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Os introdugﬁigg,

This paper sketches a new and sinple proof of thes Church-Rosser Theorem for
the %—calculus.‘Thc proof is more in the spirit of Curry-Feys [1], than of the
recent proofs of Tait and Martin-Lof (sec e.g. [2]). That is to =ay, it sims at proving
Theoren 3.6 ( Cufryis Lemma of parallel moves),.from which the Church-Rosser
Theorenm is a triviality. However our proof is far more direct than his, and takes into
account tﬁat waab has to be prbved-is a type of result familisr in Proof Theory,
namely a Strong Normaliéatiqn result,

The readér iz assumed to be familiar vith the basic syntax and terminology
of the Arcalculus. Wle shall deal solely with (- ond) ﬁ-rgduction‘ci-“eduction
is a matter of logical hygiene, and we shall disregara it. We adopt the following
conventious: M, M', N etc. shall denote arbitrary terms of the A~calculus;
A, B, .. etc.; elther arbitrary terms, or arbitrary subterms of-H, It ete, accﬁfding
to context; by a redex, we shall mean o @—redex, anﬁ R, R', &, etec shall dcaote
rarbitrary sets of subredexes of ¥, M'; C(D/x) shall denote the result of substituting
D for all free ocourences of the fewe variable x in C, If A is & subredex ol I,
lwe shall write Méé?M’, for i is the result of reducing 4 in M, M—dM' means
M-%%M‘ for some A, and the relation » ig the transitive‘c}?suré of =, »is the~
usual relation of reduction.

1+ The method of pronf.

We say e relatioh }'bétwean terms of the A-caleulus has the gdiamond priperhy,
AT whenever'bf}i% and M}'ME, thén there is an N such tﬁgtAM1&-N.and ﬂzi‘N, The

Church~Rosser Theorem says that ¥ has the diamond property. If a relation has the
;diamond properiy, then so has its transitive clbéure; but unfortunately ~» does
not have the diamond properiy. Thus the mechanism of proof of tﬁe'Church~Rosser
Theofem is to define a relation 2 such that (a) one cen show relabively easily
that % has the dlamond proﬁerty, and (b) ¥ is ﬁhe transitive closure of 3.

_ There appears %o be jusﬁ one relation ?ﬁ which eatifies {2) and (b). The
diffefence between our approacﬁ aﬁd-thatlin [2], is that our problem is to show
that our definition of 2qnmkes'sense, while in Eﬂ) the problem is to show that

'23 has therdiamond.proﬁerty.
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2. Ancagtors and degesndants,

N . . ’
: : Hy.. B, L . . .y
Given any sequence, iy luﬂ-_bﬁz..,. é$mn, of reducticns, we will asscciate
I3

any subterm B of EP, a wnigque subterm of 1, ealled its ancesier in . If Tor the

Amng,

nees M,—y:i, B, has ancestor B, in M,, then for the szeguence
seque i 771417 Tis : i i’ : q !
As,, As,, Ap

MO__,rﬁ-_amz... ~+Hn, Bn has amcestor BO in HO:_It remaing, therefore, to say what
the ancestor of a subteem E of W is, for the sequence M-éaﬂ. Saj that A is {Ax.C)1,
so C(B/x) is a spbterm'of bH tﬁénlthere-are four cases:

‘T) E(D/x) is a subterm of E._Thén there is a unigue F, a subterm of ¥ such thaﬁr
F-25F; this F is the ancestor of E, unless E is C(D/x), when case 4) applies.

2) Elis disjoint from G(Dﬁ%), Then éhere is -a corrésponding subterm E, of ¥, and this
subterm of M'is the ancestor of E. |

" 3) Eis a subterm of some substitution instance of Dujnrc(ﬁ/x). Then the ancestor of
E, is just E as.a subterm of D, a subterm of M.

