
COMPLEX ANALYSIS EXAMPLES 3

Lent 2010 J. M. E. Hyland

These questions are a mix of questions from recent versions of the course together with some specific
to my own take on the material. The questions are not all equally difficult.

I welcome both comments and corrections which can be sent to m.hyland@dpmms.cam.ac.uk.

1. Using the residue theorem establish the following.

(i)

∫ ∞

−∞

x2

x4 + 10x2 + 9
dx =

π

4
; (ii)

∫ ∞

−∞

dx

x4 + 1
=

π√
2
;

(iii)

∫ ∞

−∞

x2

x4 + 1
dx =

π√
2
; (ii)

∫ ∞

−∞

dx

x6 + 1
=

2π

3
.

[How many of these integrals can you calculate by standard real variable techniques?]

2. For a, b > 0 and a 6= b evaluate

∫ ∞

−∞

cosx

(x2 + a2)(x2 + b2)
dx. Also evaluate

∫ ∞

−∞

cosx

(x2 + a2)2
dx.

Can the latter be deduced from the former by letting b → a?

3. Compute the residue of (1+z2)−n at z = i, and deduce that

∫ ∞

−∞

dx

(1 + x2)n
= π

(2n − 2)!

22n−2((n − 1)!)2
.

What is the value of

∫ ∞

−∞

cosxdx

(1 + x2)n
?

4. For −1 < α < 1, and α 6= 0, compute

∫ ∞

0

xαdx

1 + x + x2
. Letting α → 0 and recalculate∫ ∞

0

dx

1 + x + x2
. (You should get the same answer viz 2π/3

√
3 as in lectures.)

5. By integrating
z

a − e−iz
around the rectangle with vertices ±π, ±π + iR, prove that

∫ ∞

0

x sin x

1 − 2a cosx + a2
dx =

π

a
log(1 + a) , for 0 < a < 1 .

6. Let a > 0. For ω ∈ R evaluate the following integrals.

(a)
1√
2π

∫ ∞

−∞

e−ax
2

e−iωxdx (b)
1√
2π

∫ ∞

−∞

sin x

x
e−iωxdx. (c)

1√
2π

∫ ∞

−∞

e−iωx

x2 + a2
dx.

1
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7. (i) For a positive integer N let γN be the square contour with vertices (±1 ± i)(N + 1/2). Show
that there exists a constant C > 0 such that | cotπz| < C on every γN .

(ii) By integrating
π cotπz

z2 + 1
, show that

∞∑
0

1

n2 + 1
=

1 + π coth π

2
.

(iii) Evaluate

∞∑
0

(−1)n

n2 + 1
.

8. Let f : D → C be analytic and take a ∈ D with f ′(a) 6= 0. Show that for r > 0 sufficiently small
the formula

g(w) =
1

2πi

∫
|z−a|=r

z
f ′(z)

f(z)− w
dz

defines an analytic function in some neighbourhood of f(a) which is inverse to f .

9. (a) Show that z4 + z + 1 has one zero in each quadrant. Show that all roots lie inside the circle
|z| = 3/2.

(b) How many zeros does z4 + 12z + 1 have in the annulus 2 < |z| < 3? Are they distinct? Can
you determine in which quadrants they lie?

(c) Find an annulus centre 0 in which z4 + 26z + 4 has exactly three roots. Can you determine
in which quadrants they lie?

10. Consider the polynomials
(a) p(z) = z4 + z3 + 2z2 + 5z + 2;
(b) p(z) = z4 + z3 + 2z2 + 5z + 3;
(c) p(z) = z4 + z3 + 2z2 + 5z + 4.

In each case determine whether p(z) has real roots and determine in which quadrants the non-real
roots lie.

11 Establish the following refinement of the Fundamental Theorem of Algebra.

Let p(z) = zn +an−1z
n−1 + · · ·+a0 be a polynomial of degree n, and A = max{|ai| : 0 ≤ i ≤ n−1}.

Then p(z) has n roots counting multiplicities in the disc |z| < A + 1.

12. Prove that z sin z = 1 has only real solutions. [How many real roots are there in the interval
[−(n + 1/2)π, (n + 1/2)π]? How many roots are there in the disc |z| < (n + 1/2)π?]

13. Show that if |a| > e, then azn = ez has n distinct solutions in the unit disc. Find an upper
bound r such that if |a| < r then azn = ez has no solutions in the unit disc. Can you say anything
when r < |a| < e?

14. Prove the following strengthened form of Rouché‘s Theorem.

Suppose that the analytic functions f and g are such that |g| < |f |+ |f + g| on a simple closed curve
γ. Then f and f + g have the same number of zeros inside γ.

Finally an additional question to think about. Perhaps for once you really will use the Jordan Curve
Theorem?

15. Suppose that γ is a simple closed curve contained (with its interior) in a domain D. Suppose
that f : D → C is an analytic function which takes no value more than once on γ. Show that f
takes no value more than once inside γ.


