Linear Algebra: Example Sheet 1

The first 12 questions cover the relevant part of the course and should ensure good understanding. A few other questions are included in case you have time for them.

1. $\mathbb{R}^{\mathbb{R}}$ is the vector space of all functions $f: \mathbb{R} \rightarrow \mathbb{R}$, with addition and scalar multiplication defined pointwise. Which of the following sets of functions form a vector subspace of $\mathbb{R}^{\mathbb{R}}$?
(a) The set C of continuous functions.
(b) The set $\{f \in C:|f(t)| \leq 1$ for all $t \in[0,1]\}$.
(c) The set $\{f \in C: f(t) \rightarrow 0$ as $t \rightarrow \infty\}$.
(d) The set $\{f \in C: f(t) \rightarrow 1$ as $t \rightarrow \infty\}$.
(e) The set $\{f \in C:|f(t)| \rightarrow \infty$ as $|t| \rightarrow \infty\}$.
(f) The set of solutions of the differential equation $\ddot{x}(t)+\left(t^{2}-3\right) \dot{x}(t)+t^{4} x(t)=0$.
(g) The set of solutions of $\ddot{x}(t)+\left(t^{2}-3\right) \dot{x}(t)+t^{4} x(t)=\sin t$.
(h) The set of solutions of $(\dot{x}(t))^{2}-x(t)=0$.
(i) The set of solutions of $(\ddot{x}(t))^{4}+(x(t))^{2}=0$.
2. (i) Suppose that T and U are subspaces of the vector space V. Show that $T \cup U$ is also a subspace of V if and only if either $T \leq U$ or $U \leq T$.
(ii) Let T, U and W be subspaces of V. Give explicit counter-examples to the following statements.
(a) $T+(U \cap W)=(T+U) \cap(T+W)$.
(b) $\quad(T+U) \cap W=(T \cap W)+(U \cap W)$.

Show that each of these equalities can be replaced by a valid inclusion of one side in the other.
3. If α and β are linear maps from U to V, show that $\alpha+\beta$ is linear. Give explicit counter-examples to the following statements.
(a) $\operatorname{Im}(\alpha+\beta)=\operatorname{Im} \alpha+\operatorname{Im} \beta:$
(b) $\operatorname{ker}(\alpha+\beta)=\operatorname{ker} \alpha \cap \operatorname{ker} \beta$.

Show that each of these equalities can be replaced by a valid inclusion of one side in the other.
4. Suppose that $\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right\}$ is a base for V. Which of the following are also bases?
(a) $\left\{\mathbf{e}_{1}+\mathbf{e}_{2}, \mathbf{e}_{2}+\mathbf{e}_{3}, \ldots, \mathbf{e}_{n-1}+\mathbf{e}_{n}, \mathbf{e}_{n}\right\}$.
(b) $\left\{\mathbf{e}_{1}+\mathbf{e}_{2}, \mathbf{e}_{2}+\mathbf{e}_{3}, \ldots, \mathbf{e}_{n-1}+\mathbf{e}_{n}, \mathbf{e}_{n}+\mathbf{e}_{1}\right\}$.
(c) $\left\{\mathbf{e}_{1}-\mathbf{e}_{2}, \mathbf{e}_{2}-\mathbf{e}_{3}, \ldots, \mathbf{e}_{n-1}-\mathbf{e}_{n}, \mathbf{e}_{n}\right\}$.
(d) $\left\{\mathbf{e}_{1}-\mathbf{e}_{2}, \mathbf{e}_{2}-\mathbf{e}_{3}, \ldots, \mathbf{e}_{n-1}-\mathbf{e}_{n}, \mathbf{e}_{n}-\mathbf{e}_{1}\right\}$.
(e) $\left\{\mathbf{e}_{1}-\mathbf{e}_{n}, \mathbf{e}_{2}+\mathbf{e}_{n-1}, \ldots, \mathbf{e}_{n}+(-1)^{n} \mathbf{e}_{1}\right\}$.
5. For each of the following pairs of vector spaces (V, W) over \mathbb{R}, either give an isomorphism $V \rightarrow W$ or show that no such isomorphism can exist. (Here P denotes the space of polynomial functions $\mathbb{R} \rightarrow \mathbb{R}$, and $C[a, b]$ denotes the space of continuous functions defined on the closed interval $[a, b]$.)
(a) $V=\mathbb{R}^{4}, W=\left\{\mathbf{x} \in \mathbb{R}^{5}: x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=0\right\}$.
(b) $V=\mathbb{R}^{5}, W=\{p \in P: \operatorname{deg} p \leq 5\}$.
(c) $V=C[0,1], W=C[-1,1]$.
(d) $V=C[0,1], W=\{f \in C[0,1]: f(0)=0, f$ continuously differentiable $\}$.
(e) $V=\mathbb{R}^{2}, W=\{$ solutions of $\ddot{x}(t)+x(t)=0\}$.
(f) $V=\mathbb{R}^{4}, \quad W=C[0,1]$.
(g) $V=P, W=\mathbb{R}^{\mathbb{N}}$.
6. Let

$$
U=\left\{\mathbf{x} \in \mathbb{R}^{5}: x_{1}+x_{3}+x_{4}=0,2 x_{1}+2 x_{2}+x_{5}=0\right\}, \quad W=\left\{\mathbf{x} \in \mathbb{R}^{5}: x_{1}+x_{5}=0, x_{2}=x_{3}=x_{4}\right\}
$$