4) E is of the form F(D/x), where F is not x,-and is a subterﬁ of C; this F is

the ancestor of E,

_Giﬁeh-any sequence, MO;@¥£1j§§i2.;.. .égﬁh, of reductions gg‘assgciate with
any subderm A of'HO, a'(pﬁésiblj empty) set Df'descendants, which shall se sublterms
of Hﬁ,ras follows. B is a descendant of A if and only if A is the ancestor of B.V
Observe that inVH«%?N, A has no descondants. ‘ |

- The conceplt of a descendant is central to what follows, & xore formal

definitition than that above could be given, but would be less illuminating.



functicns, define udv if and only if the greatest 1 such that alidv({i), is suech.

3, The 'shroag nowmaalizatbl on! proverhy. 3

For this section we adopi the following convenbions; M is a Term of the
o s o v nem. ¥ Ben ot ‘
\-calculus; Ris a set of subredexes of 1 A€R; M- ; R' is the set of
descendants of elements of R; C, D are subierns of ¥, and C', D' are arbitrary dascendan
of C, D, respectively, in M.

We define a partial order (R on subterms of ¥, by,

1) If D is a proper sublerm of G, then C<{pD;

2} Otherwise, there is a unigue subterm (ET) of M, with, say, C a subterm of %, and

- D a subterm of F. If (28} is (Az.I )F a member of R, and z is free in C ( being

bound Ly the Xz of (xz.2') ),then C <P
3) If C<’%D and D_('RE, {then G(nE.
e c'all_any reduchion cpqunnce, starulng with ¥, whlcrl procedes . by reducing only

descendants of elements of R, a reductlon of M relative £o R. Then the eifer't of our

D if and only if-nge descendant of D becomes a

definition of <, is this: C(,__DL

R

subterm of a descepdant of G during a reduction of M relative to R.
Lemma 3.1. C' < D' only if C<¥{D‘ _ C@‘:i,ﬁ",r@! e s ks el ONE Cavm‘:iﬁ')
Froof: It is sufficient to show the required implication in
1) cr R DY in virtue of condition 1) above. Then either D was a proper sublern
of C, or D was substituted in fof some varia‘r-leA free in Gl; i.e. C <RD holds by
either 1) or 2).
2) ot <¥-‘(‘ Ot 3n virtue of condision 2y above. Then (Az.E! JF* "is in B}, z is free in
C! a subterm of ', and D' is a subberm of . Then (Az.E)F is in R, with E, F, the
ancestors of B, I, -T’aen either z is free in C a subterm of E, and Dis a subterm of
F, or D has been substituted infor a fres variable of ¥ to give D'; i.e. eithef ‘
C <P by 2), or G F by 2) andF< -D by 2) so that bw 3) G B {(Nobe that C could
not have been substituted into E to give C', as then 2z could not be free in G').

For G in R-, set 4{C)= rnax{d(ﬁ)l B is in R and B<Rc]+1. Yow define an

eventually zero function u, by ua(k): card ({C lC is in R and d(C)=x{). Tor suck

that u(i) <v{i). ( Hers i, k, denote integers and card (¥} is the cardinality of ).

.

+ A )

Lemma 3.2. £<is a well-ordering of eventually =ero functions.

Froof: Routine.




" * N, of the reduction sequence has no descendants of elements of R as subterms),

Lemne 2.3. Up; £ up. o Ii ' '

Proof; We reduce &, If not A<

RB{ then B hag just one descendant, and d(B)= d' ('},
it A‘GRD, thea B has swre thag one descendant.only if B is a proper subterm of A;
for such B, since A hag no descendant, wo geb ar (Bt ) {ﬁtB), by induction on <y for
subterms of A, 'For other B with A<: 3By e get, d' (B )<4(B). I % is the greatest
d(B) such thab d‘(B‘)«:d’B), or io d(A) if there ara noﬁa, then k is the greatest i such
that ual(l)ku (1), and ua,(x)é u k) Hence ug; £ u. : ' oo
Theorsm 3.4 Any reduction of M relative te R must terminate. '

