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Abstract. We introduce the notion of a relative pseudomonad, which generalizes the notion
of a pseudomonad, and define the Kleisli bicategory associated to a relative pseudomonad. We
then present an e�cient method to define pseudomonads on the Kleisli bicategory of a relative
pseudomonad. The results are applied to define several pseudomonads on the bicategory
of profunctors in an homogeneous way and provide a uniform approach to the definition of
bicategories that are of interest in operad theory, mathematical logic, and theoretical computer
science.

1. Introduction

Just as classical monad theory provides a general approach to study algebraic structures on

objects of a category (see [5] for example), 2-dimensional monad theory o↵ers an elegant way to

investigate algebraic structures on objects of a 2-category [10, 30, 34, 37, 54, 56]. Even if the strict

notion of a 2-monad is su�cient to develop large parts of the theory, the strictness requirements

that are part of its definition are too restrictive for some applications and it is necessary to work

with the notion of a pseudomonad [12], in which the diagrams expressing the associativity and

unit axioms for a 2-monad commute up to specified invertible modifications, rather than strictly.

In recent years, pseudomonads have been studied extensively [14, 39, 49, 50, 52, 53, 62].

Our general aim here is to develop further the theory of pseudomonads. In particular, we

introduce relative pseudomonads, which generalize pseudomonads, define the associated Kleisli

bicategory of a relative pseudomonad, and describe a method to extend a 2-monad on a 2-category

to a pseudomonad on the Kleisli bicategory of a relative pseudomonad. We use this method to

show how several 2-monads on the 2-category Cat of small categories and functors can be

extended to pseudomonads on the bicategory Prof of small categories and profunctors (also

known as bimodules or distributors) [8, 45, 60]. This result has applications in the theory

of variable binding [22, 24, 55, 61], concurrency [13], species of structures [23], models of the

di↵erential �-calculus [21], and operads and multicategories [15, 16, 17, 25, 27].

For these applications, one would like to regard the bicategory of profunctors as a Kleisli

bicategory and then use the theory of pseudo-distributive laws [34, 49, 50], i.e. the 2-dimensional

counterpart of Beck’s fundamental work on distributive laws [6] (see [58] for an abstract treat-

ment). In order to carry out this idea, one is naturally led to try to consider the presheaf

construction, which sends a small category X to its category of presheaves P (X) =def [Xop
,Set],

as a pseudomonad. Indeed, a profunctor F : X ! Y, i.e. a functor F : Yop
⇥ X ! Set, can

be identified with a functor F : X ! P (Y). However, the presheaf construction fails to be a

pseudomonad for size reasons, since it sends small categories to locally small ones, making it

impossible to define a multiplication. Although some aspects of the theory can be developed

restricting the attention to small presheaves [19], which support the structure of a pseudomonad,
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some of our applications naturally involve general presheaves and thus require us to deal not

only with coherence but also size issues.

In order to do so, we introduce the notion of a relative pseudomonad (Definition 3.1), which is

based on the notions of a relative monad [1, Definition 2.1] and of a no-iteration pseudomonad [53,

Definition 2.1]. These notions are, in turn, inspired by Manes’ notion of a Kleisli triple [47],

which is equivalent to that of a monad, but better suited to define Kleisli categories (see also [51,

64]). For a pseudofunctor between bicategories J : C ! D (which in our main example is the

inclusion J : Cat ! CAT of the 2-category of small categories into the 2-category of locally

small categories), the core of the data for a relative pseudomonad T over J consists of an object

TX 2 D for every X 2 C, a morphism i

X

: JX ! TX for every X 2 C, and a morphism

f

⇤
: TX ! TY for every f : JX ! TY in D. This is as in a relative monad, but the equations

for a relative monad are replaced in a relative pseudomonad by families of invertible 2-cells

satisfying appropriate coherence conditions, as in a no-iteration pseudomonad. As we will see

in Theorem 4.1, these conditions imply that every relative pseudomonad T over J : C ! D has

an associated Kleisli bicategory Kl(T ), defined analogously to the one-dimensional case. In our

main example, the presheaf construction gives rise to a relative pseudomonad over the inclusion

J : Cat ! CAT in a natural way and it is then immediate to identify its Kleisli bicategory with

the bicategory of profunctors. It should be noted here that the presheaf construction is neither

a no-iteration pseudomonad (because of size issues) nor a relative monad (because of strictness

issues).

As part of our development of the theory of relative pseudomonads, we show how relative

pseudomonads generalize no-iteration pseudomonads (Proposition 3.3) and hence (by the results

in [53]) also pseudomonads. We then introduce relative pseudoadjunctions, which are related to

relative pseudomonads just as adjunctions are connected to monads. In particular, we show that

every relative pseudoadjunction gives rise to a relative pseudomonad (Theorem 3.8) and that the

Kleisli bicategory associated to a relative pseudomonad fits in a relative pseudoadjunction (The-

orem 4.4).

Furthermore, we introduce and study the notion of a lax idempotent relative pseudomonad,

which appears to be the appropriate counterpart in our setting of the notion of a lax idempo-

tent 2-monad (often called Kock-Zöberlein doctrines) [37, 38, 65] and pseudomonad [48, 52, 60].

