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Linear Algebra: Jordan Normal Form

One can regard the concrete proof of the existence of Jordan Normal Form (JNF) as consisting of three parts.
First there is the decomposition into generalised eigenspaces. Then there is an analysis of (bases for) nilpotent
endomorphisms. Finally we put things together to get the JNF

1 Generalised Eigenspaces

The following decomposition is relatively straightforward to establish. (Essentially it depends on the Chinese
Remainder Theorem.) Suppose that α : V → V is an endomorphism of a finite dimensional complex vector
space V ; and suppose that its minimal polynomial is

m(t) = (t − λ1)
d1(t − λ2)

d2 . . . (t − λk)dk

so we have k distinct eigenvalues λ1, λ2, . . . , λk. Then V is the direct sum

V = V (λ1) ⊕ V (λ2) ⊕ · · · ⊕ V (λk)

of the generalised eigenspaces

V (λi) = ker((α − λiI)di) for i = 1, 2, . . . , k.

Furthermore each generalised eigenspace V (λi) is α-invariant, that is α maps V (λi) to V (λi), and the endo-
morphism

αi : V (λi) → V (λi) ; v → α(v)

has minimal polynomial (t − λi)
di . In particular we see that each αi − λi is nilpotent, so we are reduced to

constructing a good base for a nilpotent endomorphism.

2 Nilpotent Endomorphisms

Now suppose that we have a nilpotent endomorphism α of a finite dimensional vector space V , so that there
is a natural number d with αd−1 6= 0 but αd = 0. Then we have a manifestly increasing sequence

{0} = K0 ≤ K1 ≤ K2 ≤ . . . ≤ Kd−1 ≤ Kd = V

of subspaces Ki = ker(αi) with α(Ki+1) ≤ Ki. Note that this must be a strictly increasing sequence of
subspaces as generally ker(αi) = ker(αi+1) implies ker(αi+1) = ker(αi+2) and so on. In particular it follows
easily that e ≤ dim(V ) = n. (It is easy to see just by looking at exponents that the minimal polynomial must
divide characteristic polynomial; this gives yet another argument for the Cayley-Hamilton Theorem.) What
we are about to do confirms that the JNF is determined by the various nullities in question.

Conceptually our first task is to find the cyclic blocks of size d. There are two essentially equivalent methods.

1) Look at Imαd−1. (It is a space of eigenvectors.) Take a basis f1, . . . , fr, and let αd−1(ei) = fi. We see
readily that

V = Kd−1 ⊕ Wd−1 where Wd−1 = 〈e1, . . . , er〉 .

For we clearly have Kd−1 ∩ Wd−1 = {0}; and if x ∈ V we can write αd−1(x) =
∑

xifi and then

x = (x −
∑

xiei) +
∑

xixi with (x −
∑

xiei) ∈ Kd−1 and
∑

xiei ∈ Wd−1 .
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2) Take a complement V = Kd−1⊕Wd−1 for Kd−1 in V . Take a basis e1, . . . , er for Wd−1. Since Kd−1∩Wd−1 =
{0} it follows that setting αd−1(ei) = fi we get a basis f1, . . . , fr for Imαd−1.

Either way we get cyclic subspaces

〈ei〉α = 〈ei, α(ei), . . . , α
d−1(ei)〉 ;

and a little argument will show independence so that we have a direct sum

〈e1〉α ⊕ · · · ⊕ 〈er〉α .

This gives us r cyclic subblocks of size d.

Now we seek the cyclic subblocks of size d − 1. Again there are two ways to look at things.

1) Look at Imαd−2. We already have independent elements αd−2(ei), αd−1(ei), the latter being eigenvectors.
We can extend this to a basis of Imαd−2 by elements which are also eigenvectors; and we find elements which
go to these new elements under αd−2. These together with the α(ei) will be the basis for a space Wd−2 with
Kd−1 = Kd−2 ⊕ Wd−2; and on their own they will give the cyclic subspaces of size d − 2.
2) Just take a complement Wd−2 for Kd−2 in Kd−1 which includes α(Wd−1). Extending a basis for α(Wd−1)
to one for Wd−2 provides elements which will give the cyclic subspaces of size d − 2.

So we continue in this way. A succinct explanation is as follows. We show inductively (starting with Wd−1,
and working downwards) that there are subspaces Wd−1, Wd−2, . . . , W1, W0 which satisfy

Ki+1 = Ki ⊕ Wi and α(Wi+1) ⊂ Wi

for i = 0, 1, 2, . . . , d − 1.

