Michaelmas Term 2003 J. M. E. Hyland

Linear Algebra: Example Sheet 2

The first 12 questions cover the course and should ensure good understanding of the course: the remainder do vary in difficulty but cover some instructive points.

1. For what values of a and b does the system of simultaneous linear equations

$$x + y + z = 1$$

$$ax + 2y + z = b$$

$$a^{2}x + 4y + z = b^{2}$$

have (i) a unique solution, (ii) no solution, (iii) many solutions?

2. Let A and B be $n \times n$ matrices over a field \mathbb{F} . Show that the $(2n \times 2n)$ matrix

$$C = \begin{pmatrix} I & B \\ -A & O \end{pmatrix}$$
 can be transformed into $D = \begin{pmatrix} I & B \\ 0 & AB \end{pmatrix}$

by elementary row operations. By considering the determinants of C and D, obtain another proof that $\det AB = \det A \det B$.

- 3. Let C be an $n \times n$ matrix over \mathbb{C} , and write C = A + iB, where A and B are real $n \times n$ matrices. By considering $\det(A + \lambda B)$ as a function of λ , show that if C is invertible then there exists a real number λ such that $A + \lambda B$ is invertible. Deduce that if two $n \times n$ real matrices P and Q are conjugate when regarded as matrices over \mathbb{C} , then they are conjugate as matrices over \mathbb{R} .
- 4. Show that there are no endomorphisms α, β of a finite dimensional vector space V with $\alpha\beta \beta\alpha = I$, except for the case dim V = 0.

Find endomorphisms of an infinite dimensional vector space V which do satisfy $\alpha\beta - \beta\alpha = I$.

- 5. Find a basis with respect to which $\begin{pmatrix} 0 & -2 \\ 1 & 3 \end{pmatrix}$ is diagonal. Hence compute the *n*th power $\begin{pmatrix} 0 & -2 \\ 1 & 3 \end{pmatrix}^n$.
- 6. Compute the characteristic polynomials of the matrices

$$\begin{pmatrix} 0 & 3 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & 3 & 2 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & 3 & 4 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}.$$

Which of the matrices are diagonalizable over \mathbb{C} ? Which over \mathbb{R} ?

- 7. Let α be an endomorphism of a finite dimensional complex vector space. Show that if λ is an eigenvalue for α then λ^2 is an eigenvalue for α^2 . Show further that every eigenvalue of α^2 arises in this way. Are the eigenspaces $\ker(\alpha \lambda I)$ and $\ker(\alpha^2 \lambda^2 I)$ necessarily the same?
- 8. Find the eigenvalues and give bases for the eigenspaces of the following complex matrices:

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 3 & -2 \\ 0 & 1 & 0 \end{pmatrix}, \qquad \begin{pmatrix} 1 & 1 & -1 \\ 0 & 3 & -2 \\ 0 & 1 & 0 \end{pmatrix}, \qquad \begin{pmatrix} 1 & 1 & -1 \\ -1 & 3 & -1 \\ -1 & 1 & 1 \end{pmatrix}, \qquad \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}.$$

The second and third matrices commute, so find a basis with respect to which they are both diagonal.

- 9. Suppose that $\alpha \in \mathcal{L}(V, V)$ is invertible. Describe the characteristic and minimal polynomials and the eigenvalues of α^{-1} in terms of those of α .
- 10. Find the characteristic polynomial and the algebraic and geometric multiplicities of the eigenvalues of the matrix

$$\begin{pmatrix} 1 & 0 & 3 & 0 \\ 1 & 3 & -1 & 2 \\ 0 & 0 & -1 & 0 \\ -1 & -2 & 1 & -1 \end{pmatrix}.$$

[Be sensible: little calculation is needed.] Now what is the minimum polynomial?

- 11. Consider the matrix $A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & 1 \\ 0 & 1 & 0 \end{pmatrix}$. Show that the characteristic polynomial is $t^3 2t + 1$. Hence compute $A^7 2A^5 + 2A^4 2A^2 + 2A + I$ and A^{-1} .
- 12. Show that an endomorphism $\alpha: V \to V$ of a finite dimensional complex vector space V has 0 as only eigenvalue if and only if it is *nilpotent*, that is, $\alpha^k = 0$ for some natural number k. Show that the minimum such k is at most dim(V). What can you say if the only eigenvalue of α is 1?
- 13. Suppose that $A: \mathbb{C}^n \to \mathbb{C}^n$ has eigenvalues $\lambda_1, \ldots, \lambda_n$. Regard $\mathbb{C}^n \cong \mathbb{R}^{2n}$ as a 2n-dimensional real vector space, and consider the endomorphism $A: \mathbb{R}^{2n} \to \mathbb{R}^{2n}$. What are the complex eigenvalues of this A?
- 14. Let A be an $n \times n$ matrix all the entries of which are real. Show that the minimum polynomial of A, over the complex numbers, has real coefficients.
- 15. Let $f(x) = a_0 + a_1x + \ldots + a_nx^n$, with $a_i \in \mathbb{C}$, and let C be the *circulant* matrix

$$\begin{pmatrix} a_0 & a_1 & a_2 & \dots & a_n \\ a_n & a_0 & a_1 & \dots & a_{n-1} \\ a_{n-1} & a_n & a_0 & \dots & a_{n-2} \\ \vdots & & & \ddots & \vdots \\ a_1 & a_2 & a_3 & \dots & a_0 \end{pmatrix}.$$