In Theorem 5.3 we will give several equivalent characterizations of lax idempotent relative pseu-

domonad and combine this result with the analogous one in [52] to show that a pseudomonad is

lax idempotent as a pseudomonad in the usual sense only if it is lax idempotent as a relative pseu-

domonad in our sense. This notion is of interest since it allows us to exhibit examples of relative

pseudomonads by reducing the verification of the coherence axioms for a relative pseudomonad

to the verification of certain universal properties. In particular, the relative pseudomonad of

presheaves can be constructed in this way.

We then consider the question of when a 2-monad on the 2-category Cat of small categories

can be extended to a pseudomonad on the bicategory Prof of profunctors. Rather than adapting

the theory of distributive laws to relative pseudomonads along the lines of what has been done for

no-iteration monads [51], which would involve complex calculations with coherence conditions,

we establish directly that, for a pseudofunctor J : C ! D of 2-categories, a 2-monad S : D ! D

restricting to C along J in a suitable way, and a relative pseudomonad T over J , if T admits a

lifting to 2-categories of strict algebras or pseudoalgebras for S, then S admits an extension to

the Kleisli bicategory of T (Theorem 6.3). We do so bypassing the notion of a pseudodistributive

law in a counterpart of Beck’s result.

This result is well-suited to our applications, where the structure that manifests itself most

naturally is that of a lift of the relative pseudomonad of presheaves to various 2-categories of

categories equipped with algebraic structure, often via forms of Day’s convolution monoidal
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structure [18, 31]. In particular, our results will imply that the 2-monads for several important

notions (categories with terminal object, categories with finite products, categories with finite

limits, monoidal categories, symmetric monoidal categories, unbiased monoidal categories, unbi-

ased symmetric monoidal categories, strict monoidal categories, and symmetric strict monoidal

categories) can be extended to pseudomonads on the bicategory of profunctors. A reason for

interest in this result is that the compositions in the Kleisli bicategories of these pseudomon-

ads can be understood as variants of the substitution monoidal structure that can be used to

characterize notions of operad [36, 57].

As an illustration of the applications of our theory, we discuss our results in the special case

of the 2-monad S for symmetric strict monoidal categories, showing how it can be extended to

a pseudomonad on the bicategory of profunctors. This result is the cornerstone of the under-

standing of the bicategory of generalized species of structures defined in [23] as a ‘categorified’

version of the relational model of linear logic [29, 28] and leads to showing that the substitution

monoidal structure that gives rise to the notion of a coloured operad [4] is a special case of the

composition in the Kleisli bicategory. The results presented here are intended to make these

ideas precise by dealing with both size and coherence issues in a conceptually clear way.

Organization of the paper. Section 2 reviews some background material on 2-monads, pseu-

domonads and their algebras. Our development starts in Section 3, where we introduce relative

pseudomonads, relate them to no-iteration pseudomonads and ordinary pseudomonads, intro-

duce relative pseudoadjunctions and establish a connection between relative pseudoadjunctions

and relative pseudomonads. Section 4 defines the Kleisli bicategory associated to a relative

pseudomonad and discusses some of its basic properties. In Section 5 we introduce and study

lax idempotent relative pseudomonads. Section 6 shows that an extension of a relative pseu-

domonad T to 2-categories of strict algebras or pseudoalgebras for a 2-monad S induces an

extension of S to the Kleisli bicategory of T , as well as a composite relative pseudomonad TS.

We conclude the paper in Section 7 by discussing applications of our theory and showing how

several 2-monads on Cat can be extended to pseudomonads on Prof .

Acknowledgements. Nicola Gambino acknowledges gratefully the support of EPSRC, under

grant EP/M01729X/1, and of the US Air Force Research Laboratory, under agreement number

FA8655-13-1-3038. We are grateful to the anonymous referee for insightful comments, which led

in particular to a simplification of the material in Section 5.

2. Background

2-categories and 2-monads. We assume that readers are familiar with the fundamental as-

pects of the theory of 2-categories and of bicategories (as presented, for example, in [7, 11, 40])

and confine ourselves to review some facts that will be used in the following and to fix notation

and conventions.

For a 2-category C and a pair of objects X,Y 2 C, we write C[X,Y ] for the hom-category

of morphisms f : X ! Y and 2-cells between them, which we denote with lower-case Greek

letters, � : f ! f

0
. Two parallel morphisms f , f

0
: X ! Y are said to be isomorphic if they are

isomorphic as objects of C[X,Y ], and we write f

⇠

=

f

0
in this case. We write CAT for the 2-

category of locally small categories, functors, and natural transformations. Its full sub-2-category

spanned by small categories will be written Cat. We then have an inclusion J : Cat ! CAT.

We use the terms pseudofunctor, pseudonatural transformation, and pseudoadjunction rather

than homomorphism, strong natural transformation, and biadjunction, respectively.

Let us now review some aspects of 2-dimensional monad theory [10]. By a 2-monad on a 2-

category C we mean a 2-functor S : C ! C equipped with 2-natural transformations m : S

2
! S

and e : 1C ! S, called the multiplication and unit of the 2-monad, respectively, satisfying the
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usual axioms for a monad in a strict sense. As usual, we often refer to a 2-monad by mentioning

only its underlying 2-functor, leaving implicit the rest of its data. Similar conventions will be

used for other kinds of structures considered in the rest of the paper.

