Linear Algebra: Example Sheet 2

The first 12 questions cover the course and should ensure good understanding of the course: the remainder do vary in difficulty but cover some instructive points.

1. For what values of a and b does the system of simultaneous linear equations

$$
\begin{aligned}
x+y+z & =1 \\
a x+2 y+z & =b \\
a^{2} x+4 y+z & =b^{2}
\end{aligned}
$$

have (i) a unique solution, (ii) no solution, (iii) many solutions?
2. Let A and B be $n \times n$ matrices over a field \mathbb{F}. Show that the $(2 n \times 2 n)$ matrix

$$
C=\left(\begin{array}{cc}
I & B \\
-A & O
\end{array}\right) \quad \text { can be transformed into } \quad D=\left(\begin{array}{cc}
I & B \\
0 & A B
\end{array}\right)
$$

by elementary row operations. By considering the determinants of C and D, obtain another proof that $\operatorname{det} A B=\operatorname{det} A \operatorname{det} B$.
3. Let C be an $n \times n$ matrix over \mathbb{C}, and write $C=A+i B$, where A and B are real $n \times n$ matrices. By considering $\operatorname{det}(A+\lambda B)$ as a function of λ, show that if C is invertible then there exists a real number λ such that $A+\lambda B$ is invertible. Deduce that if two $n \times n$ real matrices P and Q are conjugate when regarded as matrices over \mathbb{C}, then they are conjugate as matrices over \mathbb{R}.
4. Show that there are no endomorphisms α, β of a finite dimensional vector space V with $\alpha \beta-\beta \alpha=I$, except for the case $\operatorname{dim} V=0$.
Find endomorphisms of an infinite dimensional vector space V which do satisfy $\alpha \beta-\beta \alpha=I$.
5. Find a basis with respect to which $\left(\begin{array}{cc}0 & -2 \\ 1 & 3\end{array}\right)$ is diagonal. Hence compute the nth power $\left(\begin{array}{cc}0 & -2 \\ 1 & 3\end{array}\right)^{n}$.
6. Compute the characteristic polynomials of the matrices

$$
\left(\begin{array}{lll}
0 & 3 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right), \quad\left(\begin{array}{lll}
0 & 3 & 2 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right), \quad\left(\begin{array}{lll}
0 & 3 & 4 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

Which of the matrices are diagonalizable over \mathbb{C} ? Which over \mathbb{R} ?
7. Let α be an endomorphism of a finite dimensional complex vector space. Show that if λ is an eigenvalue for α then λ^{2} is an eigenvalue for α^{2}. Show further that every eigenvalue of α^{2} arises in this way. Are the eigenspaces $\operatorname{ker}(\alpha-\lambda I)$ and $\operatorname{ker}\left(\alpha^{2}-\lambda^{2} I\right)$ necessarily the same?
8. Find the eigenvalues and give bases for the eigenspaces of the following complex matrices:

$$
\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & 3 & -2 \\
0 & 1 & 0
\end{array}\right), \quad\left(\begin{array}{ccc}
1 & 1 & -1 \\
0 & 3 & -2 \\
0 & 1 & 0
\end{array}\right), \quad\left(\begin{array}{ccc}
1 & 1 & -1 \\
-1 & 3 & -1 \\
-1 & 1 & 1
\end{array}\right), \quad\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right) .
$$

The second and third matrices commute, so find a basis with respect to which they are both diagonal.
9. Suppose that $\alpha \in \mathcal{L}(V, V)$ is invertible. Describe the characteristic and minimal polynomials and the eigenvalues of α^{-1} in terms of those of α.
10. Find the characteristic polynomial and the algebraic and geometric multiplicities of the eigenvalues of the matrix

$$
\left(\begin{array}{cccc}
1 & 0 & 3 & 0 \\
1 & 3 & -1 & 2 \\
0 & 0 & -1 & 0 \\
-1 & -2 & 1 & -1
\end{array}\right)
$$

[Be sensible: little calculation is needed.] Now what is the minimum polynomial?
11. Consider the matrix $A=\left(\begin{array}{ccc}1 & 0 & 2 \\ 0 & -1 & 1 \\ 0 & 1 & 0\end{array}\right)$. Show that the characteristic polynomial is $t^{3}-2 t+1$. Hence compute $A^{7}-2 A^{5}+2 A^{4}-2 A^{2}+2 A+I$ and A^{-1}.
12. Show that an endomorphism $\alpha: V \rightarrow V$ of a finite dimensional complex vector space V has 0 as only eigenvalue if and only if it is nilpotent, that is, $\alpha^{k}=0$ for some natural number k. Show that the minimum such k is at most $\operatorname{dim}(V)$. What can you say if the only eigenvalue of α is 1 ?
13. Suppose that $A: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ has eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$. Regard $\mathbb{C}^{n} \cong \mathbb{R}^{2 n}$ as a $2 n$-dimensional real vector space, and consider the endomorphism $A: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{2 n}$. What are the complex eigenvalues of this A ?
14. Let A be an $n \times n$ matrix all the entries of which are real. Show that the minimum polynomial of A, over the complex numbers, has real coefficients.
15. Let $f(x)=a_{0}+a_{1} x+\ldots+a_{n} x^{n}$, with $a_{i} \in \mathbb{C}$, and let C be the circulant matrix

