Michaelmas Term 2013

Linear Algebra: Example Sheet 1

The first 12 questions cover the relevant part of the course and should ensure good understanding. A few other questions are included in case you have time for them.

- 1. $\mathbb{R}^{\mathbb{R}}$ is the vector space of all functions $f : \mathbb{R} \to \mathbb{R}$, with addition and scalar multiplication defined pointwise. Which of the following sets of functions form a vector subspace of $\mathbb{R}^{\mathbb{R}}$?
 - (a) The set C of continuous functions.
 - (b) The set $\{f \in C : |f(t)| \le 1 \text{ for all } t \in [0, 1]\}$.
 - (c) The set $\{f \in C : f(t) \to 0 \text{ as } t \to \infty\}$.
 - (d) The set $\{f \in C : f(t) \to 1 \text{ as } t \to \infty\}$.
 - (e) The set $\{f \in C : |f(t)| \to \infty \text{ as } |t| \to \infty\}$.
 - (f) The set of solutions of the differential equation $\ddot{x}(t) + (t^2 3)\dot{x}(t) + t^4x(t) = 0$.
 - (g) The set of solutions of $\ddot{x}(t) + (t^2 3)\dot{x}(t) + t^4x(t) = \sin t$.
 - (h) The set of solutions of $(\dot{x}(t))^2 x(t) = 0$.
 - (i) The set of solutions of $(\ddot{x}(t))^4 + (x(t))^2 = 0$.
- 2. (i) Suppose that T and U are subspaces of the vector space V. Show that $T \cup U$ is also a subspace of V if and only if either $T \leq U$ or $U \leq T$.
 - (ii) Let T, U and W be subspaces of V. Give explicit counter-examples to the following statements.

(a)
$$T + (U \cap W) = (T + U) \cap (T + W).$$
 (b) $(T + U) \cap W = (T \cap W) + (U \cap W).$

Show that each of these equalities can be replaced by a valid inclusion of one side in the other.

3. If α and β are linear maps from U to V, show that $\alpha + \beta$ is linear. Give explicit counter-examples to the following statements.

(a)
$$\operatorname{Im}(\alpha + \beta) = \operatorname{Im}\alpha + \operatorname{Im}\beta$$
: (b) $\ker(\alpha + \beta) = \ker \alpha \cap \ker \beta$.

Show that each of these equalities can be replaced by a valid inclusion of one side in the other.

- 4. Suppose that $\{\mathbf{e}_1,\ldots,\mathbf{e}_n\}$ is a base for V. Which of the following are also bases?
 - (a) $\{\mathbf{e}_1 + \mathbf{e}_2, \mathbf{e}_2 + \mathbf{e}_3, \dots, \mathbf{e}_{n-1} + \mathbf{e}_n, \mathbf{e}_n\}.$
 - (b) $\{\mathbf{e}_1 + \mathbf{e}_2, \mathbf{e}_2 + \mathbf{e}_3, \dots, \mathbf{e}_{n-1} + \mathbf{e}_n, \mathbf{e}_n + \mathbf{e}_1\}.$
 - (c) $\{\mathbf{e}_1 \mathbf{e}_2, \mathbf{e}_2 \mathbf{e}_3, \dots, \mathbf{e}_{n-1} \mathbf{e}_n, \mathbf{e}_n\}.$
 - (d) $\{\mathbf{e}_1 \mathbf{e}_2, \mathbf{e}_2 \mathbf{e}_3, \dots, \mathbf{e}_{n-1} \mathbf{e}_n, \mathbf{e}_n \mathbf{e}_1\}.$
 - (e) $\{\mathbf{e}_1 \mathbf{e}_n, \mathbf{e}_2 + \mathbf{e}_{n-1}, \dots, \mathbf{e}_n + (-1)^n \mathbf{e}_1\}.$
- 5. For each of the following pairs of vector spaces (V, W) over \mathbb{R} , either give an isomorphism $V \to W$ or show that no such isomorphism can exist. (Here P denotes the space of polynomial functions $\mathbb{R} \to \mathbb{R}$, and C[a, b] denotes the space of continuous functions defined on the closed interval [a, b].)
 - (a) $V = \mathbb{R}^4$, $W = \{ \mathbf{x} \in \mathbb{R}^5 : x_1 + x_2 + x_3 + x_4 + x_5 = 0 \}$. (b) $V = \mathbb{R}^5$, $W = \{ p \in P : \deg p \le 5 \}$. (c) V = C[0,1], W = C[-1,1]. (d) V = C[0,1], $W = \{ f \in C[0,1] : f(0) = 0, f \text{ continuously differentiable } \}$. (e) $V = \mathbb{R}^2$, $W = \{ \text{solutions of } \ddot{x}(t) + x(t) = 0 \}$. (f) $V = \mathbb{R}^4$, W = C[0,1]. (g) V = P, $W = \mathbb{R}^{\mathbb{N}}$.
- 6. Let

$$U = \{ \mathbf{x} \in \mathbb{R}^5 : x_1 + x_3 + x_4 = 0, \ 2x_1 + 2x_2 + x_5 = 0 \}, \quad W = \{ \mathbf{x} \in \mathbb{R}^5 : x_1 + x_5 = 0, \ x_2 = x_3 = x_4 \}.$$