For a 2-category C and 2-monad S : C ! C, we write Ps-S-AlgC (or Ps-S-Alg if no confusion

arises) for the 2-category of pseudoalgebras, pseudomorphisms and algebra 2-cells, and S-AlgC
(or S-Alg) for the locally full sub-2-category of Ps-S-AlgC spanned by strict algebras. Here, by

a pseudoalgebra we mean an object A 2 C, called the underlying object of the algebra, equipped

with a morphism a : SA ! A, called the structure map of the algebra, and invertible 2-cells

S

2
A

SA

SA

A ,

Sa

//

a

//

mA

✏✏

a

✏✏

ā

↵◆

A SA

A ,

1A
&&

eA
//

a

✏✏

ã +3

called the associativity and unit 2-cells of the algebra, subject to two coherence axioms [59].

We have a strict algebra when the associativity and unit 2-cells are identities, in which case (as

in analogous cases below) the coherence conditions are satisfied trivially. For pseudoalgebras A

and B (and in particular for strict algebras), a pseudomorphism from A to B consists of a

morphism f : A ! B and an invertible 2-cell

SA

A

SB

B ,

Sf

//

f

//

a

✏✏

b

✏✏

f̄

↵◆
(2.1)

required to satisfy two coherence axioms [10, 59]. For pseudomorphisms f, g : A ! B, an algebra

2-cell between them is a 2-cell ↵ : f ! g that satisfies one coherence axiom [10]. We have a

forgetful 2-functor U : Ps-S-Alg ! C with a left pseudoadjoint F : C ! Ps-S-Alg, defined by

mapping an object X 2 C to the free algebra on X, which is the strict algebra having SX as its

underlying object and m

X

: S

2
X ! SX as its structure map. The components of the unit of the

pseudoadjunction are the components of the unit of the 2-monad.

In our applications, we will consider several 2-monads on CAT (restricting to Cat in an

evident way), for which we invite the readers to consult [10, 44, 46]. Among them, the 2-monads

for (strict) monoidal categories, symmetric (strict) monoidal categories, categories with finite

limits, categories with finite products, and categories with a terminal object.

Bicategories and pseudomonads. For a bicategory C, we write the associativity and unit

isomorphisms as natural families of invertible 2-cells

(h g) f

⇠=
//

h (g f) , 1

Y

f

⇠=
//

f , f

⇠=
//

f 1

X

. (2.2)

which we leave unnamed. By the coherence theorem for bicategories [43] (which also follows from

the bicategorical Yoneda lemma [60], see [26]), every bicategory is biequivalent to a 2-category.

In virtue of this, we shall often treat bicategories as if they were 2-categories.

Example 2.1. Fundamental to our applications is the bicategory Prof of profunctors [8, 45, 60].
Its objects are small categories; and for small categories X and Y, the hom-category Prof [X,Y]
is defined to be CAT[Yop

⇥ X,Set]. The composite of profunctors F : X ! Y and G : Y ! Z is
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given by the profunctor G � F : X ! Z defined by the coend formula

(G � F )(z, x) =def

Z
y2Y

G(z, y)⇥ F (y, x) . (2.3)

For a small category X, the identity profunctor IdX : X ! X is defined by letting

IdX(x, y) =def X[x, y] . (2.4)

It remains to prove that these definitions give rise to a bicategory. In the literature, it is often

suggested that this can be proved by direct calculations, left to the readers. In Section 3, instead,

we will give a more conceptual proof by describing Prof as the Kleisli bicategory associated to

the relative pseudomonad of presheaves.

A pseudomonad on a bicategory C is given by a pseudofunctor T : C ! C, pseudonatural trans-

formations n : T

2
! T and i : 1C ! T , called the multiplication and unit of the pseudomonad,

respectively, and invertible modifications ↵, ⇢, and � , called the associativity, right unit, and

left unit, respectively, of T , fitting in the diagrams

T

3
T

2

T

2
T ,

nT

✏✏

n

✏✏

Tn

//

n

//

↵

↵◆

T

T

2

T

T

1
&&

iT

//

n

✏✏

1
xx

Ti

oo

� +3 ⇢ +3
(2.5)

and subject to two coherence conditions [39]. The notions of a strict algebra and pseudoalgebra, of

strict morphism and pseudomorphism, and of algebra 2-cell make sense also for pseudomonads,

giving rise to bicategories Ps-S-Alg and S-Alg. When C is a 2-category, these are again 2-

categories.

Every pseudomonad has also an associated Kleisli bicategory [14], which can be defined in

complete analogy with the one-dimensional case; but we do not spell this out since we will give

an alternative account of the Kleisli construction in Section 3. Importantly, in constrast with

the situation for algebras discussed above, the Kleisli construction for a pseudomonad T : C ! C

produces only a bicategory even when C is a 2-category, with the associativity and unit isomor-

phisms of T used to give the associativity and unit isomorphisms of the Kleisli bicategory (see

also Theorem 4.1 below).

3. Relative pseudomonads

In ordinary category theory, the notion of a monad has an equivalent alternative presentation,

via the notion of a Kleisli triple [47], which is particularly convenient to define Kleisli categories.

The notion of a Kleisli triple admits a natural generalization, given by the notion of a relative

monad [1], which is obtained by allowing the underlying mapping on objects of the Kleisli triple

to be defined relative to a fixed functor (see [1] for details). Similarly, in 2-dimensional category

theory, the notion of a pseudomonad can be rephrased equivalently as the notion of a no-iteration

pseudomonad [53], which is the 2-dimensional analogue of the notion of a Kleisli triple. Here,

we introduce relative pseudomonads, which generalize no-iteration pseudomonads in the same

way as relative monads generalize Kleisli triples, i.e. by allowing the mapping on objects that

is part of a no-iteration pseudomonad to be defined relatively to a fixed pseudofunctor between

bicategories. From now until the end of this section, we consider a fixed pseudofunctor between

bicategories J : C ! D.

