COMPLEX ANALYSIS EXAMPLES 3

These questions are the usual mix not all equally difficult. The first four are maybe tricky, so make sure that you do all the integrals.
I welcome both comments and corrections which can be sent to m.hyland@dpmms.cam.ac.uk.

1. Let f be a function analytic on \mathbb{C} apart from a finite number of poles. Show that if there exists k such that $|f(z)| \leq|z|^{k}$ for all sufficiently large z, then f is a rational function (i.e. the quotient of two polynomials).
2. Suppose that f is an analytic function on $\{z: 0<|z-a|<R\}$. Show that if the singularity at $z=a$ is not removable then $\exp f(z)$ has an essential singularity at $z=a$. Deduce that if there exists M such that $\Re f(z)<M$ for $0<|z-a|<R$ then f has a removable singularity at $z=a$.
3. Suppose that $f: D(0,1) \rightarrow D(0,1)$ is analytic with $f(0)=0$.
(i) Show that the function $g(z)=f(z) / z$ has a removable singularity at 0 . Use the maximum modulus principle to deduce that $|f(z)| \leq|z|$ for all $z \in D(0,1)$.
[Careful. You are not told and do not need to know anything about behaviour at the boundary.]
(ii) Suppose that $|f(a)|=|a|$ for some $a \neq 0$. Show that $f(z)=\omega z$ for some ω with $|\omega|=1$.
4. Suppose that f_{n} are analytic, and that $f_{n} \rightarrow f$ locally uniformly and with f not constant. Show that for any $a \in D$ there is $N(a) \in \mathbb{N}$ and a sequence a_{n} for $n \geq N(a)$ with $a_{n} \rightarrow a$ as $n \rightarrow \infty$ and with $f_{n}\left(a_{n}\right)=f(a)$.
[You use some later theorem but this can be attempted quite early in the course.]
5. Using the residue theorem establish the following.
(i) $\int_{-\infty}^{\infty} \frac{x^{2}}{x^{4}+10 x^{2}+9} d x=\frac{\pi}{4}$;
(ii) $\int_{-\infty}^{\infty} \frac{d x}{x^{4}+1}=\frac{\pi}{\sqrt{2}}$;
(iii) $\int_{-\infty}^{\infty} \frac{x^{2}}{x^{4}+1} d x=\frac{\pi}{\sqrt{2}} ;$
(iv) $\int_{-\infty}^{\infty} \frac{d x}{x^{6}+1}=\frac{2 \pi}{3}$.
[How many of these integrals can you calculate by standard real variable techniques?]
6. For $a, b>0$ and $a \neq b$ evaluate $\int_{-\infty}^{\infty} \frac{\cos x}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)} d x$. Also evaluate $\int_{-\infty}^{\infty} \frac{\cos x}{\left(x^{2}+a^{2}\right)^{2}} d x$. Can the latter be deduced from the former by letting $b \rightarrow a$?
7. For $-1<\alpha<1$, and $\alpha \neq 0$, compute $\int_{0}^{\infty} \frac{x^{\alpha} d x}{1+x+x^{2}}$. Letting $\alpha \rightarrow 0$ and recalculate $\int_{0}^{\infty} \frac{d x}{1+x+x^{2}}$. (You should get the same answer viz $2 \pi / 3 \sqrt{3}$ as in lectures.)
8. Let $a>0$. For $\omega \in \mathbb{R}$ evaluate the following integrals.
(a) $\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-a x^{2}} e^{-i \omega x} d x$
(b) $\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \frac{\sin x}{x} e^{-i \omega x} d x$.
(c) $\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \frac{e^{-i \omega x}}{x^{2}+a^{2}} d x$.
9. Compute the following integrals.

$$
\int_{-1}^{1} x^{2}\left(1-x^{2}\right)^{1 / 2} d x ; \quad \quad \int_{-1}^{1} \frac{d x}{(2-x)\left(1-x^{2}\right)^{1 / 2}}
$$

[Explain how you got the sign right in each case?]
10. (i) For a positive integer N let γ_{N} be the square contour with vertices $(\pm 1 \pm i)(N+1 / 2)$. Show that there exists a constant $C>0$ such that $|\cot \pi z|<C$ on every γ_{N}.
(ii) By integrating $\frac{\pi \cot \pi z}{z^{2}+1}$, show that $\sum_{0}^{\infty} \frac{1}{n^{2}+1}=\frac{1+\pi \operatorname{coth} \pi}{2}$.
(iii) Evaluate $\sum_{0}^{\infty} \frac{(-1)^{n}}{n^{2}+1}$.
11. Let $f: D \rightarrow \mathbb{C}$ be analytic and take $a \in D$ with $f^{\prime}(a) \neq 0$. Show that for $r>0$ sufficiently small the formula

$$
g(w)=\frac{1}{2 \pi i} \int_{|z-a|=r} z \frac{f^{\prime}(z)}{f(z)-w} d z
$$

defines an analytic function in some neighbourhood of $f(a)$ which is inverse to f.
12. (a) Show that $z^{4}+z+1$ has one zero in each quadrant. Show that all roots lie inside the circle $|z|=3 / 2$.
(b) How many zeros does $z^{4}+12 z+1$ have in the annulus $2<|z|<3$? Are they distinct? Can you determine in which quadrants they lie?
(c) Find an annulus centre 0 in which $z^{4}+26 z+4$ has exactly three roots. Can you determine in which quadrants they lie?
13. Consider the polynomials
(a) $p(z)=z^{4}+z^{3}+2 z^{2}+5 z+2$;
(b) $p(z)=z^{4}+z^{3}+2 z^{2}+5 z+3$;
(c) $p(z)=z^{4}+z^{3}+2 z^{2}+5 z+4$.

In each case determine whether $p(z)$ has real roots and determine in which quadrants the non-real roots lie.
14 Establish the following refinement of the Fundamental Theorem of Algebra.
Let $p(z)=z^{n}+a_{n-1} z^{n-1}+\cdots+a_{0}$ be a polynomial of degree n, and $A=\max \left\{\left|a_{i}\right|: 0 \leq i \leq n-1\right\}$. Then $p(z)$ has n roots counting multiplicities in the disc $|z|<A+1$.
15. Prove that $z \sin z=1$ has only real solutions. [How many real roots are there in the interval $[-(n+1 / 2) \pi,(n+1 / 2) \pi]$? How many roots are there in the disc $|z|<(n+1 / 2) \pi$?]
16. Show that if $|a|>e$, then $a z^{n}=e^{z}$ has n distinct solutions in the unit disc. Find an upper bound r such that if $|a|<r$ then $a z^{n}=e^{z}$ has no solutions in the unit disc. Can you say anything when $r<|a|<e$?
17. Prove the following strengthened form of Rouché's Theorem.

Suppose that the analytic functions f and g are such that $|g|<|f|+|f+g|$ on a simple closed curve γ. Then f and $f+g$ have the same number of zeros inside γ.

Finally an additional question to think about. Perhaps for once you really will use the Jordan Curve Theorem?
18. Suppose that γ is a simple closed curve contained (with its interior) in a domain D. Suppose that $f: D \rightarrow \mathbb{C}$ is an analytic function which takes no value more than once on γ. Show that f takes no value more than once inside γ.

