbb{R} of order-type ω_1 ?

Comments, corrections and queries can be sent to me at m.hyland@dpmms.cam.ac.uk.