Definition 3.1. A relative pseudomonad T over J : C ! D consists of

• an object TX 2 D, for every X 2 C,
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• a family of functors (�)

⇤
X,Y

: D[JX, TY ] ! D[TX, TY ] for X,Y 2 C,

• a family of morphisms i

X

: JX ! TX in D for X 2 C,

• a natural family of invertible 2-cells µ

g,f

: (g

⇤
f)

⇤
! g

⇤
f

⇤
, for f : JX ! TY , g : JY ! TZ,

• a natural family of invertible 2-cells ⌘

f

: f ! f

⇤
i

X

, for f : JX ! TY in D,

• a family of invertible 2-cells ✓

X

: i

X

⇤
! 1

TX

, for X 2 C,

such that the following conditions hold:

• for every f : JX ! TY , g : JY ! TZ, h : JZ ! TV , the diagram

((h

⇤
g)

⇤
f)

⇤

µh⇤g,f

&&

(µh,g f)⇤

ww

((h

⇤
g

⇤
)f)

⇤

⇠=
✏✏

(h

⇤
g)

⇤
f

⇤

µh,g f

⇤

✏✏

(h

⇤
(g

⇤
f))

⇤

µh,g⇤f

✏✏

(h

⇤
g

⇤
)f

⇤

⇠=
✏✏

h

⇤
(g

⇤
f)

⇤
h

⇤
µg,f

//

h

⇤
(g

⇤
f

⇤
)

(3.1)

commutes, and

• for every f : JX ! TY , the diagram

f

⇤ (⌘f )
⇤
//

⇠=
//

(f

⇤
i

X

)

⇤ µf,iX
//

f

⇤
i

X

⇤

f

⇤
✓X

✏✏

f

⇤
1

TX

(3.2)

commutes.

We introduce some terminology. For a relative pseudomonad T over J : C ! D as in Defini-

tion 3.1, we refer to the family of morphisms i

X

: JX ! TX, for X 2 C, as the unit of T , and

to the family of 2-cells µ, ⌘, and ✓ as the associativity, right unit, and left unit of T , respectively.

Finally, we refer to the axioms in (3.1) and (3.2) as the associativity and unit axioms for T ,

respectively. Note that in order to simplify the notation we have omitted the subscripts on the

functors (�)

⇤
X,Y

and we will henceforth continue to do so. We furthermore adopt the convention

of writing X rather than i

X

in a subscript of µ and ✓. So, for example, we have

µ

f,X

: (f

⇤
i

X

)

⇤
! f

⇤
i

X

⇤
,

⌘

X

: i

X

! i

X

⇤
i

X

.

We also omit the detailed definition of some 2-cells in diagrams, labelling arrows only with the

main 2-cell involved in its definition, and omitting subscripts. In all such cases, the precise

definition of the 2-cell can be easily deduced from its domain and codomain.

We wish to make precise in what sense relative pseudomonads are a generalization of no-

iteration pseudomonads [53, Definition 2.1]. This will be useful in order to relate relative pseu-

domonads and ordinary pseudomonads.

Lemma 3.2. Let T be a relative pseudomonad over J : C ! D.
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(i) For every f : JX ! TY and g : JY ! TZ, the diagram

g

⇤
f

⌘g⇤ f
//

g

⇤
⌘f

,,

(g

⇤
f)

⇤
i

X

µg,f

✏✏

g

⇤
f

⇤
i

X

commutes.

(ii) For every f : JX ! TY , the diagram

(i

Y

⇤
f)

⇤ µY,f
//

(✓Y f)⇤
..

i

Y

⇤
f

⇤

✓Y f

⇤

✏✏

f

⇤

commutes.

(iii) For every X 2 C, the diagram

i

X

⌘X
//

1
..

i

X

⇤
i

X

✓X iX

✏✏

i

X

commutes.

Proof. The proof is a modified version of the proof of the redundancy of three axioms in the

original definition of a monoidal category [33] (see also [32]), which has a version also for pseu-

domonads [48, Proposition 8.1]. ⇤

Proposition 3.3. A no-iteration pseudomonad is the same thing as a relative pseudomonad

over the identity.

Proof. The two notions involve exactly the same data, except for the direction of the invertible 2-

cells. Then, using the numbering of axioms for a no-iteration pseudomonad in [53, Definition 2.1],

the equivalence between axioms for a relative pseudomonad and those for a no-iteration pseu-

domonad are given as follows:

Relative pseudomonads No-iteration pseudomonads

Naturality of µ , Axioms 6 and 7

Naturality of ⌘ , Axiom 4

Associativity axiom , Axiom 8

Unit axiom , Axiom 2

Lemma 3.2, part (i) , Axiom 5

Lemma 3.2, part (ii) , Axiom 3

Lemma 3.2, part (iii) , Axiom 1.