Find bases for U and W containing a basis for $U \cap W$ as a subset. Give a basis for U + W and show that

$$U + W = \{ \mathbf{x} \in \mathbb{R}^5 : x_1 + 2x_2 + x_5 = x_3 + x_4 \}$$

- 7. The vector space F^n has a standard basis $\mathbf{e}_1, \ldots, \mathbf{e}_n$ of unit vectors. Let W be a subspace of F^n . Show that there is a finite subset I of $\{1, 2, \ldots, n\}$ for which the subspace $U = \langle \{\mathbf{e}_i : i \in I\} \rangle$ is a complementary subspace to W in F^n .
- 8. Let U_1, \ldots, U_r be subspaces of a vector space V, and suppose that for each i, B_i is a basis for U_i . Show that the following conditions are equivalent.

(i) $U = \sum_{i} U_{i}$ is a direct sum, that is, every element of U can be uniquely expressed as a sum $\sum_{i} \mathbf{u}_{i}$ with $\mathbf{u}_{i} \in U_{i}$;

(ii) For each $j, U_j \cap \sum_{i \neq j} U_i = \{0\}.$

(iii) The B_i are pairwise disjoint and their union B is a basis for $U = \sum_i U_i$.

Give an example where $U_i \cap U_j = \{0\}$ for all $i \neq j$, and yet $U = \sum_i U_i$ is not a direct sum.

9. Let $\alpha : U \to V$ be a linear map between two finite dimensional vector spaces and let W be a vector subspace of U. Show that the restriction of α to W is a linear map $\alpha|_W : W \to V$ which satisfies

 $\mathbf{r}(\alpha) \ge \mathbf{r}(\alpha|_W) \ge \mathbf{r}(\alpha) - \dim(U) + \dim(W)$.

Give examples to show that either of the two inequalities can be an equality.

10. Let $\alpha : \mathbb{R}^3 \to \mathbb{R}^3$ be the linear map given by $\alpha : \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \mapsto \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$. Find the matrix representing α relative to the base $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ for both the domain and the range.

Write down bases for the domain and range with respect to which the matrix of α is the identity.

- 11. Let Y and Z be subspaces of the finite dimensional vector spaces V and W respectively. Show that $R = \{\theta \in \mathcal{L}(V, W) : \theta(\mathbf{x}) \in Z \text{ for all } \mathbf{x} \in Y\}$ is a subspace of $\mathcal{L}(V, W)$. What is the dimension of R?
- 12. (i) Let $\alpha : V \to V$ be an endomorphism of a finite dimensional vector space V. Set $r_i = r(\alpha^i)$. Show that $r_i \ge r_{i+1}$ and that $(r_i - r_{i+1}) \ge (r_{i+1} - r_{i+2})$. Deduce that if $r_k = r_{k+1}$ for some $k \ge 0$, then r_j is constant for all $j \ge k$. (ii) Suppose that dim(V) = 5, $\alpha^3 = 0$, but $\alpha^2 \ne 0$. What possibilities are there for $r(\alpha)$ and $r(\alpha^2)$?
- 13. Let T, U and W be subspaces of a vector space. Show that if $T \leq W$, then

$$(T+U) \cap W = (T \cap W) + (U \cap W).$$

Deduce that in general one has $T \cap (U + (T \cap W)) = (T \cap U) + (T \cap W)$.

- 14. Let W be a subspace of a finite dimensional vector space V. Show that both W and V/W are finite dimensional and that dim $V = \dim W + \dim V/W$.
- 15. Suppose X and Y are linearly independent subsets of a vector space V; no member of X is expressible as a linear combination of members of Y, and no member of Y is expressible as a linear combination of members of X. Is the set $X \cup Y$ necessarily linearly independent? Give a proof or counterexample.
- 16. (Another version of the Exchange Lemma.) Let $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_r\}$ and $\{\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_s\}$ be linearly independent subsets of a vector space V, and suppose $r \leq s$. Show that it is possible to choose distinct indices i_1, i_2, \dots, i_r from $\{1, 2, \dots, s\}$ such that, if we delete each \mathbf{y}_{i_j} from Y and replace it by \mathbf{x}_j , the resulting set is still linearly independent. Deduce that any two maximal linearly independent subsets of a finite dimensional vector space have the same size.

Comments, corrections and queries can be sent to me at m.hyland@dpmms.cam.ac.uk.