Michaelmas Term 2013

Is the matrix

Linear Algebra: Example Sheet 3

The first 10 questions cover the course as I see it and should ensure good understanding. The remainder are a mixed bag dealing with a number of mostly minor points. I hope some will prove instructive.

1. Show that none of the following matrices are conjugate:

$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix},$	$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix},$	$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$
	$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$	

conjugate to any of them? If so, which?

2. Find a basis with respect to which the matrix $\begin{pmatrix} 0 & -1 \\ 1 & 2 \end{pmatrix}$ has Jordan normal form. Hence compute the

matrix $\begin{pmatrix} 0 & -1 \\ 1 & 2 \end{pmatrix}^n$.

3. Let V be a vector space of dimension n and α an endomorphism of V with $\alpha^n = 0$ but $\alpha^{n-1} \neq 0$. Show that there is a vector \mathbf{x} such that \mathbf{x} , $\alpha(\mathbf{x})$, $\alpha^2(\mathbf{x})$, ..., $\alpha^{n-1}(\mathbf{x})$ is a basis for V.

(i) Let $p(t) = a_0 + a_1 t + a_2 t^2 \dots + a_k t^k$ be a polynomial. What is the matrix for $p(\alpha)$ with respect to the basis given above?

(ii) Suppose that β is an endomorphism of V which commutes with α . Show that $\beta = p(\alpha)$ for some polynomial p(t).

- (iii) What can you deduce using (i) and (ii)?
- 4. Let A be a non-singular square matrix in Jordan normal form. What is the inverse of A? What is the Jordan normal form of the inverse of A?
- 5. (i) Show that the Jordan normal form of a 3×3 complex matrix is determined by its characteristic and minimal polynomials. Give an example to show that this fails for 4×4 matrices. (ii) Let A be a complex 5×5 matrix with $A^4 = A^2 \neq A$. What are the possible minimum and characteristic polynomials? What are the possible Jordan normal forms?
- 6. Let P_2 be the space of polynomials in x, y of degree ≤ 2 in each variable. (So dim $P_2 = 9$.) Consider the map $D: P_2 \to P_2$ given by

$$D(f) = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y}$$

- (i) What are the eigenvalues of the endomorphism D? Find the eigenspaces.
- (ii) Determine the Jordan normal form of the endomorphism D.

(iii) Make a guess about what happens for the n^2 -dimensional space P_n space of polynomials in x, y of degree $\leq n$ in each variable. (Prove it?)

7. Which of the following symmetric matrices are congruent to the identity matrix (a) over \mathbb{C} , (b) over \mathbb{R} and (c) over \mathbb{Q} ? (Try to get away with the minimum calculation.)

$$\begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}, \qquad \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix}, \qquad \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, \qquad \begin{pmatrix} 4 & 4 \\ 4 & 5 \end{pmatrix}.$$

J. M. E. Hyland

8. Find the rank and signature of the following quadratic forms over \mathbb{R} .

 $x^2 + y^2 + z^2 - 2xz - 2yz, \quad x^2 + 2y^2 - 2z^2 - 4xy - 4yz, \quad 16xy - z^2, \quad 2xy + 2yz + 2zx.$

If B is the matrix of the form then there exists non-singular Q with $Q^t B Q$ diagonal with entries ± 1 . Find such a Q in some representative cases.

9. (i) Show that the map $A \mapsto tr(A.A^t)$ is a positive definite quadratic form on $Mat_n(\mathbb{R})$, the space of $n \times n$ matrices.

(ii) Show that the map $A \mapsto tr(A^2)$ is a quadratic form also on the space $Mat_n(\mathbb{R})$. What is its rank and signature?

- 10. (i) Show that the quadratic form $2(x^2 + y^2 + z^2 + xy + yz + zx)$ is positive definite.
 - (ii) Write down an orthonormal basis for the corresponding inner product on \mathbb{R}^3 .
 - (iii) Compute the basis obtained by applying the Gram-Schmidt process to the standard basis.
- 11. (i) Show that if $\alpha : V \to V$ is an endomorphism of a finite dimensional complex vector space, then there is a basis of V with respect to which the matrix of α is upper triangular. [*This is standard bookwork*.] (ii) Let α and β be endomorphisms of a finite dimensional complex vector space V. Suppose that $\alpha\beta = \beta\alpha$. Does it follow that there is a basis of V with respect to which the matrices of both α and β are upper triangular?
- 12. Find the left and right kernels of the bilinear form with matrix

$$\begin{pmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix},$$

with respect to the standard basis $\mathbf{e}_1, \ldots, \mathbf{e}_4$. Let $V = \langle \mathbf{e}_2, \mathbf{e}_3 \rangle$. Find V^{\perp} and ${}^{\perp}V$. Give a basis $\mathbf{f}_1, \ldots, \mathbf{f}_4$ with respect to which the bilinear form has the matrix

$$\begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}.$$

- 13. Suppose that ψ is a bilinear form on V. Take $U \leq V$ with $U = W^{\perp}$ some $W \leq V$. Suppose that $\psi|_U$ is non-singular. Show that ψ is also non-singular.
- 14. Suppose that $\psi : U \times V \to F$ is a bilinear form on U, V finite dimensional vector spaces. Show that there exist bases $\mathbf{e}_1, \ldots, \mathbf{e}_m$ for U and $\mathbf{f}_1, \ldots, \mathbf{f}_n$ for V such that when $\mathbf{x} = \sum_{1}^{m} x_i \mathbf{e}_i$ and $\mathbf{y} = \sum_{1}^{n} y_j \mathbf{f}_j$ then we have $\psi(\mathbf{x}, \mathbf{y}) = \sum_{1}^{r} x_k y_k$, where r is the rank of ψ . What are the dimensions of the left and right kernels of ψ ?
- 15. Find the rank and signature of the form on \mathbb{R}^n with matrix

(0)	1	1		1	
1	0	1		1	
1	1	0		1	
1 :			۰.	:	
$\backslash 1$	1	1		0/	

- 16. Suppose that Q is a non-singular quadratic form on V of dimension 2m. Suppose that Q vanishes on $U \leq V$ with dim U = m. What is the signature of Q? Establish the following.
 - (i) There is a basis with respect to which Q has the form $x_1x_2 + x_3x_4 + \cdots + x_{2m-1}x_{2m}$.
 - (ii) We can write $V = U \oplus W$ with q also vanishing on W.

Comments, corrections and queries can be sent to me at m.hyland@dpmms.cam.ac.uk.