Note that it follows that Axioms 1, 3 and 5 for a no-iteration pseudomonad in [53, Definition 2.1]

are redundant, in that they can be derived from the others. ⇤
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The next remarks use Proposition 3.3 and the analysis of the relationship between ordinary

pseudomonads and no-iteration pseudomonads in [53] to show how a pseudomonad can be re-

garded as a relative pseudomonad over the identity 1C : C ! C and, conversely, how every relative

pseudomonad over the identity determines a pseudomonad.

Remark 3.4 (From pseudomonads to relative pseudomonads). The combination of [53, Theo-

rem 6.1] and Proposition 3.3 shows that every pseudomonad T : C ! C with data as in Section 2

induces a relative pseudomonad over the identity 1C : C ! C. Explicitly, for X 2 C, we already

have TX 2 C and a morphism i

X

: X ! TX as part of the pseudomonad structure. For a

morphism f : X ! TY , we define f

⇤
: TX ! TY by letting f

⇤
=def nY

T (f). The three families

of invertible 2-cells µ, ⌘, ✓ for a pseudomonad are then obtained in an evident way. For example,

for f : X ! TY , we let ⌘

f

: f ! f

⇤
i

X

be the composite 2-cell

f

�

//

n

Y

i

TY

f

⇠=
//

n

Y

T (f) i

X

.

where the unnnamed isomorphism 2-cell is a pseudonaturality of i.

Remark 3.5 (From relative pseudomonad over the identity to pseudomonads). The combina-

tion of Proposition 3.3 and [53, Theorem 3.6] shows that every relative pseudomonad over an

identity pseudofunctor induces a pseudomonad. The explicit definitions are a bit involved, and

therefore checking the coherence diagrams directly is not straightforward, but we shall outline

a more conceptual account of the construction of a pseudomonad from a relative pseudomonad

in Remark 4.5.

We introduce a generalization of the notion of pseudoadjunction between bicategories [12, 60],

extending to the 2-categorical setting the notion of a relative adjunction considered in [63] and [1,

Section 2.2].

Definition 3.6. Let G : E ! D be a pseudofunctor. A relative left pseudoadjoint F to G over

J : C ! D, denoted

E

G

✏✏

C

J

//

F

>>

D ,

consists of

• an object FX 2 E , for every object X 2 C;

• a family of morphisms i

X

: JX ! GFX, for X 2 C;

• a family of adjoint equivalences

D[JX,GA]

(�)]
//

? E [FX,A] ,

G(�) iX

oo

(3.3)

for X 2 C, A 2 E .

For a relative pseudoadjunction as in Definition 3.6, the components of the unit and counit of

the adjoint equivalences in (3.3) will be written

⌘

f

: f ! G(f

]

) i

X

, "

u

: (G(u) i

X

)

]

! u ,

respectively, where f : JX ! GA and u : FX ! A. Note that a relative pseudoadjunction over

the identity 1C : C ! C is equivalent to a pseudoadjunction in the usual sense [35, 60]. We

now establish a relative variant of a standard fact that a pseudoadjunction of bicategories gives
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rise to a pseudomonad [35, 60], namely that a relative pseudoadjunction determines a relative

pseudomonad. The next lemma will be useful.

Lemma 3.7. Let

E

G

✏✏

C

J

//

F

??

D

be a relative pseudoadjunction. Then there is an essentially unique way of extending the function

mapping X 2 C to FX 2 E to a pseudofunctor F : C ! E so that the maps i

X

: JX ! GFX,

for X 2 C, become the 1-cell components of a pseudonatural transformation i : J ) GF .

Proof. For a morphism f : X ! Y in C, we define F (f) =def (iY J(f))
]

. The unit of the adjoint

equivalence in (3.3) gives us invertible 2-cells

 

f

: i

Y

J(f) ! GF (f) i

X

(3.4)

for f : X ! Y . For f : X ! Y , g : Y ! Z, we need an invertible 2-cell �

g,f

: F (g f) ! F (g)F (f).

By the definition, we have

F (g f) = (i

Z

J(g f))

]

⇠

=

(i

Z

J(g) J(f))

]

, F (g)F (f) =

�
G

�
F (g)F (f)

�
i

X

�
]

.

So we can define �

g,f

using the composite

(i

Z

J(g) J(f))

]

 

�1

//

�
GF (g) i

Y

J(f)

�
]

 

//

�
GF (g)GF (f) i

X

�
]

⇠=
//

�
G

�
F (g)F (f)

�
i

X

�
]

,

where the unnamed isomorphism is given by the pseudofunctoriality of G. For X 2 C, we need

an invertible 2-cell �

X

: F (1

X

) ! 1

FX

. By definition, F (1

X

) = (i

X

)

]

= (G(1

FX

) i

X

)

]

, and so we

define �

X

to be "1FX : (G(1

FX

) i

X

)

]

! 1

FX

. With these definitions, the pseudonaturality 2-cells

for i : J ) GF are the 2-cells in (3.4). The proof of the coherence conditions is routine (cf. [35,

60]). ⇤

Theorem 3.8. Let

E

G

✏✏

C

F

??

J

//

D

be a relative pseudoadjunction. Then the function sending X 2 C to GF (X) 2 D admits the

structure of a relative pseudomonad over J .

