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Linear Algebra: Recapitulation from IA

This sheet contains basic definitions with which you should be familiar from IA. Though we shall go through

the material again at the start of the IB course, if you do not feel at home with the ideas, the sooner you

become so the better.

A vector space V over a field K is a set V equipped with the structure of an abelian group together with
a compatible action scalar multiplication of K: the structure and axioms are as follows.

Abelian Group V is a commutative group under addition + : V × V → V : the additive identity is 0 and
the additive inverse of v is −v.

Field Action Scalar multiplication (−.−) : K × V → V satisfies the action laws

(i) 1.v = v for all v ∈ V ;

(ii) λ.(µ.v) = (λµ).v for all λ, µ ∈ K and v ∈ V ;

and the distributive laws

(i) (λ + µ).v = λ.v + µ.v for all λ, µ ∈ K and v ∈ V ;

(ii) λ.(u + v) = λ.u + λ.v for all λ ∈ K and u,v ∈ V .

The point of the definition is that finite linear combinations of the form
∑

n

1
λixi can be handled in the way

with which we are familiar. (NB. All our linear combinations are finite.)
A subspace W of a vector space V is a subset of V containing 0 and closed under addition and scalar

multiplication. Then W forms a vector space under the induced operations. We write W ≤ V . For W to be
a subspace of V it is necessary and sufficient that W be non-empty and closed under λ.u + µ.v.

Suppose that V and W are vector spaces. A map α : V → W is linear just when

α(u + v) = α(u) + α(v) and α(λ.u) = λ.α(u) .

A linear map preserves linear combinations α(
∑

n

1
λixi) =

∑
n

1
λiα(xi). It is sufficient to check the equality

α(λ.u + µ.v) = λ.α(u) + µ.α(v).
If α : V → W is linear, then its kernel kerα is a subspace of V and its image Imα is a subspace of W .
A subset {ei} of a vector space V (or sequence in V according to context) is linearly independent just when

no non-trivial linear combination is 0: that is, when
∑

λiei = 0 implies λi = 0 for all i.
A set (sequence) which is not linearly independent is linearly dependent. Note that by the definition, the
empty set ∅ is always linearly independent. Also any set containing the zero vector 0 is linearly dependent
(because 1.0 = 0).

A subset {ei} of a vector space V (or sequence in V ) spans V (or is a spanning set in V ) just when any x

in V is a linear combination of the ei: that is when we can write any x as x =
∑

xiei.
Note that for any vectors ei in V , the set of linear combinations

∑
xiei forms a subspace 〈ei〉 of V ; and it is

trivial that the ei span 〈ei〉.
A linearly independent spanning set (or sequence) in V is a basis for V . If {ei} is a basis for V , then any

x in V can be written uniquely as a linear combination of the ei: that is for any vector x there are unique
coordinates xi of x with respect to the basis ei such that we have x =

∑
xiei.

WARNING Of course the first coordinate x1 depends on the whole basis ei, and not just on the vector e1.
The number of elements in a basis is the dimension, dim V of a vector space V . We shall show that this

makes good sense for finite dimensional vector spaces, which is the case with which we are mostly concerned.
The rank r(α) of a linear map α : V → W is the dimension of the image; and the nullity n(α) is the

dimension of the kernal. So r(α) = dim(Imα) and n(α) = dim(kerα).
The fundamental principle for counting dimensions is the rank-nullity theorem:

for α : V → W , r(α) + n(α) = dimV .
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