Linear Algebra: Example Sheet 3

The first 10 questions cover the course as I see it and should ensure good understanding. The remainder are a mixed bag dealing with a number of mostly minor points. I hope some will prove instructive.

1. Show that none of the following matrices are conjugate:

$$
\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right), \quad\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

Is the matrix

$$
\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

conjugate to any of them? If so, which?
2. Find a basis with respect to which the matrix $\left(\begin{array}{cc}0 & -1 \\ 1 & 2\end{array}\right)$ has Jordan normal form. Hence compute the $\operatorname{matrix}\left(\begin{array}{cc}0 & -1 \\ 1 & 2\end{array}\right)^{n}$.
3. Let V be a vector space of dimension n and α an endomorphism of V with $\alpha^{n}=0$ but $\alpha^{n-1} \neq 0$. Show that there is a vector \mathbf{x} such that $\mathbf{x}, \alpha(\mathbf{x}), \alpha^{2}(\mathbf{x}), \ldots, \alpha^{n-1}(\mathbf{x})$ is a basis for V.
(i) Let $p(t)=a_{0}+a_{1} t+a_{2} t^{2} \ldots+a_{k} t^{k}$ be a polynomial. What is the matrix for $p(\alpha)$ with respect to the basis given above?
(ii) Suppose that β is an endomorphism of V which commutes with α. Show that $\beta=p(\alpha)$ for some polynomial $p(t)$.
(iii) What can you deduce using (i) and (ii)?
4. Let A be a non-singular square matrix in Jordan normal form. What is the inverse of A ? What is the Jordan normal form of the inverse of A ?
5. (i) Show that the Jordan normal form of a 3×3 complex matrix is determined by its characteristic and minimal polynomials. Give an example to show that this fails for 4×4 matrices.
(ii) Let A be a complex 5×5 matrix with $A^{4}=A^{2} \neq A$. What are the possible minimum and characteristic polynomials? What are the possible Jordan normal forms?
6. Let P_{2} be the space of polynomials in x, y of degree ≤ 2 in each variable. (So dim $P_{2}=9$.)

Consider the map $D: P_{2} \rightarrow P_{2}$ given by

$$
D(f)=\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} .
$$

(i) What are the eigenvalues of the endomorphism D ? Find the eigenspaces.
(ii) Determine the Jordan normal form of the endomorphism D.
(iii) Make a guess about what happens for the n^{2}-dimensional space P_{n} space of polynomials in x, y of degree $\leq n$ in each variable. (Prove it?)
7. Which of the following symmetric matrices are congruent to the identity matrix (a) over \mathbb{C}, (b) over \mathbb{R} and (c) over \mathbb{Q} ? (Try to get away with the minimum calculation.)

$$
\left(\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right), \quad\left(\begin{array}{ll}
0 & 2 \\
2 & 0
\end{array}\right), \quad\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right), \quad\left(\begin{array}{ll}
4 & 4 \\
4 & 5
\end{array}\right) .
$$

8. Find the rank and signature of the following quadratic forms over \mathbb{R}.

$$
x^{2}+y^{2}+z^{2}-2 x z-2 y z, \quad x^{2}+2 y^{2}-2 z^{2}-4 x y-4 y z, \quad 16 x y-z^{2}, \quad 2 x y+2 y z+2 z x
$$

If B is the matrix of the form then there exists non-singular Q with $Q^{t} B Q$ diagonal with entries ± 1. Find such a Q in some representative cases.
9. (i) Show that the map $A \mapsto \operatorname{tr}\left(A . A^{t}\right)$ is a positive definite quadratic form on $\operatorname{Mat}_{n}(\mathbb{R})$, the space of $n \times n$ matrices.
(ii) Show that the map $A \mapsto \operatorname{tr}\left(A^{2}\right)$ is a quadratic form also on the space $\operatorname{Mat}_{n}(\mathbb{R})$. What is its rank and signature?
10. (i) Show that the quadratic form $2\left(x^{2}+y^{2}+z^{2}+x y+y z+z x\right)$ is positive definite.
(ii) Write down an orthonormal basis for the corresponding inner product on \mathbb{R}^{3}.
(iii) Compute the basis obtained by applying the Gram-Schmidt process to the standard basis.
11. (i) Show that if $\alpha: V \rightarrow V$ is an endomorphism of a finite dimensional complex vector space, then there is a basis of V with respect to which the matrix of α is upper triangular. [This is standard bookwork.]
(ii) Let α and β be endomorphisms of a finite dimensional complex vector space V. Suppose that $\alpha \beta=\beta \alpha$. Does it follow that there is a basis of V with respect to which the matrices of both α and β are upper triangular?
12. Find the left and right kernels of the bilinear form with matrix

$$
\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right)
$$

with respect to the standard basis $\mathbf{e}_{1}, \ldots, \mathbf{e}_{4}$. Let $V=\left\langle\mathbf{e}_{2}, \mathbf{e}_{3}\right\rangle$. Find V^{\perp} and ${ }^{\perp} V$. Give a basis $\mathbf{f}_{1}, \ldots, \mathbf{f}_{4}$ with respect to which the bilinear form has the matrix

$$
\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

13. Suppose that ψ is a bilinear form on V. Take $U \leq V$ with $U=W^{\perp}$ some $W \leq V$. Suppose that $\left.\psi\right|_{U}$ is non-singular. Show that ψ is also non-singular.
14. Suppose that $\psi: U \times V \rightarrow F$ is a bilinear form on U, V finite dimensional vector spaces. Show that there exist bases $\mathbf{e}_{1}, \ldots, \mathbf{e}_{m}$ for U and $\mathbf{f}_{1}, \ldots, \mathbf{f}_{n}$ for V such that when $\mathbf{x}=\sum_{1}^{m} x_{i} \mathbf{e}_{i}$ and $\mathbf{y}=\sum_{1}^{n} y_{j} \mathbf{f}_{j}$ then we have $\psi(\mathbf{x}, \mathbf{y})=\sum_{1}^{r} x_{k} y_{k}$, where r is the rank of ψ. What are the dimensions of the left and right kernels of ψ ?
15. Find the rank and signature of the form on \mathbb{R}^{n} with matrix

$$
\left(\begin{array}{ccccc}
0 & 1 & 1 & \ldots & 1 \\
1 & 0 & 1 & \ldots & 1 \\
1 & 1 & 0 & \ldots & 1 \\
\vdots & & & \ddots & \vdots \\
1 & 1 & 1 & \ldots & 0
\end{array}\right)
$$

16. Suppose that Q is a non-singular quadratic form on V of dimension $2 m$. Suppose that Q vanishes on $U \leq V$ with $\operatorname{dim} U=m$. What is the signature of Q ? Establish the following.
(i) There is a basis with respect to which Q has the form $x_{1} x_{2}+x_{3} x_{4}+\cdots x_{2 m-1} x_{2 m}$.
(ii) We can write $V=U \oplus W$ with q also vanishing on W.

Comments, corrections and queries can be sent to me at m.hyland@dpmms.cam.ac.uk.

