Linear Algebra: Example Sheet 4

The first 12 questions cover the course and should give good understanding. I hope that the remaining questions will be of independent interest.

1. An endomorphism π of a vector space V is idempotent just when $\pi^{2}=\pi$. Let $W \leq V$ with V an inner product space. Show that the orthogonal projection onto W is a self-adjoint idempotent. Conversely show that any self-adjoint idempotent is orthogonal projection onto its image.
2. Let S be a real symmetric matrix with $S^{k}=I$ for some $k \geq 1$. Show that $S^{2}=I$.
3. Suppose that $\mathbf{x}_{1}, \cdots, \mathbf{x}_{n}$ is a basis for an inner product space and $\mathbf{f}_{1}, \cdots, \mathbf{f}_{n}$ the basis obtained by the Gram-Schmidt orthogonalization process (as in lectures, without normalising the vectors). Let $A=\left(a_{i j}\right)$ be the matrix with $a_{i j}=\left\langle\mathbf{x}_{i}, \mathbf{x}_{j}\right\rangle$ and $B=\left(b_{i j}\right)$ the matrix with $b_{i j}=\left\langle\mathbf{f}_{i}, \mathbf{f}_{j}\right\rangle$. Show that $\operatorname{det} A=\operatorname{det} B$.
4. An endomorphism α of a finite-dimensional inner product space V is positive definite if and only if it is self-adjoint and satisfies $\langle\mathbf{x}, \alpha(\mathbf{x})\rangle>0$ for all non-zero $\mathbf{x} \in V$.
(i) Prove that a positive definite endomorphism has a unique positive definite square root.
(ii) Let α be a non-singular endomorphism of V with adjoint α^{*}. By considering $\alpha^{*} \alpha$ show that α can be factored as $\beta \gamma$ with β unitary and γ positive definite.
(iii) Can you say anything for a general endomorphism α ?
5. Find a linear transformation which reduces the pair of real quadratic forms

$$
2 x^{2}+3 y^{2}+3 z^{2}-2 y z, \quad x^{2}+3 y^{2}+3 z^{2}+6 x y+2 y z-6 z x
$$

to the forms

$$
X^{2}+Y^{2}+Z^{2}, \quad \lambda X^{2}+\mu Y^{2}+\nu Z^{2}
$$

for some $\lambda, \mu, \nu \in \mathbb{R}$.
Does there exist a linear transformation which reduces the quadratic forms $x^{2}-y^{2}$ and $2 x y$ simultaneously to diagonal form?
6. Let $a_{1}, a_{2}, \ldots, a_{n}$ be real numbers such that $a_{1}+\cdots+a_{n}=0$ and $a_{1}^{2}+\cdots a_{n}^{2}=1$. What is the maximum value of $a_{1} a_{2}+a_{2} a_{3}+\cdots+a_{n-1} a_{n}+a_{n} a_{1}$?
7. Let V be a 4 -dimensional vector space over \mathbb{R}, and let $\left\{\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}\right\}$ be the basis of V^{*} dual to the basis $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \mathbf{x}_{4}\right\}$ for V. Determine, in terms of the ξ_{i}, the bases dual to each of the following:
(a) $\left\{\mathbf{x}_{2}, \mathbf{x}_{1}, \mathbf{x}_{4}, \mathbf{x}_{3}\right\}$;
(b) $\left\{\mathbf{x}_{1}, 2 \mathbf{x}_{2}, \frac{1}{2} \mathbf{x}_{3}, \mathbf{x}_{4}\right\}$;
(c) $\left\{\mathbf{x}_{1}+\mathbf{x}_{2}, \mathbf{x}_{2}+\mathbf{x}_{3}, \mathbf{x}_{3}+\mathbf{x}_{4}, \mathbf{x}_{4}\right\}$;
(d) $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}-\mathbf{x}_{1}, \mathrm{x}_{3}-\mathrm{x}_{2}+\mathrm{x}_{1}, \mathrm{x}_{4}-\mathrm{x}_{3}+\mathrm{x}_{2}-\mathrm{x}_{1}\right\}$;
(e) $\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}+\mathrm{x}_{4}\right\}$.
8. Let P_{n} be the space of real polynomials of degree at most n. For $x \in \mathbb{R}$ define $\varepsilon_{x} \in P_{n}^{*}$ by $\varepsilon_{x}(p)=p(x)$. Show that $\varepsilon_{0}, \ldots, \varepsilon_{n}$ form a basis for P_{n}^{*}, and identify the basis of P_{n} to which it is dual.
9. (i) Show that if $\mathbf{x} \neq \mathbf{y}$ are vectors in the finite dimensional vector space V, then there is a linear functional $\theta \in V^{*}$ such that $\theta(\mathbf{x}) \neq \theta(\mathbf{y})$.
(ii) Suppose that V is finite dimensional. Let $A, B \leq V$. Prove that $A \leq B$ if and only if $A^{o} \geq B^{o}$. Show that $A=V$ if and only if $A^{o}=\{\mathbf{0}\}$. Deduce that a subset $F \subset V^{*}$ of the dual space spans V^{*} just when $f(\mathbf{v})=0$ for all $f \in F$ implies $\mathbf{v}=\mathbf{0}$.
10. Let $\alpha: V \rightarrow V$ be an endomorphism of a finite dimensional complex vector space and let $\alpha^{*}: V^{*} \rightarrow V^{*}$ be its dual. Show that a complex number λ is an eigenvalue for α if, and only if, it is an eigenvalue for α^{*}. How are the algebraic and geometric multiplicities of λ for α and α^{*} related? How are the minimal and characteristic polynomials for α and α^{*} related?
11. For A an $n \times m$ and B an $m \times n$ matrix over the field F, let $\tau_{A}(B)$ denote $\operatorname{tr} A B$. Show that, for fixed A, τ_{A} is a linear map Mat ${ }_{m, n} \rightarrow F$ from the space $\mathrm{Mat}_{m, n}$ of $m \times n$ matrices to F.
Now consider the mapping $A \mapsto \tau_{A}$. Show that it is a linear isomorphism Mat ${ }_{n, m} \rightarrow$ Mat $_{m, n}^{*}$.
12. (i) Let U, V be finite dimensional vector spaces and suppose $\beta: U \times V \rightarrow F$ is a bilinear map. Show that for any $X \leq U$ we have

