Linear Algebra: Example Sheet 4

The first 10 questions cover the course and should give good understanding. The remainder are of varying length and difficulty and may interest some.

1. (i) Let U, V be finite dimensional vector spaces and suppose $\beta: U \times V \rightarrow F$ is a bilinear map. Show that for any $X \leq U$ we have

$$
\operatorname{dim} X+\operatorname{dim} X^{\perp} \geq \operatorname{dim} V
$$

Show that equality holds if β is non-degenerate. (Can you give a necessary and sifficient condition?)
(ii) Suppose that β is a bilinear form on V. Take $U \leq V$ with $U=W^{\perp}$ for some $W \leq V$. Suppose that $\left.\psi\right|_{U}$ is non-singular. Show that ψ is non-singular.
2. Which of the following symmetric matrices are congruent to the identity matrix (a) over \mathbb{C}, (b) over \mathbb{R} and (c) over \mathbb{Q} ? (Try to get away with the minimum calculation.)

$$
\left(\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right), \quad\left(\begin{array}{ll}
0 & 2 \\
2 & 0
\end{array}\right), \quad\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right), \quad\left(\begin{array}{ll}
4 & 4 \\
4 & 5
\end{array}\right) .
$$

3. Find the rank and signature of the following quadratic forms over \mathbb{R}.

$$
x^{2}+y^{2}+z^{2}-2 x z-2 y z, \quad x^{2}+2 y^{2}-2 z^{2}-4 x y-4 y z, \quad 16 x y-z^{2}, \quad 2 x y+2 y z+2 z x .
$$

If B is the matrix of the form then there exists non-singular Q with $Q^{t} B Q$ diagonal with entries ± 1. Find such a Q in some representative cases.
4. The map $A \rightarrow \operatorname{tr}\left(A^{2}\right)$ is a quadratic form on $\operatorname{Mat}_{n}(\mathbb{R})$, the $n \times n$ matrices. Find its rank and signature.
5. (i) Show that the quadratic form $2\left(x^{2}+y^{2}+z^{2}+x y+y z+z x\right)$ is positive definite.
(ii) Write down an orthonormal basis for the corresponding inner product on \mathbb{R}^{3}.
(iii) Compute the basis obtained by applying the Gram-Schmidt process to the standard basis.
6. An endomorphism π of a vector space V is idempotent just when $\pi^{2}=\pi$. Let $W \leq V$ with V an inner product space. Show that the orthogonal projection onto W is a self-adjoint idempotent. Conversely show that any self-adjoint idempotent is orthogonal projection onto its image.
7. Let S be a real symmetric matrix with $S^{k}=I$ for some $k \geq 1$. Show that $S^{2}=I$.
8. Let $a_{1}, a_{2}, \ldots, a_{n}$ be real numbers such that $a_{1}+\cdots+a_{n}=0$ and $a_{1}^{2}+\cdots a_{n}^{2}=1$. What is the maximum value of $a_{1} a_{2}+a_{2} a_{3}+\cdots+a_{n-1} a_{n}+a_{n} a_{1}$?
9. An endomorphism α of a finite-dimensional inner product space V is positive definite if and only if is self-adjoint and satisfies $\langle\mathbf{x}, \alpha(\mathbf{x})\rangle>0$ for all non-zero $\mathbf{x} \in V$.
(i) Prove that a positive definite endomorphism has a unique positive definite square root.
(ii) Let α be a non-singular endomorphism of V with adjoint α^{*}. By considering $\alpha^{*} \alpha$ show that α can be factored as $\beta \gamma$ with β unitary and γ positive definite.
(iii) Can you say anything for a general endomorphism α ?
10. Find a linear transformation which reduces the pair of real quadratic forms

$$
2 x^{2}+3 y^{2}+3 z^{2}-2 y z, \quad x^{2}+3 y^{2}+3 z^{2}+6 x y+2 y z-6 z x
$$