Show that the determinant of C is $\det C = \prod_{i=0}^n f(\zeta^i)$, where $\zeta = \exp(2\pi i/(n+1))$.

- 16. Let A, B be $n \times n$ matrices, where $n \ge 2$. Show that, if A and B are non-singular, then
 - $(i) \operatorname{adj}(AB) = \operatorname{adj}(B)\operatorname{adj}(A), \quad (ii) \operatorname{det}(\operatorname{adj}A) = (\operatorname{det}A)^{n-1}, \quad (iii) \operatorname{adj}(\operatorname{adj}A) = (\operatorname{det}A)^{n-2}A.$

What happens if A is singular?

Show that the rank of the matrix $\operatorname{adj} A$ is $\operatorname{r}(\operatorname{adj}(A)) = \begin{cases} n & \text{if } \operatorname{r}(A) = n; \\ 1 & \text{if } \operatorname{r}(A) = n - 1; \\ 0 & \text{if } \operatorname{r}(A) \leq n - 2. \end{cases}$

- 17. (i) An endomorphism $\alpha: V \to V$ of a finite dimensional vector space is *periodic* just when $\alpha^k = I$ for some k. Show that a periodic matrix is diagonalisable over \mathbb{C} .
 - (ii) Let $\mathbf{e}_1, \dots, \mathbf{e}_n$ be a basis for a vector space V over \mathbb{C} . For σ a permutation of $\{1, \dots, n\}$, define $\widehat{\sigma}: V \to V$ by $\widehat{\sigma}(\mathbf{e}_i) = \mathbf{e}_{\sigma(i)}$. What are the eigenvalues of $\widehat{\sigma}$? [Consider the case when σ is a cycle first?]
 - (iii) Is every periodic endomorphism of the form $\hat{\sigma}$ for some choice of permutation σ and basis $\mathbf{e}_1, \dots, \mathbf{e}_n$?
- 18. Let V be a complex vector space with dimension n and let α be an endomorphism of V with $\alpha^{n-1} \neq 0$ but $\alpha^n = 0$. Show that there is a vector $\mathbf{x} \in V$ for which

$$\mathbf{x}$$
, $\alpha(\mathbf{x})$, $\alpha^2(\mathbf{x})$, ..., $\alpha^{n-1}(\mathbf{x})$

is a basis for V. Give the matrix of α relative to this basis.

Let $p(t) = a_0 + a_1 t + ... + a_k t^k$ be a polynomial. What is the matrix for $p(\alpha)$ with respect to the base? What is the minimal polynomial for α ? What are the eigenvalues and eigenvectors?

Show that if an endomorphism β of V commutes with α then $\beta = p(\alpha)$ for some polynomial p(t). (It may help to consider $\beta(\mathbf{x})$.)

- 19. Let $\alpha: V \to V$ be an endomorphism of a finite dimensional vector space V with $\operatorname{tr}(\alpha) = 0$.
 - (i) Show that, if $\alpha \neq 0$, there is a vector \mathbf{v} with $\mathbf{v}, \alpha(\mathbf{v})$ linearly independent. Deduce that there is a basis for V relative to which α is represented by a matrix A with all of its diagonal entries equal to 0.
 - (ii) Show that there are endomorphisms β, γ of V with $\alpha = \beta \gamma \gamma \beta$.
- 20. (i) Suppose that the endomorphism $A: \mathbb{C}^n \to \mathbb{C}^n$ is nilpotent. Show that $\operatorname{tr}(A) = 0$.
 - (ii) Suppose $\lambda_1, \ldots, \lambda_n$ are such that $\sum \lambda_i^r = 0$ for $1 \le r \le n$. Show that the $\lambda_1, \ldots, \lambda_n$ are all 0. [This follows trivially from a famous result on symmetric functions, but you can prove it directly.]
 - (iii) Deduce that if the endomorphism $A: \mathbb{C}^n \to \mathbb{C}^n$ is such that $\operatorname{tr}(A^k) = 0$ for all k then A is nilpotent.

Comments, corrections and queries can be sent to me at m.hyland@dpmms.cam.ac.uk.