COMPLEX ANALYSIS EXAMPLES 1

These questions are a mix of questions from recent versions of the course together with some specific to my own take on the material. The questions are not all equally difficult.
I welcome both comments and corrections which can be sent to m.hyland@dpmms.cam.ac.uk.

1. Let $T: \mathbb{C}=\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}=\mathbb{C}$ be a real linear map. Show that T can be written $T z=A z+B \bar{z}$ for unique $A, B \in \mathbb{C}$. Deduce that T is complex linear if and only if $B=0$ if and only if T is complex differentiable.
2. Show that $f(z)=|z|^{2}$ is complex differentiable at $z=0$ but nowhere else in \mathbb{C}. What about $f(z)=|z|$? What about \bar{z} ?
3. Suppose that $f: D \rightarrow \mathbb{C}$ is differentiable at $a \in D$ with $f^{\prime}(a)=b$. Let $\bar{D}=\{z \mid \bar{z} \in D\}$ and define $g: \bar{D} \rightarrow \mathbb{C}$ by $g(z)=\overline{f(\bar{z})}$. Show that $g: \bar{D} \rightarrow \mathbb{C}$ is complex differentiable at $\bar{a} \in \bar{D}$ with $g^{\prime}(\bar{a})=\bar{b}$.
4. Find all analytic functions of the form $f(z)=f(x+i y)=u(x)+i v(y)$.
5. Under what condition is the function $u(x, y)=a x^{2}+2 b x y=c y^{2}$ the real part of an analytic function $f(z)$? Assuming the condition is satisfied give such an f
6. (i) Verify by direct calculation that the Cauchy-Riemann equations hold both for the exponential function $\exp (z)$ and for the principle branch $\log (z)$ of the logarithm.
(ii) Show that the function $u(x, y)=\cos x \cosh y$ is harmonic. Find a conjugate harmonic function $v(x, y)$, that is, a function v such that u and v together satisfy the Cauchy-Riemann equations. Find (explicitly in terms of z) an analytic function $f(z)$ with real part equal to u.
7. Let $f: D \rightarrow \mathbb{C}$ be analytic. Show that if any of the real part $\Re f$, imaginary part $\Im f$, modulus $|f|$, or $\operatorname{argument} \arg f$ of f are constant then so is f.
8. (i) Find the set of complex numbers z for which $|\exp (z)|>1$, the set of those for which $|\exp (i z)|>1$ and the set of those for which $|\exp (z)| \leq e^{|z|}$.
(ii) Find the zeros of $1+\exp z, \cosh z, \sinh z$ and $\sin z+\cos z$.
9. Write down the power series expansion for the principal branch of the logarithm about 1 . What is its radius of convergence? Show that the series does indeed give the principle branch where defined.
10. What is the power i^{i} if in the definition of z^{α} we use the principal branch of the logarithm? What do we get with other branches? What about 1^{i} and i^{1} What about e^{i} ? Is it true that $\exp z=e^{z}$?
11. (i) Show that the transformation $w=\sin z$ maps the z-plane onto the w-plane. Where is this transformation locally conformal?
(ii) Show that $w=\sin z$ maps lines $y=b$ where $b \neq 0$ to ellipses in the w-plane. What happens to the line $y=0$? What are the images of curves $x=a$?
(iii) Exhibit a domain mapped conformally onto its image by $w=\sin z$.
12. What are the images of ∞, i and 0 under the transformation $w=\frac{z-i}{z+i}$? That is enough information to determine the image of $\{z: \Re z>0$ and $\Im z>0\}$. What is it? And what are the images of the other quarter planes? Finally what is the image of the quadrant $\{z \in D(0,1): \Re z>$ 0 and $\Im z>0\}$? And why?
13. Can you find conformal isomorphisms between the following domains and the unit disc?
(i) $\{z \in D(0,1): \Re z>0$ and $\Im z>0\}$.
(ii) $\{z: \Re z<0$ and $0<\Im z<\pi\}$.
(iii) $\{z:|z-1|<\sqrt{2}$ and $|z+1|<\sqrt{2}\}$.
(iv) $\{z:|z+1|>1$ and $|z+2|<2\}$.
(v) $\{z:|z+1|>0$ and $|z+2|<2\}$.
14. (i) Show that a Möbius transformation $w=\frac{a z+b}{c z+d}$ maps the upper half plane to itself if and only if up to scalar multiple a, b, c and d are real with $a d-b c>0$.
(ii) Show that a Möbius transformation maps the unit disc to itself if and only if it is of the form $w=\lambda \frac{z-b}{\bar{b} z-1}$ where $|b|<1$ and $|\lambda|=1$.
(iii) Characterise the Mobius transformations mapping the upper half plane to the unit disc.
15. (i) Find a Möbius transformation which sends the region between the two circles $|z|=1$ and $|z-1|=5 / 2$ into an annulus $\{w: 1<|w|<R\}$. What is R ? Did you have a choice of R ?
(ii) Find a Möbius transformation which sends the unbounded region outside both of the circles $|z-5|=4$ and $|z+5|=4$ into an annulus $\{w: 1<|w|<R\}$. Again what is R ? And again did you have a choice?
16. Suppose that $f: \mathbb{C} \rightarrow \mathbb{C}$ is analytic. Can you find $\int_{|z|=r} f(\bar{z}) d \bar{z}$? What about $\int_{|z|=r} \overline{f(z)} d \bar{z}$? (Here $d \bar{z}$ has the natural interpretation $r e^{-i \theta} d \theta$.
17. Let \mathbb{C}^{-}be the complex plane with $(-\infty, 0]$ removed. Define $l: \mathbb{C}^{-} \rightarrow \mathbb{C}$ by $l(z)=\int_{[1, z]} \frac{d w}{w}$.
(i) Show that $l^{\prime}(z)=\frac{1}{z}$ and deduce that $l(z)$ is the principal branch of the logarithm.
(ii) Compute $l(z)$ directly by integrating first along the straight line from 1 to $|z|$ and then round the circle centre 0 radius $|z|$ to z.
18. Suppose that $h: \mathbb{C} \rightarrow \mathbb{C}^{\times}$is an analytic function with no zeros. Show that there is an analytic function $H: \mathbb{C} \rightarrow \mathbb{C}$ such that $h(z)=\exp H(z)$ for all z.
