Michaelmas Term 2011

Is the matrix

Linear Algebra: Example Sheet 3

The first 10 questions cover the course as I see it and should ensure good understanding. The remainder deal with a number of mostly minor point which may be instructive.

1. Show that none of the following matrices are conjugate:

$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix},$	$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix},$	$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$
	$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$	

conjugate to any of them? If so, which?

2. Find a basis with respect to which the matrix $\begin{pmatrix} 0 & -1 \\ 1 & 2 \end{pmatrix}$ has Jordan normal form. Hence compute the

matrix $\begin{pmatrix} 0 & -1 \\ 1 & 2 \end{pmatrix}^n$.

3. Let V be a vector space of dimension n and α an endomorphism of V with $\alpha^n = 0$ but $\alpha^{n-1} \neq 0$. Show that there is a vector \mathbf{x} such that \mathbf{x} , $\alpha(\mathbf{x})$, $\alpha^2(\mathbf{x})$, ..., $\alpha^{n-1}(\mathbf{x})$ is a basis for V.

(i) Let $p(t) = a_0 + a_1 t + a_2 t^2 \dots + a_k t^k$ be a polynomial. What is the matrix for $p(\alpha)$ with respect to the basis given above?

(ii) Suppose that β is an endomorphism of V which commutes with α . Show that $\beta = p(\alpha)$ for some polynomial p(t).

- (iii) What can you deduce using (i) and (ii)?
- 4. Let A be a non-singular square matrix in Jordan normal form. What is the inverse of A? What is the Jordan normal form of the inverse of A?
- 5. (i) Show that the Jordan normal form of a 3×3 complex matrix is determined by its characteristic and minimal polynomials. Give an example to show that this fails for 4×4 matrices. (ii) Let A be a complex 5×5 matrix with $A^4 = A^2 \neq A$. What are the possible minimum and characteristic polynomials? What are the possible Jordan normal forms?
- 6. Let P_2 be the space of polynomials in x, y of degree ≤ 2 in each variable. (So dim $P_2 = 9$.) Consider the map $D: P_2 \to P_2$ given by

$$D(f) = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y}$$

- (i) What are the eigenvalues of the endomorphism D? Find the eigenspaces.
- (ii) Determine the Jordan normal form of the endomorphism D.

(iii) Make a guess about what happens for the n^2 -dimensional space P_n space of polynomials in x, y of degree $\leq n$ in each variable.

7. (This is just a warm-up exercise!)

Show that
$$\begin{pmatrix} 1\\1\\1 \end{pmatrix}$$
, $\begin{pmatrix} 1\\1\\-1 \end{pmatrix}$, $\begin{pmatrix} 1\\-1\\-1 \end{pmatrix}$ form a basis for \mathbb{R}^3 . Find the dual basis for the dual space \mathbb{R}^{3*} .

J. M. E. Hyland

- 8. Let V be a 4-dimensional vector space over \mathbb{R} , and let $\{\xi_1, \xi_2, \xi_3, \xi_4\}$ be the basis of V^{*} dual to the basis $\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4\}$ for V. Determine, in terms of the ξ_i , the bases dual to each of the following:
 - (a) $\{\mathbf{x}_2, \mathbf{x}_1, \mathbf{x}_4, \mathbf{x}_3\}$;
 - (b) $\{\mathbf{x}_1, 2\mathbf{x}_2, \frac{1}{2}\mathbf{x}_3, \mathbf{x}_4\}$;
 - (c) $\{\mathbf{x}_1 + \mathbf{x}_2, \mathbf{x}_2 + \mathbf{x}_3, \mathbf{x}_3 + \mathbf{x}_4, \mathbf{x}_4\}$;
 - (d) $\{\mathbf{x}_1, \mathbf{x}_2 \mathbf{x}_1, \mathbf{x}_3 \mathbf{x}_2 + \mathbf{x}_1, \mathbf{x}_4 \mathbf{x}_3 + \mathbf{x}_2 \mathbf{x}_1\}$;
 - (e) $\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_1 + \mathbf{x}_2 + \mathbf{x}_3 + \mathbf{x}_4\}.$
- 9. (i) Show that if x ≠ y are vectors in the finite dimensional vector space V, then there is a linear functional θ ∈ V* such that θ(x) ≠ θ(y).
 (ii) Suppose that V is finite dimensional. Let A, B ≤ V. Prove that A ≤ B if and only if A^o ≥ B^o. Show that A = V if and only if A^o = {0}. Deduce that a subset F ⊂ V* of the dual space spans V* just when f(v) = 0 for all f ∈ F implies v = 0.
- 10. Let P_n be the space of real polynomials of degree at most n. For $x \in \mathbb{R}$ define $\varepsilon_x \in P_n^*$ by $\varepsilon_x(p) = p(x)$. Show that $\varepsilon_0, \ldots, \varepsilon_n$ form a basis for P_n^* , and identify the basis of P_n to which it is dual.
- 11. Let θ and ϕ be linear functionals on V with the property that $\theta(\mathbf{x}) = 0$ if, and only if, $\phi(\mathbf{x}) = 0$. Show that θ and ϕ are scalar multiples of each other.
- 12. Let $\alpha: V \to V$ be an endomorphism of a finite dimensional complex vector space and let $\alpha^*: V^* \to V^*$ be its dual. Show that a complex number λ is an eigenvalue for α if, and only if, it is an eigenvalue for α^* . How are the algebraic and geometric multiplicities of λ for α and α^* related? How are the minimal and characteristic polynomials for α and α^* related?
- 13. Show that the dual of the space P of real polynomials is isomorphic to the space $\mathbb{R}^{\mathbb{N}}$ of all sequences of real numbers, via the mapping which sends a linear form $\xi : P \to \mathbb{R}$ to the sequence $(\xi(1), \xi(t), \xi(t^2), \ldots)$.

In terms of this identification, describe the effect on a sequence $(a_0, a_1, a_2, ...)$ of the linear maps dual to each of the following linear maps $P \to P$:

- (a) The map D defined by D(p)(t) = p'(t).
- (b) The map S defined by $S(p)(t) = p(t^2)$.
- (c) The map E defined by E(p)(t) = p(t-1).
- (d) The composite DS.
- (e) The composite SD.

Verify that $(DS)^* = S^*D^*$ and $(SD)^* = D^*S^*$.

14. For A an $n \times m$ and B an $m \times n$ matrix over the field F, let $\tau_A(B)$ denote trAB. Show that, for each fixed A, τ_A is a linear map $\operatorname{Mat}_{m,n} \to F$ from the space $\operatorname{Mat}_{m,n}$ of $m \times n$ matrices to F.

Now consider the mapping $A \mapsto \tau_A$. Show that it is a linear isomorphism $\operatorname{Mat}_{n,m}^* \to \operatorname{Mat}_{m,n}^*$.

Comments, corrections and queries can be sent to me at m.hyland@dpmms.cam.ac.uk.