Proof. For X 2 C, define TX =def GFX. The relative pseudoadjunction gives morphisms

i

X

: X ! TX, for X 2 C, and adjoint equivalences

D[JX,GFY ]

(�)]
//

? E [FX,FY ]

G(�) iX

oo

(3.5)

for X,Y 2 C. We then define (�)

⇤
: D[JX, TY ] ! D[TX, TY ] by letting f

⇤
=def G(f

]

). It now

remains to define the families of invertible 2-cells µ, ⌘ and ✓. For µ

g,f

: (g

⇤
f)

⇤
! g

⇤
f

⇤
, observe

that

(g

⇤
f)

⇤
= G(G(g

]

) f)

]

, g

⇤
f

⇤
= G(g

]

)G(f

]

) ,
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and so we define µ

g,f

to be the composite

G

�
G(g

]

) f

�
]

⌘

//

G

�
G(g

]

)G(f

]

) i

X

�
]

⇠=
//

G(G(g

]

f

]

) i

X

)

]

"

//

G(g

]

f

]

)

⇠=
//

G(g

]

)G(f

]

) .

The 2-cells ⌘

f

: f ! f

⇤
i

X

are given by the units of the adjunction (3.5), which satisfy the

required naturality condition. For ✓

X

: i

X

⇤
! 1

TX

, we recall that i

X

⇤
= G(i

X

]

), and so we

define ✓

X

to be the composite 2-cell

G(i

X

]

)

⌘

//

G

�
(G(1

FX

) i

X

)

]

�
"

//

G(1

FX

)

⇠=
//

1

GFX

.

It remains to establish the coherence conditions. While it is possible to show this directly, it

is more illuminating to argue in terms of universal properties. Simply restating the adjunction

in (3.5), we observe that, given f : JX ! GA in D and u : FX ! A in E , for every 2-cell

� : f ! G(u) i

X

, there is a unique 2-cell  : f

]

! u, the adjoint transpose, such that the diagram

f

⌘f
//

�

((

G(f

]

) i

X

G( ) iX

✏✏

G(u) i

X

commutes. Accordingly, we can characterize µ

g,f

and ✓

X

as follows. There are 2-cells

̃

g,f

: G(G(g

]

) f)

]

! G(g

]

f

]

) , ̃

X

: G(i

X

]

) ! G(1

FX

)

being the image under G of the unique 2-cells (G(g

]

) f)

]

! g

]

f

]

and i

X

]

! 1

FX

such that the

diagrams

G(g

]

) f

⌘

//

⌘

✏✏

G(G(g

]

) f)

]

i

X

̃g,f iX

✏✏

G(g

]

)G(f

]

) i

X ⇠=
//

G(g

]

f

]

) i

X

i

X

⌘

//

⇠=
✏✏

G(i

X

]

) i

X

̃X iX

✏✏

1

GFX

i

X ⇠=
//

G(1

FX

)i

X

commute. The 2-cells µ

g,f

and ✓

X

then arise by composing these 2-cells with pseudofunctoriality

2-cells of G. The coherence diagrams follow readily, and we give details in the 2-categorical case,

where the characterizing diagrams for µ

g,f

and ✓

X

reduce to the diagrams

i

X

⌘

//

1
++

i

X

⇤
i

X

✓X iX

✏✏

i

X

,

g

⇤
f

⌘

//

g

⇤
⌘f

**

(g

⇤
f)

⇤
i

X

µg,f iX

✏✏

g

⇤
f

⇤
i

X

.
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For the associativity condition in (3.1), we have commuting diagrams

(h

⇤
g)

⇤
f

⌘

//

(h⇤
g)⇤ ⌘

%%

µh,g f

✏✏

�
(h

⇤
g)

⇤
f)

⇤
i

X

µh⇤ g,f iX ,

✏✏

(h

⇤
g)

⇤
f

⇤
i

X

µh,g f

⇤
iX

✏✏

h

⇤
g

⇤
f

h

⇤
g

⇤
⌘

%%

h

⇤
g

⇤
f

⇤
i

X

(h

⇤
g)

⇤
f

⌘

//

µg,h f

✏✏

�
(h

⇤
g)

⇤
f

�⇤
i

X

(µh,g f)⇤ iX

✏✏

h

⇤
g

⇤
f

⌘

//

h

⇤
⌘

++

h

⇤
g

⇤
⌘

''

(h

⇤
g

⇤
f)

⇤
i

X

µh,g⇤ f iX

✏✏

h

⇤
(g

⇤
f)

⇤
i

X

h

⇤
µf,g iX

✏✏

h

⇤
g

⇤
f

⇤
i

X

.

Note that the triangles in these diagrams commute by part (i) of Lemma 3.2. Since both of the

composites on the right-hand side of the diagrams lie in the image of G, we deduce by universality

that they are equal, as required. For the unit condition in (3.2) we have a commuting diagram

f

⌘f
//

⌘f

✏✏

f

⇤
i

X

⌘f
⇤
iX

✏✏

f

⇤
i

X

⌘f⇤ iX
//

f

⇤
⌘iX ++

1

--

(f

⇤
i

X

)

⇤
i

X

µf,iX
iX

✏✏

f

⇤
i

X

⇤
i

X

f

⇤
✓X iX

✏✏

f

⇤
i

X

.

Here, the triangles commute by part (i) and (iii) of Lemma 3.2. Again, since the composite

of (f

⇤
✓

X

) (µ

f,iX ) (⌘

f

⇤
) lies in the image of G we deduce by universality that it equals the identity,

as required. ⇤

Using Theorem 3.8, we can introduce our fundamental example of a relative pseudomonad,

given by the presheaf construction.