Proof: Immediaste from (3.2) and (3.3}, - , N o

We call_a reductioh of ¥ relutive Lo B which berminates (i.e. the final 'bermJ

complete, {3.4) says that however we reduce M relative te R, eventually we come to such ..
an N, that is ; eventually we have éarformed a complate reduction. ‘

Hence forth, we will often use the obvicus fact that if the elements of a set
T, of subredexes of’ﬁ are dlsjoint, then there is a unique N such that ¥ completely
redﬁces to H, relati#e to T, - | h

Tor the next lemma we adopt the followiﬁg further conventions; S€R is such
that any two distinct‘members of 8 are incomparabla ﬁifh respect tb <Zq; 3! is the
set of descendants of elements of 8 in V‘; let M completely reduce to i ms relative
to'5; Ir¢s the set of descendants of A in 1 . (3.1) shows that 1f B,C are distlnct membars .
of &', thea they are incomparable with respect to <R‘
Lemma 3.5, Inthe above situation; there is a unique leuch that-M“énd MS cémpletely

reduce to N, relative to St and T, respectively.

Froof: Tlﬂre are three cases.
1} A is dis 301n% from 211 the eleoments of S and the result ig plain.
2) 4 is a subterm of CeS. Let M-—%H1', and an inspection of cases shows that thers is a

I £ PN . L]
unique N1, such that M'ii%?E, and M, reduces to Nj’ relative <o the descendsnts of

1 1
A in M1 Then in Mi,the descendants of elements of S¥[A} are disjoint, zo there is a unigue
N terminabing any -complete reduction of i relative to that set. But then, MS

L

reduoes to N relative ic T, while ILt reduces to N relative to the descendants of

elements of §, 1.9, ¥ reduces to ¥ relative to S',

3) 6
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+2e+C_ €5 are (disjoint) subtevms of A, Let M G {... Loy pe end let 4, be the

1



(only) dusccndant of A in ﬁ | icu H :E-;h . Aé%gzz an 1n5peﬂt10n Qf case qhows that
M‘ reduces to N1 relatlve to the descenaants of Gj, and 50 by 1nducuion, M' reduces to |
Nr relative to the descenddntﬂ of IG vs ol E. tow in lr’ the descendants of svix i

are d1 Jomty and We procede as in .case 2).

Ve are now in a position to prove our strong normalization property far

reductions of M relative to R.

h@orem 3.5 Anf reduction of M relative to R terminates; and all coﬁplete reductilons
‘tsrminate in the same N.

Proot: By (3.4), it is sufticient to show that given a complete reduction of M to

N relative to R, then there is a complete reduction of M to N rolative to R‘

( recall the conventions introduced ab the beginnlng of this section ). Let the

complate reduction be Ii= iOJL+v1....ib$1%:h. Tor each i, lebt I, be the set of
déscandants of elements of R and,Si-the set of descendants of‘A, in Hi. Then

Mi, Hi’
(3.5) we obtain : let N be the rasult of completeiy.reduéing Mi'relaﬁiva to &3

S

59 By 40 aTe in exactly the position of M, R,S, 4, in (3.5), so epplying

then each W comulctelj roduoes to 0, ralative to the descendants of A{+1 in mi“

iri
. Since plainly N is N, we nou have a complebe reductlon of M to N relative to R',

4o The Ghurch-ﬂosser Theorem.

Let M0 if and only if N is -the unique result of complétely reducing‘ﬁ
rolative to some set R of subredexes of M. Section 3 eshablished that this is a
sensible definitioﬁ. |
Thaoreﬁ Aeds zihas the diamond property.

- Proof: Suppose M completely feducas\to‘M&, Mz, relative to R1, Rz, rcspectively;
let N be the result of completely reducing ¥ relative to RffRz; then by (2.6},
E&, H2, completely reduce to N relativé td the descendaats of elemente of R, 31,

_ rvespectively.

Theoren 4.2, { Shurch-Toaser j 2 has the dlamond property.

Proof: This is immediste on (4,1}, ae » 18 the transitive elogure of 2, .
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