COMPLEX ANALYSIS EXAMPLES 1

Lent 2010

J. M. E. Hyland

These questions are a mix of questions from recent versions of the course together with some specific to my own take on the material. The questions are not all equally difficult.
I welcome both comments and corrections which can be sent to m.hyland@dpmms.cam.ac.uk.

1. Let $T: \mathbb{C}=\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}=\mathbb{C}$ be a real linear map. Show that T can be written $T z=A z+B \bar{z}$ for unique $A, B \in \mathbb{C}$. Deduce that T is complex linear if and only if $B=0$ if and only if T is complex differentiable.
2. Show that $f(z)=|z|^{2}$ is complex differentiable at $z=0$ but nowhere else in \mathbb{C}. What about $f(z)=|z|$? What about \bar{z} ?
3. Find all analytic functions of the form $f(z)=f(x+i y)=u(x)+i v(y)$.
4. (i) Verify by direct calculation that the Cauchy-Riemann equations hold both for the exponential function $\exp (z)$ and for the principle branch $\log (z)$ of the logarithm.
(ii) Show that the function $u(x, y)=\cos x \cosh y$ is harmonic. Find a conjugate harmonic function $v(x, y)$, that is, a function v such that u and v together satisfy the Cauchy-Riemann equations. Find (explicitly in terms of z) an analytic function $f(z)$ with real part equal to u.
5. Let $f: D \rightarrow \mathbb{C}$ be analytic. Show that if any of the real part $\Re f$, imaginary part $\Im f$, modulus $|f|$, or argument $\arg f$ of f are constant then so is f.
6. (i) Find the set of complex numbers z for which $\left|e^{z}\right|>1$, the set of those for which $\left|e^{i z}\right|>1$ and the set of those for which $\left|e^{z}\right| \leq e^{|z|}$.
(ii) Find the zeros of $1+e^{z}, \cosh z, \sinh z$ and $\sin z+\cos z$.
7. Write down the power series expansion for the principal branch of the logarithm about 1 . What is its radius of convergence? Show that the series does indeed give the principle branch where defined.
8. (i) Suppose that $f: D \rightarrow \mathbb{C}$ is differentiable at $a \in D$ with $f^{\prime}(a)=b$. Let $\bar{D}=\{z \mid \bar{z} \in D\}$ and define $g: \bar{D} \rightarrow \mathbb{C}$ by $g(z)=\overline{f(\bar{z})}$. Show that $g: \bar{D} \rightarrow \mathbb{C}$ is complex differentiable at $\bar{a} \in \bar{D}$ with $g^{\prime}(\bar{a})=\bar{b}$.
(ii) Suppose that $f: \mathbb{C} \rightarrow \mathbb{C}$ is analytic. Can you find $\int_{|z|=r} f(\bar{z}) d \bar{z}$? What about $\int_{|z|=r} \overline{f(z)} d \bar{z}$?
9. Let \mathbb{C}^{-}be the complex plane with $(-\infty, 0]$ removed. Define $l: \mathbb{C}^{-} \rightarrow \mathbb{C}$ by $l(z)=\int_{[1, z]} \frac{d w}{w}$.
(i) Show that $l^{\prime}(z)=\frac{1}{z}$ and deduce that $l(z)$ is the principal branch of the logarithm.
(ii) Compute $l(z)$ directly by integrating first along the straight line from 1 to $|z|$ and then round the circle centre 0 radius $|z|$ to z.
10. Suppose that $h: \mathbb{C} \rightarrow \mathbb{C}^{\times}$is an analytic function with no zeros. Show that there is an analytic function $H: \mathbb{C} \rightarrow \mathbb{C}$ such that $h(z)=\exp H(z)$ for all z.
11. By considering $\int_{\gamma} z^{-1} d z$ for γ the evident natural parametrization of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, show that for a, b real and positive,

$$
\int_{0}^{2 \pi} \frac{d t}{a^{2} \cos ^{2} t+b^{2} \sin ^{2} t}=\frac{2 \pi}{a b}
$$

12. (i) Use the Cauchy integral formula to calculate $\int_{|z|=1} \frac{e^{\alpha z}}{2 z^{2}-5 z+2} d z$ with $\alpha \in \mathbb{C}$.
(ii) By considering the real part of a suitable complex integral, show that for all $r \in(0,1)$,

$$
\int_{0}^{\pi} \frac{\cos n \theta}{1-2 r \cos \theta+r^{2}} d \theta=\frac{\pi r^{n}}{1-r^{2}}
$$

13. Using partial fractions calculate $\int_{|z|=2} \frac{d z}{z^{2}+1}$ and $\int_{|z|=2} \frac{d z}{z^{2}-1}$ from the integral formula. Are the answers an accident? Formulate and prove a general result
Suppose that $p(z)=\left(z-a_{1}\right) \cdots\left(z-a_{n}\right)$ is a polynomial with n distinct roots. How many distinct values can $\int_{\gamma} \frac{d z}{p(z)}$ take for simple closed cuves γ not passing through any a_{i} ?
14. Does the function $\frac{z}{1+z^{2}}$ have an anti-derivative in $|z|>1$? What about in $|z|<1$? Justify your answers. Now what about the function $\frac{1}{1+z^{2}}$?
15. Suppose that $f(z): \mathbb{C} \rightarrow \mathbb{C}$ is analytic and bounded. Take $a \neq b \in \mathbb{C}$, and consider $\int_{|z|=r} \frac{f(z)}{(z-a)(z-b)} d z$ for $r>\max (|a|,|b|)$. Give an upper bound for the absolute value of this integral. Using partial fractions evaluate the integral. Hence deduce that $f(a)=f(b)$.
16. Let f be an entire function such that for some $a \in \mathbb{C}$ and $r>0, f$ takes no values in the disc $D(a, r)$. Prove that f must be constant.
Let u and v be the real and imaginary parts of an entire function f. Deduce that any of the conditions $|u|>|v|, u+v>0$ or $u v>0$ throughout \mathbb{C} implies that f is constant.
17. A period of an analytic function $f: \mathbb{C} \rightarrow \mathbb{C}$ is a complex number a with $f(z+a)=f(z)$ for all $z \in \mathbb{C}$. Suppose that a and b are two non-zero periods of an entire f, with a / b not real. Show that f is constant.
18. Let $f(z)=\sum_{0}^{\infty} a_{n} z^{n}$ have radius of convergence R. Show that for $0 \leq r<R$,

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{2} d \theta=\sum_{0}^{\infty}\left|a_{n}\right|^{2} r^{2 n}
$$

(i) Show that if $|f(z)|$ attains its maximum at 0 then it must be constant.
(ii) By considering $f(z)=1+z+\cdots+z^{n-1}$ show that

$$
\int_{0}^{2 \pi}\left(\frac{\sin (n \theta / 2)}{\sin \theta / 2}\right)^{2} d \theta=2 \pi n
$$