1

Example 3.9. There is a relative pseudoadjunction of the form

COC

U

✏✏

Cat
J

//

P

::

CAT ,

1The possibility of introducing a notion of relative pseudomonad to include the presheaf construction as an
example was mentioned in [1, Example 2.7].
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where COC is the 2-category of locally small cocomplete categories, cocontinuous functors, and

natural transformations, and U : COC ! CAT is the evident forgetful functor. The cate-

gory P (X) =def [Xop
,Set] of presheaves over a small category X is the colimit completion of X

in the sense that, for every locally small cocomplete A, composition with the Yoneda embedding

yX : X ! P (X) induces an equivalence of categories

CAT[X,A] COC[P (X),A] .
U(�) yX
oo

Thus P provides a relative left pseudoadjoint to U . By Theorem 3.8 we obtain a relative pseu-

domonad over the inclusion J : Cat ! CAT. For a functor F : X ! P (Y), F ⇤
: P (X) ! P (Y)

is the left Kan extension of F along the Yoneda embedding, defined by the coend formula

F

⇤
(p)(y) =def

Z
x2X

F (x)(y)⇥ p(x) . (3.6)

The invertible 2-cells ⌘

F

fit into the diagram

X yX
//

F

**

⌘F)

P (X)

F

⇤

✏✏

P (Y).

The 2-cells µ

F,G

and ✓X are uniquely determined by the universal property of left Kan extensions.

There is an analogous relative pseudomonad arising from the relative pseudoadjunction

FIL

U

✏✏

Cat
J

//

D

::

CAT ,

where FIL is the 2-category of locally small categories with filtered colimits, functors preserving

such colimits, and all natural transformations [2]. Here, for X 2 Cat, we define D(X) 2 CAT
to be the full subcategory of P (X) spanned by small filtered colimits of representables.

4. Kleisli bicategories

We introduce the Kleisli bicategory of a relative pseudomonad, extending to the 2-dimensional

setting the definition of the Kleisli category of a relative monad [1, Section 2.3].

Theorem 4.1. Let T be a relative pseudomonad over J : C ! D. Then there is a bicate-

gory Kl(T ), called the Kleisli bicategory of T , having the objects of C as objects, and hom-

categories given by Kl(T )[X,Y ] =def D[JX, TY ], for X,Y 2 C.

Proof. We begin by defining composition in Kl(T ). Let f : JX ! TY and g : JY ! TZ. We

define g � f : JX ! TZ as the composite in D

JX

f

//

TY

g

⇤
//

TZ .

This obviously extends to 2-cells, so as to obtain the required composition functors. For X 2 C,

the identity morphism on X in Kl(T ) is i

X

: JX ! TX. For the associativity isomorphisms, let

f : JX ! TY , g : JY ! TZ and h : JZ ! TV . Since

(h � g) � f = (h

⇤
g)

⇤
f , h � (g � f) = h

⇤
(g

⇤
f) ,
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we define the associativity isomorphism ↵

h,g,f

: (h� g)� f ! h� (g � f) to be the composite 2-cell

(h

⇤
g)

⇤
f

µh,g f

//

(h

⇤
g

⇤
) f

⇠=
//

h

⇤
(g

⇤
f) .

For the right and left unit, let f : JX ! TY . Since f � i

X

= f

⇤
i

X

, we define ⇢

f

: f � i

X

! f to

be the 2-cell ⌘

f

: f ! f

⇤
i

X

. Since i

Y

� f = i

Y

⇤
f , we define �

f

: i

Y

� f ! f to be the composite

2-cell

i

Y

⇤
f

✓Y f

//

1

TY

f

⇠=
//

f .

We now need to show that these natural isomorphisms satisfy the required coherence conditions.

We give the proof making explicit the bicategorical structure of C and D. We only need to show

that the associativity, left unit, and right unit isomorphisms satisfy the coherence conditions for

a bicategory. The coherence axiom for associativity is obtained via the following diagram:

((k

⇤
h)

⇤
g)

⇤
f

µ f

((

(µ g)⇤ f

ww

(k

⇤
h

⇤
) g)

⇤
f

⇠=

ww

((k

⇤
h)

⇤
g

⇤
) f

(µ g

⇤) f

✏✏

⇠=

((

(k

⇤
(h

⇤
g))

⇤
f

µ f

✏✏

((k

⇤
h

⇤
) g

⇤
) f

⇠=

vv

⇠=

((

(k

⇤
h)

⇤
(g

⇤
f)

µ (g⇤
f)

✏✏

(k

⇤
(h

⇤
g)

⇤
) f

⇠=
✏✏

(k⇤
µ) f

//

(k

⇤
(h

⇤
g

⇤
)) f

⇠=
✏✏

(k

⇤
h

⇤
) (g

⇤
f)

✏✏

k

⇤
((h

⇤
g)

⇤
f)

k

⇤ (µ f)
//

k

⇤
((h

⇤
g

⇤
)f) ⇠=

//

k

⇤
(h

⇤
(g

⇤
f)) ,

where, starting from the rhombus on the right-hand side and proceeding clockwise, we use

naturality of the associativity in D, coherence of associativity in D, naturality of the associativity

in D again, and finally the associativity coherence axiom for a relative pseudomonad in (3.1).

The coherence axiom for the units is obtained via the following diagram:

g

⇤
f

⌘g
⇤
f

//

⇠=

,,

1

..

