Linear Algebra: Example Sheet 1

The first 12 questions cover the course and should ensure good understanding of the course: the remainder are provided for amusement, or as a challenge, according to taste.

1. Suppose that T and U are subspaces of the vector space V. Show that $T \cup U$ also a subspace of V if and only if either $T \leq U$ or $U \leq T$.
2. Let T, U, W be subspaces of V.
(i) Give explicit counter-examples to the following statements.
(a) $T+(U \cap W)=(T+U) \cap(T+W)$.
(b) $(T+U) \cap W=(T \cap W)+(U \cap W)$.
(ii) Show in both (a) and (b) that the equality can be replaced by a valid inclusion of one side in the other.
3. Show that if $T \leq W$, then $(T+U) \cap W=(T \cap W)+(U \cap W)$.

Deduce that in general one has $T \cap(U+(T \cap W))=(T \cap U)+(T \cap W)$.
4. If α and β are linear maps from U to V, show that $\alpha+\beta$ is linear and that

$$
\operatorname{Im}(\alpha+\beta) \leq \operatorname{Im} \alpha+\operatorname{Im} \beta \quad \text { and } \quad \operatorname{ker}(\alpha+\beta) \geq \operatorname{ker} \alpha \cap \operatorname{ker} \beta
$$

Show by example that each inclusion may be strict.
5. Suppose that $\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right\}$ is a base for V. Which of the following are also bases?
(a) $\left\{\mathbf{e}_{1}+\mathbf{e}_{2}, \mathbf{e}_{2}+\mathbf{e}_{3}, \ldots, \mathbf{e}_{n-1}+\mathbf{e}_{n}, \mathbf{e}_{n}\right\}$.
(b) $\left\{\mathbf{e}_{1}+\mathbf{e}_{2}, \mathbf{e}_{2}+\mathbf{e}_{3}, \ldots, \mathbf{e}_{n-1}+\mathbf{e}_{n}, \mathbf{e}_{n}+\mathbf{e}_{1}\right\}$.
(c) $\left\{\mathbf{e}_{1}-\mathbf{e}_{2}, \mathbf{e}_{2}-\mathbf{e}_{3}, \ldots, \mathbf{e}_{n-1}-\mathbf{e}_{n}, \mathbf{e}_{n}\right\}$.
(d) $\left\{\mathbf{e}_{1}-\mathbf{e}_{2}, \mathbf{e}_{2}-\mathbf{e}_{3}, \ldots, \mathbf{e}_{n-1}-\mathbf{e}_{n}, \mathbf{e}_{n}-\mathbf{e}_{1}\right\}$.
(e) $\left\{\mathbf{e}_{1}-\mathbf{e}_{n}, \mathbf{e}_{2}+\mathbf{e}_{n-1}, \ldots, \mathbf{e}_{n}+(-1)^{n} \mathbf{e}_{1}\right\}$.
6. For each of the following pairs of vector spaces (V, W) over \mathbb{R}, either give an isomorphism $V \rightarrow W$ or show that no such isomorphism can exist. (Here P denotes the space of polynomial functions $\mathbb{R} \rightarrow \mathbb{R}$, and $C[a, b]$ denotes the space of continuous functions defined on the closed interval $[a, b]$.)
(a) $V=\mathbb{R}^{4}, W=\left\{\mathbf{x} \in \mathbb{R}^{5}: x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=0\right\}$.
(b) $V=\mathbb{R}^{5}, W=\{p \in P: \operatorname{deg} p \leq 5\}$.
(c) $V=C[0,1], W=C[-1,1]$.
(d) $V=C[0,1], W=\{f \in C[0,1]: f(0)=0, f$ continuously differentiable $\}$.
(e) $V=\mathbb{R}^{2}, \quad W=\{$ solutions of $\ddot{x}(t)+x(t)=0\}$.
(f) $V=\mathbb{R}^{4}, \quad W=C[0,1]$.
(g) $V=P, \quad W=\mathbb{R}^{\mathbb{N}}$.
7. Let

$$
\begin{aligned}
U & =\left\{\mathbf{x} \in \mathbb{R}^{5}: x_{1}+x_{3}+x_{4}=0,2 x_{1}+2 x_{2}+x_{5}=0\right\} \\
W & =\left\{\mathbf{x} \in \mathbb{R}^{5}: x_{1}+x_{5}=0, \quad x_{2}=x_{3}=x_{4}\right\}
\end{aligned}
$$

Find bases for U and W containing a basis for $U \cap W$ as a subset. Give a basis for $U+W$ and show that

$$
U+W=\left\{\mathbf{x} \in \mathbb{R}^{5}: x_{1}+2 x_{2}+x_{5}=x_{3}+x_{4}\right\}
$$

8. Find the ranks of the following matrices A, and give bases for the kernel and image of the linear maps $\mathbf{x} \mapsto A \mathbf{x}$.

$$
\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right) \quad ; \quad\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 0
\end{array}\right) \quad ; \quad\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) .
$$