Then we can organise bases for these spaces to give a basis (um)n
m=1 for V with α(um) equal to either um−1

or 0 for every m. We have then decomposed V into a direct sum of cyclic subspaces on each of which α acts
as in question 4 of example sheet 3. (There are more abstract ways to do all this!) In view of the answer to
question 4, the matrix for α looks like













C1 0 0 . . . 0
0 C2 0 . . . 0
0 0 C3 . . . 0
...

. . .
...

0 0 0 . . . Cm













.

where each Ci is a matrix of form K with 1s down the subdiagonal, and m is the dimension of the eigenspace.

3 Jordan Normal Form

Having analysed the nilpotent case, we return to the case of a general α as in Section 1. We apply what we
have learnt about nilpotent endomorphisms in Section 2 to the nilpotent endomorphisms αi −λi. The matrix
we get for α is of the form













B1 0 0 . . . 0
0 B2 0 . . . 0
0 0 B3 . . . 0
...

. . .
...

0 0 0 . . . Bk













.

where the blocks B corresponding to the generalised eigenspaces V (λ), are themselves of form













C1 0 0 . . . 0
0 C2 0 . . . 0
0 0 C3 . . . 0
...

. . .
...

0 0 0 . . . Cm













.
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when we take the bases for each V (λ) found in Section 2, so that the Ci are of the form λI + K. This gives
the Jordan Normal Form for α.

4 Worked example

Consider the matrix

A =















3 0 1 0 1 0
1 3 1 −1 0 1
−1 0 1 0 −1 0
1 1 1 1 0 1
0 0 0 0 2 0
1 0 1 0 0 2















.

One can easily check that the characteristic polynomial is (t − 2)6, so there is just one eigenvalue 2. So we
consider

A − 2I =















1 0 1 0 1 0
1 1 1 −1 0 1
−1 0 −1 0 −1 0
1 1 1 −1 0 1
0 0 0 0 0 0
1 0 1 0 0 0















;

then

(A − 2I)2 =















0 0 0 0 0 0
1 0 1 0 0 0
0 0 0 0 0 0
1 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0















;

and
(A − 2I)3 = 0.

Just by looking at the nullities we can see that there will be cyclic subspaces of dimensions 3, 2 and 1 in the
JNF.

First we find a generator for a cyclic subspace of dimension 3. We either see that















0
1
0
1
0
0















∈ Im(A− 2)2 and

take a preimage















1
0
0
0
0
0















say; or we pick perhaps less obviously















1
0
0
0
0
0















to generate a complement to ker(A− 2)2.

So for a cyclic subspace of dimension 3 we get a basis















1
0
0
0
0
0















7−→















1
1
−1
1
0
1















7−→















0
1
0
1
0
0















with the last an eigenvector.
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Next we find a generator for a cyclic subspace of dimension 2. Either we look in Im(A − 2) where we already
have two linearly independent vectors one an eigenvector; we seek a further vector which is also an eigenvector

and get most obviously















1
0
−1
0
0
0















, with preimage















0
0
0
0
1
0















. Alternatively we find the same vector generating,

together with the vector















1
1
−1
1
0
1















which we already have, a complement to ker(A − 2) in ker(A − 2)2 . So for

a cyclic subspace of dimension 2 we get a basis















0
0
0
0
1
0















7−→















1
0
−1
0
0
0















with the last an eigenvector.

Finally we seek a generator for a cyclic subspace of dimension 1. So we either look in F 6 where we already
have five independent vectors and find a sixth which is an eigenvector; or else we look for a complement to

{0} in ker(A− 2) and a basis for it including the two eigenvectors















0
1
0
1
0
0















and















1
0
−1
0
0
0















we already have. Much

the same either way,















0
0
0
1
0
1















seems indicated. It generates a cyclic subspace of dimension 1.

In summary we have a basis (with A − 2-action indicated)















1
0
0
0
0
0















7−→















1
1
−1
1
0
1















7−→















0
1
0
1
0
0





























0
0
0
0
1
0















7−→















1
0
−1
0
0
0





























0
0
0
1
0
1















with respect to which A has matrix














2 0 0 0 0 0
1 2 0 0 0 0
0 1 2 0 0 0
0 0 0 2 0 0
0 0 0 1 2 0
0 0 0 0 0 2















.
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