Find bases for U and W containing a basis for $U \cap W$ as a subset. Give a basis for $U+W$ and show that

$$
U+W=\left\{\mathbf{x} \in \mathbb{R}^{5}: x_{1}+2 x_{2}+x_{5}=x_{3}+x_{4}\right\}
$$

7. The vector space F^{n} has a standard basis $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ of unit vectors. Let W be a subspace of F^{n}. Show that there is a finite subset I of $\{1,2, \ldots, n\}$ for which the subspace $U=\left\langle\left\{\mathbf{e}_{i}: i \in I\right\}\right\rangle$ is a complementary subspace to W in F^{n}.
8. Let U_{1}, \ldots, U_{r} be subspaces of a vector space V, and suppose that for each i, B_{i} is a basis for U_{i}. Show that the following conditions are equivalent.
(i) $U=\sum_{i} U_{i}$ is a direct sum, that is, every element of U can be uniquely expressed as a sum $\sum_{i} \mathbf{u}_{i}$ with $\mathbf{u}_{i} \in U_{i}$;
(ii) For each $j, U_{j} \cap \sum_{i \neq j} U_{i}=\{0\}$.
(iii) The B_{i} are pairwise disjoint and their union B is a basis for $U=\sum_{i} U_{i}$.

Give an example where $U_{i} \cap U_{j}=\{0\}$ for all $i \neq j$, and yet $U=\sum_{i} U_{i}$ is not a direct sum.
9. Let $\alpha: U \rightarrow V$ be a linear map between two finite dimensional vector spaces and let W be a vector subspace of U. Show that the restriction of α to W is a linear map $\left.\alpha\right|_{W}: W \rightarrow V$ which satisfies

$$
\mathrm{r}(\alpha) \geq \mathrm{r}\left(\left.\alpha\right|_{W}\right) \geq \mathrm{r}(\alpha)-\operatorname{dim}(U)+\operatorname{dim}(W) .
$$

Give examples to show that either of the two inequalities can be an equality.
10. Let $\alpha: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear map given by $\alpha:\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right) \mapsto\left(\begin{array}{lll}2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2\end{array}\right)\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$. Find the matrix representing α relative to the base $\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$ for both the domain and the range. Write down bases for the domain and range with respect to which the matrix of α is the identity.
11. Let Y and Z be subspaces of the finite dimensional vector spaces V and W respectively. Show that $R=\{\theta \in \mathcal{L}(V, W): \theta(\mathbf{x}) \in Z$ for all $\mathbf{x} \in Y\}$ is a subspace of $\mathcal{L}(V, W)$. What is the dimension of $R ?$
12. (i) Let $\alpha: V \rightarrow V$ be an endomorphism of a finite dimensional vector space V. Set $r_{i}=\mathrm{r}\left(\alpha^{i}\right)$. Show that $r_{i} \geq r_{i+1}$ and that $\left(r_{i}-r_{i+1}\right) \geq\left(r_{i+1}-r_{i+2}\right)$. Deduce that if $r_{k}=r_{k+1}$ for some $k \geq 0$, then r_{j} is constant for all $j \geq k$.
(ii) Suppose that $\operatorname{dim}(V)=5, \alpha^{3}=0$, but $\alpha^{2} \neq 0$. What possibilities are there for $\mathrm{r}(\alpha)$ and $\mathrm{r}\left(\alpha^{2}\right)$?
13. Let T, U and W be subspaces of a vector space. Show that if $T \leq W$, then

$$
(T+U) \cap W=(T \cap W)+(U \cap W)
$$

Deduce that in general one has $T \cap(U+(T \cap W))=(T \cap U)+(T \cap W)$.
14. Let W be a subspace of a finite dimensional vector space V. Show that both W and V / W are finite dimensional and that $\operatorname{dim} V=\operatorname{dim} W+\operatorname{dim} V / W$.
15. Suppose X and Y are linearly independent subsets of a vector space V; no member of X is expressible as a linear combination of members of Y, and no member of Y is expressible as a linear combination of members of X. Is the set $X \cup Y$ necessarily linearly independent? Give a proof or counterexample.
16. (Another version of the Exchange Lemma.) Let $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{r}\right\}$ and $\left\{\mathbf{y}_{1}, \mathbf{y}_{2}, \ldots, \mathbf{y}_{s}\right\}$ be linearly independent subsets of a vector space V, and suppose $r \leq s$. Show that it is possible to choose distinct indices $i_{1}, i_{2}, \ldots, i_{r}$ from $\{1,2, \ldots, s\}$ such that, if we delete each $\mathbf{y}_{i_{j}}$ from Y and replace it by \mathbf{x}_{j}, the resulting set is still linearly independent. Deduce that any two maximal linearly independent subsets of a finite dimensional vector space have the same size.

Comments, corrections and queries can be sent to me at m.hyland@dpmms.cam.ac.uk.

