Linear Algebra: Example Sheet 3

1. Show that none of the following matrices are conjugate:

$$
\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right), \quad\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Is the matrix

$$
\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

conjugate to any of them? If so, which?
2. Let A be a complex 5×5 matrix with $A^{4}=A^{2} \neq A$. What are the possible minimum and characteristic polynomials? What are the possible JNFs?
3. Show that $\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right),\left(\begin{array}{c}1 \\ -1 \\ -1\end{array}\right)$ form a basis for \mathbb{R}^{3}. Find the dual basis for $\mathbb{R}^{3 *}$.
4. Let V be a 4-dimensional vector space over \mathbb{R}, and let $\left\{\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}\right\}$ be the basis of V^{*} dual to the basis $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \mathbf{x}_{4}\right\}$ for V. Determine, in terms of the ξ_{i}, the bases dual to each of the following:
(a) $\left\{\mathbf{x}_{2}, \mathbf{x}_{1}, \mathbf{x}_{4}, \mathbf{x}_{3}\right\}$;
(b) $\left\{\mathbf{x}_{1}, 2 \mathbf{x}_{2}, \frac{1}{2} \mathbf{x}_{3}, \mathbf{x}_{4}\right\}$;
(c) $\left\{\mathbf{x}_{1}+\mathbf{x}_{2}, \mathbf{x}_{2}+\mathbf{x}_{3}, \mathbf{x}_{3}+\mathbf{x}_{4}, \mathbf{x}_{4}\right\}$;
(d) $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}-\mathbf{x}_{1}, \mathbf{x}_{3}-\mathbf{x}_{2}+\mathbf{x}_{1}, \mathbf{x}_{4}-\mathbf{x}_{3}+\mathbf{x}_{2}-\mathbf{x}_{1}\right\}$;
(e) $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \mathbf{x}_{1}+\mathbf{x}_{2}+\mathbf{x}_{3}+\mathbf{x}_{4}\right\}$.
5. Show that if $\mathbf{x} \neq \mathbf{y}$ are vectors in the finite dimensional vector space V, then there is a linear functional $\theta \in V^{*}$ such that $\theta(\mathbf{x}) \neq \theta(\mathbf{y})$.
6. Suppose that V is finite dimensional. Let $A, B \leq V$. Prove that $A \leq B$ if and only if $A^{o} \geq B^{o}$. Show that $A=V$ if and only if $A^{o}=\{\mathbf{0}\}$. Deduce that a subset $F \subset V^{*}$ of the dual space spans V^{*} just when $f(\mathbf{v})=0$ for all $f \in F$ implies $\mathbf{v}=\mathbf{0}$.
7. Let P_{n} be the space of real polynomials of degree at most n. For $x \in \mathbb{R}$ define $\varepsilon_{x} \in P_{n}^{*}$ by $\varepsilon_{x}(p)=p(x)$. Show that $\varepsilon_{0}, \ldots, \varepsilon_{n}$ form a basis for P_{n}^{*}, and identify the basis of P_{n} to which it is dual.
8. Suppose that U and V are finite dimensional vector spaces. Take $\theta \in U^{*}$ and $\phi \in V^{*}$. Show that $\psi(\mathbf{x}, \mathbf{y})=\theta(\mathbf{x}) \cdot \phi(\mathbf{y})$ defines a bilinear form of rank 0 or 1 . When is the rank 0 ? Show that any bilinear form $\psi: U \times V \rightarrow F$ of rank 1 can be expressed as $\psi(\mathbf{x}, \mathbf{y})=\theta(\mathbf{x}) \cdot \phi(\mathbf{y})$ for some θ and ϕ.
9. Let $\phi: U \times V \rightarrow F$ and $\psi: U \times V \rightarrow F$ be bilinear forms on the finite dimensional vector spaces U and V. Suppose ψ is non-singular. Show that there are linear maps $\alpha: U \rightarrow U$ and $\beta: V \rightarrow V$ with

$$
\phi(\mathbf{u}, \mathbf{v})=\psi(\alpha(\mathbf{u}), \mathbf{v})=\psi(\mathbf{u}, \beta(\mathbf{v})) .
$$

10. Suppose that ψ is a bilinear form on V. Take $U \leq V$ with $U=W^{\perp}$ some $W \leq V$. Suppose that $\left.\psi\right|_{U}$ is non-singular. Show that ψ is non-singular.
11. Let U, V be finite dimensional and suppose $\psi: U \times V \rightarrow F$ is a bilinear form. Show that for any $X \leq U$ we have

$$
\operatorname{dim} X+\operatorname{dim} X^{\perp} \geq \operatorname{dim} V
$$