to the forms

$$
X^{2}+Y^{2}+Z^{2}, \quad \lambda X^{2}+\mu Y^{2}+\nu Z^{2}
$$

for some $\lambda, \mu, \nu \in \mathbb{R}$.
Does there exist a linear transformation which reduces the quadratic forms $x^{2}-y^{2}$ and $2 x y$ simultaneously to diagonal form?
11. Suppose that Q is a non-singular quadratic form on V of dimension $2 m$. Suppose that Q vanishes on $U \leq V$ with $\operatorname{dim} U=m$. Establish the following.
(i) We can write $V=U \oplus W$ with q also vanishing on W.
(ii) There is a basis with respect to which Q has the form $x_{1} x_{2}+x_{3} x_{4}+\cdots x_{2 m-1} x_{2 m}$.
12. Find the rank and signature of the form on \mathbb{R}^{n} with matrix

$$
\left(\begin{array}{ccccc}
0 & 1 & 1 & \ldots & 1 \\
1 & 0 & 1 & \ldots & 1 \\
1 & 1 & 0 & \ldots & 1 \\
\vdots & & & \ddots & \vdots \\
1 & 1 & 1 & \ldots & 0
\end{array}\right)
$$

13. Let $f_{1}, \cdots, f_{t}, f_{t+1}, \cdots, f_{t+u}$ be linear functionals on the finite dimensional real vector space V. Show that $Q(\mathbf{x})=f_{1}(\mathbf{x})^{2}+\cdots+f_{t}(\mathbf{x})^{2}-f_{t+1}(\mathbf{x})^{2}-\cdots-f_{t+u}(\mathbf{x})^{2}$ is a quadratic form on V. Suppose Q has rank $p+q$ and signature $p-q$. Show that $p \leq t$ and $q \leq u$.
14. Let P_{n} be the ($n+1$-dimensional) space of real polynomials of degree $\leq n$. Define

$$
\langle f, g\rangle=\int_{-1}^{+1} f(t) g(t) d t
$$

Show that \langle,$\rangle is an inner product on P_{n}$ and that the endomorphism $\alpha: P_{n} \rightarrow P_{n}$ defined by

$$
\alpha(f)(t)=\left(1-t^{2}\right) f^{\prime \prime}(t)-2 t f^{\prime}(t)
$$

is self-adjoint. What are the eigenvalues of α ?
Let $s_{k} \in P_{n}$ be defined by $s_{k}(t)=\frac{d^{k}}{d t^{k}}\left(1-t^{2}\right)^{k}$. Prove the following.
(i) For $i \neq j,\left\langle s_{i}, s_{j}\right\rangle=0$.
(ii) s_{0}, \ldots, s_{n} forms a basis for for P_{n}.
(iii) For all $1 \leq k \leq n, s_{k}$ spans the orthogonal complement of P_{k-1} in P_{k}.
(iv) s_{k} is an eigenvector of α. (Give its eigenvalue.)

What is the relation between the s_{k} and the result of applying Gram-Schmidt to the sequence $1, x, x^{2}$, x^{3} and so on? (Calculate the first few terms?)
15. Prove Hadamard's Inequality: if A is a real $n \times n$ matrix with $\left|a_{i j}\right| \leq k$, then

$$
|\operatorname{det} A| \leq k^{n} n^{n / 2}
$$

16. Consider the space P of polynomials in variables x_{1}, \ldots, x_{n}. We have linear operators $\partial_{i}=\frac{\partial}{\partial x_{i}}$; so for any polynomial $f\left(x_{1}, \ldots, x_{n}\right) \in P$ we have a corresponding linear operator $\hat{f}=f\left(\partial_{1}, \ldots, \partial_{n}\right)$. Consider

$$
\langle f, g\rangle=\hat{f}(g)(\mathbf{0})
$$

that is the result of applying $f\left(\partial_{0}, \ldots, \partial_{n}\right)$ to $g\left(x_{1}, \ldots, x_{n}\right)$ and then evaluating at $(0, \ldots, 0)$. Show that $\langle f, g\rangle$ is an inner product on P.
Fix $g \in P$. What is the adjoint of the map $P \rightarrow P ; h \rightarrow g h ?$
Now consider the subspaces $P(d)$ of polynomials homogeneous of degree d. Show that the Laplacian $\Delta=\partial_{1}^{2}+\cdots+\partial_{n}^{2}: P(d) \rightarrow P(d-2)$ is surjective.

Comments, corrections and queries can be sent to me at m.hyland@dpmms.cam.ac.uk.