$$
\operatorname{dim} X+\operatorname{dim} X^{\perp} \geq \operatorname{dim} V
$$

Show that equality holds if β is non-degenerate. (Can you give a necessary and sufficient condition?)
(ii) Suppose that β is a bilinear form on V. Take $U \leq V$ with $U=W^{\perp}$ for some $W \leq V$. Suppose that $\left.\psi\right|_{U}$ is non-singular. Show that ψ is non-singular.
13. Let P_{n} be the ($n+1$-dimensional) space of real polynomials of degree $\leq n$. Define

$$
\langle f, g\rangle=\int_{-1}^{+1} f(t) g(t) d t
$$

Show that \langle,$\rangle is an inner product on P_{n}$ and that the endomorphism $\alpha: P_{n} \rightarrow P_{n}$ defined by

$$
\alpha(f)(t)=\left(1-t^{2}\right) f^{\prime \prime}(t)-2 t f^{\prime}(t)
$$

is self-adjoint. What are the eigenvalues of α ?
Let $s_{k} \in P_{n}$ be defined by $s_{k}(t)=\frac{d^{k}}{d t^{k}}\left(1-t^{2}\right)^{k}$. Prove the following.
(i) For $i \neq j,\left\langle s_{i}, s_{j}\right\rangle=0$.
(ii) s_{0}, \ldots, s_{n} forms a basis for for P_{n}.
(iii) For all $1 \leq k \leq n$, s_{k} spans the orthogonal complement of P_{k-1} in P_{k}.
(iv) s_{k} is an eigenvector of α. (Give its eigenvalue.)

What is the relation between the s_{k} and the result of applying Gram-Schmidt to the sequence $1, x, x^{2}$, x^{3} and so on? (Calculate the first few terms?)
14. Consider the space P of polynomials in variables x_{1}, \ldots, x_{n}. We have linear operators $\partial_{i}=\frac{\partial}{\partial x_{i}}$; so for any polynomial $f\left(x_{1}, \ldots, x_{n}\right) \in P$ we have a corresponding linear operator $\hat{f}=f\left(\partial_{1}, \ldots, \partial_{n}\right)$. Consider

$$
\langle f, g\rangle=\hat{f}(g)(\mathbf{0}),
$$

that is the result of applying $f\left(\partial_{0}, \ldots, \partial_{n}\right)$ to $g\left(x_{1}, \ldots, x_{n}\right)$ and then evaluating at $(0, \ldots, 0)$. Show that $\langle f, g\rangle$ is an inner product on P.
Fix $g \in P$. What is the adjoint of the map $P \rightarrow P ; h \rightarrow g h ?$
Now consider the subspaces $P(d)$ of polynomials homogeneous of degree d. Show that the Laplacian $\Delta=\partial_{1}^{2}+\cdots+\partial_{n}^{2}: P(d) \rightarrow P(d-2)$ is surjective.
15. Let A be a positive definite matrix. Show that $\operatorname{det} A \leq \prod_{i} a_{i i}$.
16. Show that the dual of the space P of real polynomials is isomorphic to the space $\mathbb{R}^{\mathbb{N}}$ of all sequences of real numbers, via the mapping which sends a linear form $\xi: P \rightarrow \mathbb{R}$ to the sequence $\left(\xi(1), \xi(t), \xi\left(t^{2}\right), \ldots\right)$.
In terms of this identification, describe the effect on a sequence $\left(a_{0}, a_{1}, a_{2}, \ldots\right)$ of the linear maps dual to each of the following linear maps $P \rightarrow P$:
(a) The map D defined by $D(p)(t)=p^{\prime}(t)$.
(b) The map S defined by $S(p)(t)=p\left(t^{2}\right)$.
(c) The map E defined by $E(p)(t)=p(t-1)$.
(d) The composite $D S$.
(e) The composite $S D$.

Verify that $(D S)^{*}=S^{*} D^{*}$ and $(S D)^{*}=D^{*} S^{*}$.

Comments, corrections and queries can be sent to me at m.hyland@dpmms.cam.ac.uk.

