ANALYSIS II EXAMPLES 1

Michaelmas 2005

J. M. E. Hyland

The Basic Questions are cover examinable material from the course. The Additional Questions are for those wishing to take things a bit further. The questions are not all equally difficult; I have tried to ensure that the hardest appear amongst the Additional Questions.
The sheet is a minor modification of last year's sheet, itself based on sheets prepared for an earlier version of this course by Gabriel Paternain.
I welcome both comments and corrections which can be sent to m.hyland@dpmms.cam.ac.uk.

Basic Questions

1. Define $f_{n}:[0,2] \rightarrow \mathbb{R}$ by

$$
\begin{array}{ll}
f_{n}(x)=1-n\left|x-n^{-1}\right| & \text { for }\left|x-n^{-1}\right| \leq n^{-1}, \\
f_{n}(x)=0 & \text { otherwise. }
\end{array}
$$

Show that the f_{n} are continuous and sketch their graphs. Show that f_{n} converges pointwise on $[0,2]$ to the zero function. Is the convergence uniform? (How does this example differ from that discussed in lectures?)
2. Suppose that $f:[0,1] \rightarrow \mathbb{R}$ is continuous. Show that the sequence $x^{n} f(x)$ is uniformly convergent on $[0,1]$ if and only if $f(1)=0$.
3. Consider the sequence of functions

$$
f_{n}(x)=\frac{x}{1+n x^{2}} .
$$

(i) Show that f_{n} is uniformly convergent on $(-\infty, \infty)$.
(ii) Is f_{n}^{\prime} uniformly convergent on $[0,1]$?
(iii) What are $\lim _{n \rightarrow \infty} f_{n}^{\prime}(x)$ and $\left(\lim _{n \rightarrow \infty} f_{n}\right)^{\prime}(x)$?
4. Let f and g be uniformly continuous real-valued functions on a set $E \subseteq \mathbb{R}$.
(i) Show that the (pointwise) sum $f+g$ is uniformly continuous on E, as also is the scalar product λf for any real constant λ.
(ii) Is the product $f g$ necessarily uniformly continuous on E ? Give a proof or counter-example as appropriate.
5. Which of the following functions f are (a) uniformly continuous, (b) bounded on $[0, \infty)$?
(i) $f(x)=\sin x^{2}$.
(ii) $f(x)=\inf \left\{\left|x-n^{2}\right|: n \in \mathbb{N}\right\}$.
(iii) $f(x)=\left(\sin x^{3}\right) /(x+1)$.
6. Suppose that f is continuous on $[0, \infty)$ and that $f(x)$ tends to a (finite) limit as $x \rightarrow \infty$. Is f necessarily uniformly continuous on $[0, \infty)$? Give a proof or a counterexample as appropriate.
7. (i) Show that if $\left(f_{n}\right)$ is a sequence of uniformly continuous functions on \mathbb{R}, and $f_{n} \rightarrow f$ uniformly on \mathbb{R}, then f is uniformly continuous.
(ii) Give an example of a sequence of uniformly continuous functions f_{n} on \mathbb{R}, such that f_{n} converges pointwise to a continuous function f, but f is not uniformly continuous.
[Hint for part (ii): choose the limit function f first, and take the f_{n} to be a sequence of 'approximations' to it.]
8. Consider the functions $f_{n}:[0,1] \rightarrow \mathbb{R}$ defined by $f_{n}(x)=n^{p} x \exp \left(-n^{q} x\right)$ where p, q are positive constants.
(i) Show that f_{n} converges pointwise on $[0,1]$, for any p and q.
(ii) Show that if $p<q$ then f_{n} converges uniformly on $[0,1]$.
(iii) Now suppose that $p \geq q$. Show that f_{n} does not converge uniformly on $[0,1]$. Take $0<\epsilon<1$. Does f_{n} converge uniformly on $[0,1-\epsilon]$? Does f_{n} converge uniformly on $[\epsilon, 1]$? Justify your answers.
9. Let $f_{n}(x)=n^{\alpha} x^{n}(1-x)$, where α is a real constant.
(i) For which values of α does $f_{n}(x) \rightarrow 0$ pointwise on $[0,1]$?
(ii) For which values of α does $f_{n}(x) \rightarrow 0$ uniformly on $[0,1]$?
(iii) For which values of α does $\int_{0}^{1} f_{n}(x) d x \rightarrow 0$?
(iv) For which values of α does $f_{n}^{\prime}(x) \rightarrow 0$ pointwise on $[0,1]$?
(v) For which values of α does $f_{n}^{\prime}(x) \rightarrow 0$ uniformly on $[0,1]$?
10. Consider the sequence of functions $f_{n}:(\mathbb{R} \backslash \mathbb{Z}) \rightarrow \mathbb{R}$ defined by

