COMPLEX ANALYSIS EXAMPLES 3

Lent 2010

J. M. E. Hyland

These questions are a mix of questions from recent versions of the course together with some specific to my own take on the material. The questions are not all equally difficult. I welcome both comments and corrections which can be sent to m.hyland@dpmms.cam.ac.uk.

1. Using the residue theorem establish the following.

(i)
$$\int_{-\infty}^{\infty} \frac{x^2}{x^4 + 10x^2 + 9} dx = \frac{\pi}{4};$$
 (ii) $\int_{-\infty}^{\infty} \frac{dx}{x^4 + 1} = \frac{\pi}{\sqrt{2}};$
(iii) $\int_{-\infty}^{\infty} \frac{x^2}{x^4 + 1} dx = \frac{\pi}{\sqrt{2}};$ (ii) $\int_{-\infty}^{\infty} \frac{dx}{x^6 + 1} = \frac{2\pi}{3}.$

[How many of these integrals can you calculate by standard real variable techniques?]

2. For a, b > 0 and $a \neq b$ evaluate $\int_{-\infty}^{\infty} \frac{\cos x}{(x^2 + a^2)(x^2 + b^2)} dx$. Also evaluate $\int_{-\infty}^{\infty} \frac{\cos x}{(x^2 + a^2)^2} dx$. Can the latter be deduced from the former by letting $b \to a$?

3. Compute the residue of $(1+z^2)^{-n}$ at z = i, and deduce that $\int_{-\infty}^{\infty} \frac{dx}{(1+x^2)^n} = \pi \frac{(2n-2)!}{2^{2n-2}((n-1)!)^2}$. What is the value of $\int_{-\infty}^{\infty} \frac{\cos x dx}{(1+x^2)^n}$?

4. For $-1 < \alpha < 1$, and $\alpha \neq 0$, compute $\int_0^\infty \frac{x^\alpha dx}{1+x+x^2}$. Letting $\alpha \to 0$ and recalculate $\int_0^\infty \frac{dx}{1+x+x^2}$. (You should get the same answer viz $2\pi/3\sqrt{3}$ as in lectures.)

5. By integrating $\frac{z}{a - e^{-iz}}$ around the rectangle with vertices $\pm \pi$, $\pm \pi + iR$, prove that

$$\int_0^\infty \frac{x \sin x}{1 - 2a \cos x + a^2} dx = \frac{\pi}{a} \log(1 + a), \quad \text{for } 0 < a < 1.$$

6. Let a > 0. For $\omega \in \mathbb{R}$ evaluate the following integrals.

(a)
$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-ax^2} e^{-i\omega x} dx$$
 (b) $\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{\sin x}{x} e^{-i\omega x} dx$. (c) $\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{e^{-i\omega x}}{x^2 + a^2} dx$.

7. (i) For a positive integer N let γ_N be the square contour with vertices $(\pm 1 \pm i)(N + 1/2)$. Show that there exists a constant C > 0 such that $|\cot \pi z| < C$ on every γ_N .

(ii) By integrating
$$\frac{\pi \cot \pi z}{z^2 + 1}$$
, show that $\sum_{0}^{\infty} \frac{1}{n^2 + 1} = \frac{1 + \pi \coth \pi}{2}$
(iii) Evaluate $\sum_{0}^{\infty} \frac{(-1)^n}{n^2 + 1}$.

8. Let $f: D \to \mathbb{C}$ be analytic and take $a \in D$ with $f'(a) \neq 0$. Show that for r > 0 sufficiently small the formula

$$g(w) = \frac{1}{2\pi i} \int_{|z-a|=r} z \frac{f'(z)}{f(z) - w} dz$$

defines an analytic function in some neighbourhood of f(a) which is inverse to f.

9. (a) Show that $z^4 + z + 1$ has one zero in each quadrant. Show that all roots lie inside the circle |z| = 3/2.

(b) How many zeros does $z^4 + 12z + 1$ have in the annulus 2 < |z| < 3? Are they distinct? Can you determine in which quadrants they lie?

(c) Find an annulus centre 0 in which $z^4 + 26z + 4$ has exactly three roots. Can you determine in which quadrants they lie?

10. Consider the polynomials

(a) $p(z) = z^4 + z^3 + 2z^2 + 5z + 2;$ (b) $p(z) = z^4 + z^3 + 2z^2 + 5z + 3;$ (c) $p(z) = z^4 + z^3 + 2z^2 + 5z + 4.$

In each case determine whether p(z) has real roots and determine in which quadrants the non-real roots lie.

11 Establish the following refinement of the Fundamental Theorem of Algebra.

Let $p(z) = z^n + a_{n-1}z^{n-1} + \dots + a_0$ be a polynomial of degree n, and $A = \max\{|a_i| : 0 \le i \le n-1\}$. Then p(z) has n roots counting multiplicities in the disc |z| < A + 1.

12. Prove that $z \sin z = 1$ has only real solutions. [How many real roots are there in the interval $[-(n+1/2)\pi, (n+1/2)\pi]$? How many roots are there in the disc $|z| < (n+1/2)\pi$?]

13. Show that if |a| > e, then $az^n = e^z$ has n distinct solutions in the unit disc. Find an upper bound r such that if |a| < r then $az^n = e^z$ has no solutions in the unit disc. Can you say anything when r < |a| < e?

14. Prove the following strengthened form of Rouché's Theorem.

Suppose that the analytic functions f and g are such that |g| < |f| + |f + g| on a simple closed curve γ . Then f and f + g have the same number of zeros inside γ .

Finally an additional question to think about. Perhaps for once you really will use the Jordan Curve Theorem?

15. Suppose that γ is a simple closed curve contained (with its interior) in a domain D. Suppose that $f: D \to \mathbb{C}$ is an analytic function which takes no value more than once on γ . Show that f takes no value more than once inside γ .