9. Let $\alpha: U \rightarrow V$ be a linear map between two finite dimensional vector spaces and let W be a vector subspace of U. Show that the restriction of α to W is a linear map $\left.\alpha\right|_{W}: W \rightarrow V$ which satisfies

$$
\mathrm{r}(\alpha) \geq \mathrm{r}\left(\left.\alpha\right|_{W}\right) \geq \mathrm{r}(\alpha)-\operatorname{dim}(U)+\operatorname{dim}(W)
$$

Give examples to show that either of the two inequalities can be an equality.
10. Let $\alpha: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear map given by $\alpha:\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right) \mapsto\left(\begin{array}{lll}2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2\end{array}\right)\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$. Find the matrix representing α relative to the base $\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$ for both the domain and the range.
Write down bases for the domain and range with respect to which the matrix of α is the identity.
11. Find the reduced column echelon form of the matrices:

$$
\left(\begin{array}{cccc}
1 & 0 & 1 & 1 \\
0 & 1 & -1 & 0 \\
1 & 0 & 1 & 1 \\
-1 & 1 & -1 & 0
\end{array}\right) ; \quad\left(\begin{array}{cccc}
1 & 0 & 1 & 1 \\
0 & 1 & -1 & 0 \\
1 & 1 & 1 & 1 \\
-1 & 1 & -1 & 0
\end{array}\right) ;
$$

and describe the spaces spanned by their columns. In case the matrix is invertible give its inverse.
12. Let Y and Z be subspaces of the finite dimensional vector spaces V and W respectively. Show that $R=\{\theta \in \mathcal{L}(V, W): \theta(\mathbf{x}) \in Z$ for all $\mathbf{x} \in Y\}$ is a subspace of $\mathcal{L}(V, W)$. What is the dimension of $R ?$
13. Let S be the vector space of real sequences $\mathbf{x}=\left(x_{n}\right)_{n \in \mathbb{N}}$ and define a map $\Delta: S \rightarrow S$ by

$$
\Delta: \mathbf{x} \mapsto \mathbf{y} \quad \text { where } \quad y_{n}=x_{n+1}-x_{n}
$$

Show that Δ is linear and describe its kernel and image. Similarly describe the kernel and image of Δ^{2} (the composite of Δ with itself). What about Δ^{3} ?
14. X and Y are linearly independent subsets of a vector space V; no member of X is expressible as a linear combination of members of Y, and no member of Y is expressible as a linear combination of members of X. Is the set $X \cup Y$ necessarily linearly independent? Give a proof or counterexample.
15. Let $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{r}\right\}$ and $\left\{\mathbf{y}_{1}, \mathbf{y}_{2}, \ldots, \mathbf{y}_{s}\right\}$ be linearly independent subsets of a vector space V, and suppose $r \leq s$. Show that it is possible to choose distinct indices $i_{1}, i_{2}, \ldots, i_{r}$ from $\{1,2, \ldots, s\}$ such that, if we delete each $\mathbf{y}_{i_{j}}$ from Y and replace it by \mathbf{x}_{j}, the resulting set is still linearly independent.
16. Let U be a vector subspace of \mathbb{R}^{N} (where N is finite). Show that there is a finite subset I of $\{1,2, \ldots, N\}$ for which the subspace $W=\left\langle\left\{\mathbf{e}_{i}: i \in I\right\}\right\rangle$ is a complementary subspace to U in \mathbb{R}^{N}.
17. Let $\alpha: U \rightarrow V$ and $\beta: V \rightarrow W$ be maps between finite dimensional vector spaces, and suppose that $\operatorname{ker}(\beta)=\operatorname{Im}(\alpha)$. Show that bases may be chosen for U, V and W with respect to which α and β have matrices

$$
\left(\begin{array}{cc}
I_{r} & O \\
O & O
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{cc}
O & O \\
O & I_{n-r}
\end{array}\right)
$$

respectively, where $\operatorname{dim}(V)=n, r=\mathrm{r}(\alpha)$ and I_{k} is the identity $k \times k$ matrix .
18. (i) Let $\alpha: V \rightarrow V$ be an endomorphism of a finite dimensional vector space V. Set $r_{i}=\mathrm{r}\left(\alpha^{i}\right)$. Show that $r_{i} \geq r_{i+1}$ and that $\left(r_{i}-r_{i+1}\right) \geq\left(r_{i+1}-r_{i+2}\right)$.
(ii) Suppose that $\operatorname{dim}(V)=5, \alpha^{3}=0$, but $\alpha^{2} \neq 0$. What possibilities are there for $\mathrm{r}(\alpha)$ and $\mathrm{r}\left(\alpha^{2}\right)$?
19. Let T, U, V, W be vector spaces over the same field and let $\alpha: T \rightarrow U, \beta: V \rightarrow W$ be fixed linear maps. Show that the mapping $\Phi: \mathcal{L}(U, V) \rightarrow \mathcal{L}(T, W)$ which sends θ to $\beta \circ \theta \circ \alpha$ is linear. If the spaces are finite-dimensional and α and β have rank r and s respectively, find the rank of Φ.
20. An $n \times n$ magic square is a square matrix whose rows, columns and two diagonals all sum to the same quantity. Find the dimension of the space of $n \times n$ magic squares.

Comments, corrections and queries can be sent to me at m.hyland@dpmms.cam.ac.uk.