$$
f_{n}(x)=\sum_{m=0}^{n}(x-m)^{-2}
$$

(i) Show that f_{n} converges pointwise on $\mathbb{R} \backslash \mathbb{Z}$ to a function f.
(ii) Show that f_{n} does not converge uniformly on $\mathbb{R} \backslash \mathbb{Z}$.
(iii) Why can we nevertheless conclude that the limit function f is continuous, and indeed differentiable, on $\mathbb{R} \backslash \mathbb{Z}$?
11. Suppose f_{n} is a sequence of continuous functions from a bounded closed interval $[a, b]$ to \mathbb{R}, and that f_{n} converges pointwise to a continuous function f.
(i) If f_{n} converges uniformly to f, and $\left(x_{m}\right)$ is a sequence of points of $[a, b]$ converging to a limit x, show that $f_{n}\left(x_{n}\right) \rightarrow f(x)$. [Careful - this is not quite as easy as it looks!]
(ii) If f_{n} does not converge uniformly, show that we can find a convergent sequence $x_{n} \rightarrow x$ in $[a, b]$ such that $f_{n}\left(x_{n}\right)$ does not converge to $f(x)$.
12. (i) Suppose f is defined and differentiable on a (bounded or unbounded) interval $E \subseteq \mathbb{R}$, and that its derivative f^{\prime} is bounded on E. Use the Mean Value Theorem to show that f is uniformly continuous on E.
(ii) Give an example of a function f which is (uniformly) continuous on $[0,1]$, and differentiable at every point of $[0,1]$ (here we interpret $f^{\prime}(0)$ as the 'one-sided derivative' $\lim _{h \rightarrow 0^{+}}((f(h)-f(0)) / h)$, and similarly for $\left.f^{\prime}(1)\right)$, but such that f^{\prime} is unbounded on $[0,1]$.
[Hint: last year you probably saw an example of an everywhere differentiable function whose derivative is discontinuous; you will need to 'tweak' it slightly.]

Additional Questions

13. Let f be a bounded function defined on a set $E \subseteq \mathbb{R}$, and for each positive integer n let g_{n} be the function defined on E by

$$
g_{n}(x)=\sup \{|f(y)-f(x)|: y \in E,|y-x|<1 / n\} .
$$

Show that f is uniformly continuous on E if and only if $g_{n} \rightarrow 0$ uniformly on E as $n \rightarrow \infty$.
14. Show that the series

