Set Theory and Logic: Example Sheet 2

- 1. (i) Show that a totally ordered set (A, <) is well-ordered if and only if there are no infinite descending sequence a₀ > a₁ > a₂ > ···. Have you used AC in your proof?
 (ii) Write out a proof that a countable union of countable sets is countable. Where is the use of AC in your proof?
- 2. A collection X ⊆ P(X) of subsets of a set X, which is such that A ∈ X if and only for all finite a ⊆ A, a ∈ X is said to have *finite character*. The Teichmuller-Tukey Lemma is the statement: if X has finite character then it has a maximal element. Show that AC implies the Teichmuller-Tukey Lemma. Does the Teichmuller-Tukey Lemma in its turn imply AC?
- 3. Consider the statement: for any pair of cardinals \mathbf{m} and \mathbf{n} , either $\mathbf{m} \leq \mathbf{n}$ or $\mathbf{n} \leq \mathbf{m}$. Show that it is equivalent to AC.
- 4. (This question is a curiosity, not essential to the course.)
 Let AC_n be the principle that any family of n-element sets has a choice function.
 (i) Show that AC_{rs} implies AC_r for all r, s ≥ 1.
 (ii) Show that AC₂ implies AC₄.
- 5. A complete poset (X, \leq) is one in which the supremum sup A exists for all $A \subseteq X$. Show that in a complete poset the infimum inf A also exists for all $A \subseteq X$. Show that the fixed point constructed in the proof of the Knaster-Tarski Theorem is the greatest fixed point. Modify the proof to produce the least fixed point instead.
- 6. Which of the following posets (ordered by inclusion) are complete?
 - (i) The set of all subsets of \mathbb{N} that are finite or have finite complement.
 - (ii) The set of all independent subsets of a vector space V.
 - (iii) The set of all subspaces of a vector space V.
 - (iv) The set of all equivalence relations $R \subseteq X \times X$ on a set X.
- 7. Let X be a complete poset, and let $f: X \to X$ be order-reversing (meaning that $x \leq y$ implies $f(x) \geq f(y)$). Give an example to show that f need not have a fixed point. Show, however, that there must exist either a fixed point of f or two distinct points x and y with f(x) = y and f(y) = x.
- 8. (i) What is the cardinality of the set of open subsets in R?
 (ii) What is the cardinality of the set of all continuous functions from R to R?
- 9. Show that any two bases of a vector space have the same cardinality. Did you use AC?
- 10. Define the sum $\sum_{i \in I} L_i$ and product $\prod_{i \in I} L_i$ of an indexed family $(L_i | i \in I)$ of sets. Suppose that $(L_i | i \in I)$ and $(M_i | i \in I)$ are such that there are no surjections $L_i \to M_i$ for any $i \in I$. Show that there is no surjection $\sum_{i \in I} L_i \to \prod_{i \in I} M_i$. Deduce that there is no surjection from \aleph_{ω} to $\aleph_{\omega}^{\aleph_0}$. Can we have the equality $2^{\aleph_0} = \aleph_{\omega}$?

- 11. (Aspects of cardinal arithmetic without choice, so not central to the course.)
 (i) Prove that, even without AC, a countable union of countable sets certainly cannot have cardinality ℵ₂. (This should encourage quiet reflection on question 1 (ii).)
 (ii) Show that the cardinality of the set of well-orderings of the set N is 2^{ℵ0}. Deduce that, even without AC, ℵ₁ ≤* 2^{ℵ0}.
- 12. (i) Show that if m + n = m.n, then either n ≤ m or m ≤* n.
 (ii) Take κ a well-ordered cardinal (or initial ordinal). Show that if κ + n = κ.n, then either n ≤ κ or κ ≤ n.
 (iii) Deduce that if m + n = m.n for all infinite cardinals m and n, then AC holds.
- 13. Is there an ordinal α such that $\omega_{\alpha} = \alpha$?
- 14. Suppose that κ is an aleph (that is an infinite well-ordered cardinal). Show that if $\kappa \leq \mathbf{m}.\mathbf{n}$ then either $\kappa \leq \mathbf{m}$ or $\kappa \leq \mathbf{n}$.
- 15. How many different partial orders (up to isomorphism) are there on a set of 4 elements? How many of these are complete?
- 16. An open set in a topological space is said to be *regular* when it is the interior of its closure.

Give an example of a regular and a non-regular open set in \mathbb{R} .

Is the union of two regular opens necessarily regular? Is the intersection of two regular opens necessarily regular?

Consider the collection $\mathcal{R}(X)$ of regular open sets in a space X order by inclusion.

Show that $\mathcal{R}(X)$ is a boolean algebra.

Is $\mathcal{R}(X)$ a complete poset?

Is $\mathcal{R}(\mathbb{R})$ a Boolean algebra of the form P(Y) for some set Y?

Comments, corrections and queries can be sent to me at m.hyland@dpmms.cam.ac.uk.