$$
\left(\begin{array}{ccccc}
a_{0} & a_{1} & a_{2} & \ldots & a_{n} \\
a_{n} & a_{0} & a_{1} & \ldots & a_{n-1} \\
a_{n-1} & a_{n} & a_{0} & \ldots & a_{n-2} \\
\vdots & & & \ddots & \vdots \\
a_{1} & a_{2} & a_{3} & \ldots & a_{0}
\end{array}\right)
$$

Show that the determinant of C is $\operatorname{det} C=\prod_{j=0}^{n} f\left(\zeta^{j}\right)$, where $\zeta=\exp (2 \pi i /(n+1))$.
16. Let A, B be $n \times n$ matrices, where $n \geq 2$. Show that, if A and B are non-singular, then

$$
(i) \operatorname{adj}(A B)=\operatorname{adj}(B) \operatorname{adj}(A), \quad(i i) \operatorname{det}(\operatorname{adj} A)=(\operatorname{det} A)^{n-1}, \quad(i i i) \operatorname{adj}(\operatorname{adj} A)=(\operatorname{det} A)^{n-2} A
$$

What happens if A is singular?
Show that the rank of the matrix $\operatorname{adj} A$ is $\quad \mathrm{r}(\operatorname{adj}(A))= \begin{cases}n & \text { if } \mathrm{r}(A)=n ; \\ 1 & \text { if } \mathrm{r}(A)=n-1 ; \\ 0 & \text { if } \mathrm{r}(A) \leq n-2 .\end{cases}$
17. (i) An endomorphism $\alpha: V \rightarrow V$ of a finite dimensional vector space is periodic just when $\alpha^{k}=I$ for some k. Show that a periodic matrix is diagonalisable over \mathbb{C}.
(ii) Let $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ be a basis for a vector space V over \mathbb{C}. For σ a permutation of $\{1, \ldots, n\}$, define $\widehat{\sigma}: V \rightarrow V$ by $\widehat{\sigma}\left(\mathbf{e}_{i}\right)=\mathbf{e}_{\sigma(i)}$. What are the eigenvalues of $\widehat{\sigma}$? [Consider the case when σ is a cycle first?]
(iii) Is every periodic endomorphism of the form $\widehat{\sigma}$ for some choice of permutation σ and basis $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$?
18. Let V be a complex vector space with dimension n and let α be an endomorphism of V with $\alpha^{n-1} \neq 0$ but $\alpha^{n}=0$. Show that there is a vector $\mathbf{x} \in V$ for which

$$
\mathbf{x}, \alpha(\mathbf{x}), \alpha^{2}(\mathbf{x}), \ldots, \alpha^{n-1}(\mathbf{x})
$$

is a basis for V. Give the matrix of α relative to this basis.
Let $p(t)=a_{0}+a_{1} t+\ldots+a_{k} t^{k}$ be a polynomial. What is the matrix for $p(\alpha)$ with respect to the base? What is the minimal polynomial for α ? What are the eigenvalues and eigenvectors?
Show that if an endomorphism β of V commutes with α then $\beta=p(\alpha)$ for some polynomial $p(t)$. (It may help to consider $\beta(\mathbf{x})$.)
19. Let $\alpha: V \rightarrow V$ be an endomorphism of a finite dimensional vector space V with $\operatorname{tr}(\alpha)=0$.
(i) Show that, if $\alpha \neq 0$, there is a vector \mathbf{v} with $\mathbf{v}, \alpha(\mathbf{v})$ linearly independent. Deduce that there is a basis for V relative to which α is represented by a matrix A with all of its diagonal entries equal to 0 .
(ii) Show that there are endomorphisms β, γ of V with $\alpha=\beta \gamma-\gamma \beta$.
20. (i) Suppose that the endomorphism $A: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ is nilpotent. Show that $\operatorname{tr}(A)=0$.
(ii) Suppose $\lambda_{1}, \ldots, \lambda_{n}$ are such that $\sum \lambda_{i}^{r}=0$ for $1 \leq r \leq n$. Show that the $\lambda_{1}, \ldots, \lambda_{n}$ are all 0 . [This follows trivially from a famous result on symmetric functions, but you can prove it directly.]
(iii) Deduce that if the endomorphism $A: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ is such that $\operatorname{tr}\left(A^{k}\right)=0$ for all k then A is nilpotent.

Comments, corrections and queries can be sent to me at m.hyland@dpmms.cam.ac.uk.