$$
\zeta(s)=\sum_{n=1}^{\infty} 1 / n^{s}
$$

converges for $s>1$, and is uniformly convergent on $[1+\varepsilon, \infty)$ for any $\varepsilon>0$.
Show that ζ is differentiable on $(1, \infty)$. (First think what its derivative ought to be!)
15. (Dirichlet's Test) Let a_{n} and b_{n} be real-valued functions on $E \subseteq \mathbb{R}$. Suppose that the partial sums $s_{n}(x)=\sum_{0}^{n} a_{k}(x)$ are uniformly bounded in the sense that there is a constant K with $\left|s_{n}(x)\right| \leq$ K for all n and all $x \in E$. Suppose further that the $b_{n}(x)$ are a monotonically decreasing sequence converging uniformly to 0 on E. (That is, $b_{n}(x) \geq b_{n+1}(x) \geq 0$ in E and $b_{n} \rightarrow 0$ uniformly on E.) Show that the sum $\sum_{0}^{\infty} a_{n}(x) b_{n}(x)$ is uniformly convergent on E.
16. Suppose that g_{n} are continuous functions with $g_{n}(x) \geq g_{n+1}(x) \geq 0$ for all $x \in \mathbb{R}$, and with $g_{n} \rightarrow 0$ uniformly in \mathbb{R}.
(i) Show that both $\sum_{n=0}^{\infty} g_{n}(x) \cos n x$ and $\sum_{n=0}^{\infty} g_{n}(x) \sin n x$ converge uniformly on any interval of the form $[\delta, 2 \pi-\delta]$, where $\delta>0$. (Note what this tells you about Fourier series.)
(ii) Give an example to show that we do not necessarily have convergence uniformly on $[0,2 \pi]$.
17. (i) (Abel's Test) Let a_{n} and a_{n} be real-valued functions on $E \subseteq \mathbb{R}$. Suppose that $\sum_{0}^{\infty} a_{n}(x)$ is uniformly convergent on E. Suppose further that the $b_{n}(x)$ are uniformly bounded on E, and that $b_{n}(x) \geq b_{n+1}(x) \geq 0$ for all $x \in E$. Show that the sum $\sum_{0}^{\infty} a_{n}(x) b_{n}(x)$ is uniformly convergent on E.
(ii) Deduce that if $\sum_{0}^{\infty} a_{n}$ is convergent, then $\sum_{0}^{\infty} a_{n} x^{n}$ is uniformly convergent on $[0,1]$. (But note that $\sum_{0}^{\infty} a_{n} x^{n}$ need not be convergent at -1 ; you almost certainly know a counterexample!)
18. Let $f_{n}:[0,1] \rightarrow \mathbb{R}$ be a sequence of continuous functions converging pointwise to a continuous function $f:[0,1] \rightarrow \mathbb{R}$ on the unit interval $[0,1]$. Suppose that $f_{n}(x)$ is a decreasing sequence for each $x \in[0,1]$. Show that $f_{n} \rightarrow f$ uniformly on $[0,1]$.
[If you have done Metric and Topological Spaces then you may prefer to find a topological proof.]
19. Define $\varphi(x)=|x|$ for $x \in[-1,1]$ and extend the definition of $\varphi(x)$ to all real x by requiring that

$$
\varphi(x+2)=\varphi(x)
$$

(i) Show that $|\varphi(s)-\varphi(t)| \leq|s-t|$ for all s and t.
(ii) Define $f(x)=\sum_{n=0}^{\infty}\left(\frac{3}{4}\right)^{n} \varphi\left(4^{n} x\right)$. Prove that f is well defined and continuous.
(iii) Fix a real number x and positive integer m. Put $\delta_{m}= \pm \frac{1}{2} 4^{-m}$ where the sign is so chosen that no integer lies between $4^{m} x$ and $4^{m}\left(x+\delta_{m}\right)$. Prove that

$$
\left|\frac{f\left(x+\delta_{m}\right)-f(x)}{\delta_{m}}\right| \geq \frac{1}{2}\left(3^{m}+1\right)
$$

Conclude that f is not differentiable at x. Hence there exists a real continuous function on the real line which is nowhere differentiable.
20. A space-filling curve (Exercise 14, Chapter 7 of Rudin's book). Let f be a continuous real function on \mathbb{R} with the following properties: $0 \leq f(t) \leq 1, f(t+2)=f(t)$ for every t, and

$$
f(t)= \begin{cases}0 & \text { for } t \in[0,1 / 3] \\ 1 & \text { for } t \in[2 / 3,1]\end{cases}
$$

Put $\Phi(t)=(x(t), y(t))$, where

$$
x(t)=\sum_{n=1}^{\infty} 2^{-n} f\left(3^{2 n-1} t\right), \quad y(t)=\sum_{n=1}^{\infty} 2^{-n} f\left(3^{2 n} t\right)
$$

Prove that Φ is continuous and that Φ maps $I=[0,1]$ onto the unit square $I^{2} \subset \mathbb{R}^{2}$. In fact, show that Φ maps the Cantor set onto I^{2}.

Hint: Each $\left(x_{0}, y_{0}\right) \in I^{2}$ has the form

$$
x_{0}=\sum_{n=1}^{\infty} 2^{-n} a_{2 n-1}, \quad y_{0}=\sum_{n=1}^{\infty} 2^{-n} a_{2 n}
$$

where each a_{i} is 0 or 1 . If

$$
t_{0}=\sum_{i=1}^{\infty} 3^{-i-1}\left(2 a_{i}\right)
$$

show that $f\left(3^{k} t_{0}\right)=a_{k}$, and hence that $x\left(t_{0}\right)=x_{0}, y\left(t_{0}\right)=y_{0}$.

