Set Theory and Logic: Example Sheet 1

- 1. In lectures we saw subsets of the reals of order types $\omega + \omega$ and ω^2 . What were they? Write down a subset of the reals of order type ω^3 .
- 2. Let A be a well-ordering of order type α . Show that the set of initial segments of A is well-ordered by inclusion and determine its order type.
- 3. What is the least ordinal α such that $1 + \alpha = \alpha$? The next least? The one after that? What is the least ordinal α such that $\omega + \alpha = \alpha$? The next least? The one after that? What is the least ordinal α such that $\omega . \alpha = \alpha$? The next least? The one after that? What about $\alpha . \omega = \alpha$?
- 4. Prove that $\alpha.(\beta + \gamma) = \alpha.\beta + \alpha.\gamma$ and that $\alpha.(\beta.\gamma) = (\alpha.\beta).\gamma$. What about $(\alpha + \beta).\gamma = \alpha.\gamma + \beta.\gamma$?
- 5. Establish the following properties of ordinal subtraction

$$(\alpha + \beta) - \alpha = \beta; \quad \alpha - (\beta + \gamma) = (\alpha - \beta) - \gamma; \quad \alpha . (\beta - \gamma) = \alpha . \beta - \alpha . \gamma.$$

Show that for any ordinal α there are only finitely many ordinals of the form $\alpha - \beta$.

6. Show that for ordinals α and $\beta \neq 0$ there are unique ordinals γ and δ with $\alpha = \beta \cdot \gamma + \delta$ and $\delta < \beta$.

Are there always γ , δ with $\alpha = \gamma . \beta + \delta$ and $\delta < \beta$?

- 7. Suppose that X is a set of ordinals with no maximal element. Show that $\sup X$ cannot be a successor ordinal.
- 8. Show that the synthetic definition of ordinal addition given in lectures is equivalent to the recursive definition

$$\alpha + 0 = \alpha$$
; $\alpha + (\beta + 1) = (\alpha + \beta) + 1$; $\alpha + \lambda = \sup_{\beta < \lambda} (\alpha + \beta)$.

Show that the synthetic definition of ordinal multiplication given in lectures is equivalent to the recursive definition

$$\alpha.0 = 0$$
; $\alpha.(\beta + 1) = (\alpha.\beta) + \alpha$; $\alpha.\lambda = \sup_{\beta < \lambda} (\alpha.\beta)$.

- 9. Show that λ is a limit ordinal if and only if $\lambda = \omega . \gamma$ for some $\gamma \neq 0$. For what ordinal γ do we have $\epsilon_0 = \omega . \gamma$? For what ordinal γ do we have $\omega_1 = \omega . \gamma$?
- 10. An ordinal written as $\omega^{\alpha_1} . n_1 + \ldots + \omega^{\alpha_k} . n_k$, where $\alpha_1 > \ldots > \alpha_k$ are ordinals (and k and n_1, \ldots, n_k are non-zero natural numbers), is said to be in *Cantor Normal Form*. Show that every non-zero ordinal has a unique Cantor Normal Form. What is the Cantor Normal Form for the ordinal ϵ_0 ? And for ω_1 ?
- 11. Let α be a countable (non-zero) limit ordinal. Prove that there exists an increasing sequence $\alpha_1 < \alpha_2 < \alpha_3 < \ldots$ with supremum equal to α . Is this result true for $\alpha = \omega_1$?

- 12. Show that, for every countable ordinal α , there is a subset of \mathbb{Q} of order-type α . Why is there no subset of \mathbb{R} of order-type ω_1 ?
- 13. Suppose that A is a well-ordered set. Show that any subset of A is order isomorphic to an initial segment of A. Let X be a totally ordered set such that every subset of X is isomorphic to some initial segment of X. Prove that the total ordering is in fact a well-ordering.
- 14. Suppose that we are given < a (strict) partial order on a set X. Show that < can be extended to a total order on the same set X.
- 15. In this question do not assume the axiom of choice! Suppose that we know only that every set can be totally ordered. Show that any family of finite non-empty subsets of a set has a choice function.
- 16. (i) Suppose given a well-ordering < of A. We use it to construct a choice function $f: P_{\neq \emptyset}(A) \to A$, by setting f(x) to be the <-least element of x. Show that

$$f(x \cup y) = f(\{f(x), f(y)\}).$$

(ii) Suppose now given a choice function $f: P_{\neq \emptyset}(A) \to A$ satisfying the above condition. Show that there is a well-ordering of A which induces this choice function.

Comments, corrections and queries can be sent to me at m.hyland@dpmms.cam.ac.uk.