Show that equality holds if ψ is non-degenerate.
12. Now let $\psi: V \times V \rightarrow F$ be a bilinear form; take $U \leq V$ and let $\tilde{\psi}=\left.\psi\right|_{U}: U \times U \rightarrow F$ be the restriction of ψ to U. Show that $\tilde{\psi}$ is non-singular if and only if $U \oplus U^{\perp}=V$.
Is it the case that ψ non-singular implies $\tilde{\psi}$ non-singular?
Is it the case that $\tilde{\psi}$ non-singular implies ψ non-singular?
13. Find a basis with respect to which $\left(\begin{array}{cc}0 & -1 \\ 1 & 2\end{array}\right)$ has JNF. Hence compute $\left(\begin{array}{cc}0 & -1 \\ 1 & 2\end{array}\right)^{n}$.
14. Let θ and ϕ be linear functionals on V with the property that $\theta(\mathbf{x})=0$ if, and only if, $\phi(\mathbf{x})=0$. Show that θ and ϕ are scalar multiples of each other.
15. Show that the dual of the space P of real polynomials is isomorphic to the space $\mathbb{R}^{\mathbb{N}}$ of all sequences of real numbers, via the mapping which sends a linear form $\xi: P \rightarrow \mathbb{R}$ to the sequence $\left(\xi(1), \xi(t), \xi\left(t^{2}\right), \ldots\right)$.
In terms of this identification, describe the effect on a sequence $\left(a_{0}, a_{1}, a_{2}, \ldots\right)$ of the linear maps dual to each of the following linear maps $P \rightarrow P$:
(a) The map D defined by $D(p)(t)=p^{\prime}(t)$.
(b) The map S defined by $S(p)(t)=p\left(t^{2}\right)$.
(c) The map E defined by $E(p)(t)=p(t-1)$.
(d) The composite $D S$.
(e) The composite $S D$.

Verify that $(D S)^{*}=S^{*} D^{*}$ and $(S D)^{*}=D^{*} S^{*}$.
16. For A an $n \times m$ and B an $m \times n$ matrix over the field \mathbb{F}, let $\tau_{A}(B)$ denote $\operatorname{tr} A B$.

Show that, for each fixed A, τ_{A} is a linear map $\mathcal{M}_{m \times n} \rightarrow \mathbb{F}$.
Now consider the mapping $A \mapsto \tau_{A}$. Show that it is a linear isomorphism $\mathcal{M}_{n \times m} \rightarrow \mathcal{M}_{m \times n}^{*}$.
17. Let $\alpha: V \rightarrow V$ be an endomorphism of a finite dimensional complex vector space and let $\alpha^{*}: V^{*} \rightarrow V^{*}$ be its dual. Show that a complex number λ is an eigenvalue for α if, and only if, it is an eigenvalue for α^{*}. How are the algebraic and geometric multiplicities of λ for α and α^{*} related? How are the minimal and characteristic polynomials for α and α^{*} related?
18. Suppose that $\psi: U \times V \rightarrow F$ is a bilinear form on U, V finite dimensional vector spaces. Show that there exist bases $\mathbf{e}_{1}, \ldots, \mathbf{e}_{m}$ for U and $\mathbf{f}_{1}, \ldots, \mathbf{f}_{n}$ for V such that when $\mathbf{x}=\sum_{1}^{m} x_{i} \mathbf{e}_{i}$ and $\mathbf{y}=\sum_{1}^{n} y_{j} \mathbf{f}_{j}$ we have $\psi(\mathbf{x}, \mathbf{y})=\sum_{1}^{r} x_{k} y_{k}$, where r is the rank of ψ. What are the dimensions of the left and right kernels of ψ ?
19. Find the left and right kernels of the bilinear form with matrix

$$
\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right)
$$

with respect to the standard basis $\mathbf{e}_{1}, \ldots, \mathbf{e}_{4}$. Let $V=\left\langle\mathbf{e}_{2}, \mathbf{e}_{3}\right\rangle$. Find V^{\perp} and ${ }^{\perp} V$. Give a basis $\mathbf{f}_{1}, \ldots, \mathbf{f}_{4}$ with respect to which the bilinear form has the matrix

$$
\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

20. Let $P_{2}=P_{2}(x, y)$ be the space of polynomials in x, y of degree ≤ 2 in each variable. (So dim $P_{2}=9$.)
(i) What is the JNF of the map $P_{2} \rightarrow P_{2} ; f(x, y) \mapsto \frac{\partial f}{\partial x}+\frac{\partial f}{\partial y}$?
(ii) What is the JNF of the map $P_{2} \rightarrow P_{2} ; f(x, y) \mapsto f(x+1, y+1)$?
(iii) So what do you think the answers are for P_{n} ?

Comments, corrections and queries can be sent to me at m.hyland@dpmms.cam.ac.uk.

