Linear Algebra: Example Sheet 2

The first 12 questions cover the course and should ensure good understanding. The remainder vary in difficulty but cover some instructive points.

1. Show that an $n \times n$ matrix is invertible if and only if it is a product of elementary matrices. Determine which of the following matrices are invertible, and find the inverses when they exist.

$$
\left(\begin{array}{ccc}
1 & -1 & 0 \\
0 & 0 & 1 \\
0 & 3 & -1
\end{array}\right), \quad\left(\begin{array}{ccc}
1 & 3 & 2 \\
1 & 1 & 1 \\
-1 & 1 & 0
\end{array}\right), \quad\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 2 & 1 \\
1 & 3 & 0
\end{array}\right)
$$

2. Let A and B be $n \times n$ matrices over a field \mathbb{F}. Show that the $(2 n \times 2 n)$ matrix

$$
C=\left(\begin{array}{cc}
I & B \\
-A & O
\end{array}\right) \quad \text { can be transformed into } \quad D=\left(\begin{array}{cc}
I & B \\
0 & A B
\end{array}\right)
$$

by elementary row operations. By considering the determinants of C and D, obtain another proof that $\operatorname{det} A B=\operatorname{det} A \operatorname{det} B$.
3. Compute the determinant of the $n \times n$ matrix whose entries are λ down the diagonal and 1 elsewhere.
4. Let A, B be $n \times n$ matrices, where $n \geq 2$. Show that, if A and B are non-singular, then (i) $\operatorname{adj}(A B)=\operatorname{adj}(B) \operatorname{adj}(A), \quad(i i) \operatorname{det}(\operatorname{adj} A)=(\operatorname{det} A)^{n-1}, \quad(i i i) \operatorname{adj}(\operatorname{adj} A)=(\operatorname{det} A)^{n-2} A$.

What happens if A is singular?
Show that the rank of the matrix $\operatorname{adj} A$ is $\quad \mathrm{r}(\operatorname{adj}(A))= \begin{cases}n & \text { if } \mathrm{r}(A)=n ; \\ 1 & \text { if } \mathrm{r}(A)=n-1 ; \\ 0 & \text { if } \mathrm{r}(A) \leq n-2 .\end{cases}$
5. (i) Suppose that V is a non-trivial finite dimensional real vector space. Show that there are no endomorphisms α, β of V with $\alpha \beta-\beta \alpha=I$.
(ii) Find endomorphisms of the space of infinitely differentiable functions $\mathbb{R} \rightarrow \mathbb{R}$ which do satisfy $\alpha \beta-\beta \alpha=I$.
6. Compute the characteristic polynomials of the matrices

$$
\left(\begin{array}{lll}
0 & 3 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right), \quad\left(\begin{array}{lll}
0 & 3 & 2 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right), \quad\left(\begin{array}{lll}
0 & 3 & 4 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) .
$$

Which of the matrices are diagonalizable over \mathbb{C} ? Which over \mathbb{R} ?
7. Find the eigenvalues and give bases for the eigenspaces of the following complex matrices:

$$
\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & 3 & -2 \\
0 & 1 & 0
\end{array}\right), \quad\left(\begin{array}{ccc}
1 & 1 & -1 \\
0 & 3 & -2 \\
0 & 1 & 0
\end{array}\right), \quad\left(\begin{array}{ccc}
1 & 1 & -1 \\
-1 & 3 & -1 \\
-1 & 1 & 1
\end{array}\right), \quad\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right) .
$$

The second and third matrices commute, so find a basis with respect to which they are both diagonal.
8. Suppose that $\alpha \in \mathcal{L}(V, V)$ is invertible. Describe the characteristic and minimal polynomials and the eigenvalues of α^{-1} in terms of those of α.
9. Let α be an endomorphism of a finite dimensional complex vector space. Show that if λ is an eigenvalue for α then λ^{2} is an eigenvalue for α^{2}. Show further that every eigenvalue of α^{2} arises in this way. [This result fails for real vector spaces. Why is that?] Are the eigenspaces $\operatorname{ker}(\alpha-\lambda I)$ and $\operatorname{ker}\left(\alpha^{2}-\lambda^{2} I\right)$ necessarily the same?
10. Show that an endomorphism $\alpha: V \rightarrow V$ of a finite dimensional complex vector space V has 0 as only eigenvalue if and only if it is nilpotent, that is, $\alpha^{k}=0$ for some natural number k. Show that the minimum such k is at most $\operatorname{dim}(V)$. What can you say if the only eigenvalue of α is 1 ?
11. (i) An endomorphism $\alpha: V \rightarrow V$ of a finite dimensional vector space is periodic just when $\alpha^{k}=I$ for some k. Show that a periodic matrix is diagonalisable over \mathbb{C}.
(ii) Let $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ be a basis for a vector space V over \mathbb{C}. For σ a permutation of $\{1, \ldots, n\}$, define $\widehat{\sigma}: V \rightarrow V$ by $\widehat{\sigma}\left(\mathbf{e}_{i}\right)=\mathbf{e}_{\sigma(i)}$. What are the eigenvalues of $\widehat{\sigma}$?
(iii) Is every periodic endomorphism of the form $\widehat{\sigma}$ for some choice of permutation σ and basis $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$?
12. Show that if two $n \times n$ real matrices P and Q are conjugate when regarded as matrices over \mathbb{C}, then they are conjugate as matrices over \mathbb{R}.
13. Let $f(x)=a_{0}+a_{1} x+\ldots+a_{n} x^{n}$, with $a_{i} \in \mathbb{C}$, and let C be the circulant matrix

$$
\left(\begin{array}{ccccc}
a_{0} & a_{1} & a_{2} & \ldots & a_{n} \\
a_{n} & a_{0} & a_{1} & \ldots & a_{n-1} \\
a_{n-1} & a_{n} & a_{0} & \ldots & a_{n-2} \\
\vdots & & & \ddots & \vdots \\
a_{1} & a_{2} & a_{3} & \ldots & a_{0}
\end{array}\right)
$$

Show that the determinant of C is $\operatorname{det} C=\prod_{j=0}^{n} f\left(\zeta^{j}\right)$, where $\zeta=\exp (2 \pi i /(n+1))$.
14. Let A be an $n \times n$ matrix all the entries of which are real. Show that the minimum polynomial of A, over the complex numbers, has real coefficients.
15. Suppose that $\alpha: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ has eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$. Regard $\mathbb{C}^{n} \cong \mathbb{R}^{2 n}$ as a $2 n$-dimensional real vector space, and consider the corresponding endomorphism $\alpha: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{2 n}$. What are the complex eigenvalues of this α ?
16. Let $\alpha: V \rightarrow V$ be an endomorphism of a finite dimensional real vector space V with $\operatorname{tr}(\alpha)=0$.
(i) Show that, if $\alpha \neq 0$, there is a vector \mathbf{v} with $\mathbf{v}, \alpha(\mathbf{v})$ linearly independent. Deduce that there is a basis for V relative to which α is represented by a matrix A with all of its diagonal entries equal to 0 .
(ii) Show that there are endomorphisms β, γ of V with $\alpha=\beta \gamma-\gamma \beta$.

Comments, corrections and queries can be sent to me at m.hyland@dpmms.cam.ac.uk.