(g

⇤
i

Y

)

⇤
f

µg,Y f

//

(g

⇤
i

Y

⇤
) f

⇠=
//

(g⇤
✓Y ) f

✏✏

g

⇤
(i

Y

⇤
f)

g

⇤ (✓Y f)

✏✏

(g

⇤
1

TY

)f

⇠=
//

g

⇤
(1

TY

f)

⇠=

✏✏

g

⇤
f ,

where, starting from the triangle on the top left-hand side, we use the coherence axiom for units

of the relative pseudomonad in (3.2), naturality of the associativity in D, and the coherence

axiom for units of D. ⇤

Note that, as mentioned in Section 2 for ordinary pseudomonads, Kl(T ) is only a bicategory

even if C and D are 2-categories.
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Example 4.2. It is straightforward to identify the bicategory of profunctors of Example 2.1 with

the Kleisli bicategory associated to the relative pseudomonad of presheaves P of Example 3.9.

First of all, both bicategories have small categories as objects. Secondly, for small categories X
and Y we have

Prof [X,Y] = [Yop
⇥ X,Set] , Kl(P )[X,Y] = CAT[X, P (Y)] .

Thus, we have a canonical isomorphism of hom-categories

⌧ : Prof [X,Y] ! Kl(P )[X,Y] ,

given by exponential adjoint transposition. Furthermore, these isomorphisms are compatible with

composition and identities. For composition, it su�ces to observe that, for profunctors F : X ! Y
and G : Y ! Z, there is a canonical natural isomorphism

⌧(G � F )

⇠

=

(⌧G) � (⌧F ) ,

where the composition on the left-hand side is that of Prof , as defined in (2.3), while the compo-

sition on the right is the one of Kl(P ), which is given by the functorial composite of ⌧(F ) : X !

P (Y) and (⌧G)

⇤
: P (Y) ! P (Z), the latter being defined by the formula for left Kan extensions

in (3.6). For identities, simply note that, for a small category X, the adjoint transpose of the

identity profunctor on X, as defined in (2.4), is exactly the Yoneda embedding, which is the

identity on X in Kl(P ).

In one-dimensional category theory, every monad determines two universal adjunctions relat-

ing the base category with the category of Eilenberg-Moore algebras and the Kleisli category

for the monad. For pseudomonads, the construction of the bicategory of pseudoalgebras is well-

known and it has been considered for no-iteration pseudomonads in [53, Section 4], but we do

not need its counterpart for relative pseudomonads here. We focus instead on the counterpart of

the Kleisli adjunction, which has not been considered for no-iteration pseudomonads. The first

step is the following lemma.

Lemma 4.3. Let T be a relative pseudomonad over J : C ! D. Then the function sending

X 2 Kl(T ) to TX 2 D admits the structure of a pseudofunctor G

T

: Kl(T ) ! D.

Proof. For X,Y 2 Kl(T ), we define the functor G

T

X,Y

: Kl(T )[X,Y ] ! D[G

T

X,G

T

Y ] to be

(�)

⇤
: D[JX, TY ] �! D[TX, TY ] .

By inspection of the definitions, we can define the pseudofunctoriality 2-cells of G

T

to be exactly

some of the 2-cells that are part of the data of a relative pseudomonad, namely

µ

g,f

: G

T

(g � f) ! G

T

(g)G

T

(f) , ✓

X

: G

T

(i

X

) ! 1

G

T
X

.

In order to have a pseudofunctor, we need to verify that the following three coherence diagrams

commute:

G

T

�
(h � g) � f

�

G

T (µf,g,h)

vv

µh�g,f

))

G

T

�
h � (g � f)

�

µh,g�f

✏✏

G

T

(h � g)G

T

(f)

µh,g G

T (f)

✏✏

G

T

(h)G

T

(g � f)

G

T (h)µg,f

//

G

T

(h)G

T

(g)G

T

(f) ,
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G

T

(f)

G

T (⇢f )
//

1GT (f) //

G

T

(f � i

X

)

µf,X
//

G

T

(f)G

T

(1

X

)

G

T (f) ✓X
✏✏

G

T

(f) ,

G

T

(i

Y

� f)

µY,f
//

G

T (�f ) //

G

T

(i

Y

)G

T

(f)

✓Y G

T (f)

✏✏

G

T

(f) .

The first and second diagrams follow at once from the coherence conditions in (3.1) and (3.2)

that are part of the definition of a relative pseudomonad. The third is part (ii) of Lemma 3.2. ⇤

By analogy with the one-dimensional case, we expect that the pseudofunctor G

T

: Kl(T ) ! D

has some form of left pseudoadjoint. The next result makes this precise.

Theorem 4.4. Let T : C ! D be a relative pseudomonad over J : C ! D. Then G

T

: Kl(T ) ! D

has a relative left pseudoadjoint over J : C ! D,

Kl(T )

G

T

✏✏

C

J

//

F

T

<<

D .

Proof. For X 2 C, we define F

T

X =def X. Then we have G

T

F

T

X = TX, so the relative

pseudomonad provides a morphism i

X

: JX ! G

T

F

T

X. For these to act like the components

of the unit of a relative pseudoadjunction one needs to show that the functor

Kl(T )[F

T

X,Y ]

G

T (�) iX
//

D[JX,G

T

Y ]

is an adjoint equivalence. Indeed, Kl(T )[F

T

X,Y ] = D[JX, TY ] = D[JX,G

T

Y ] and the func-

tor G

T

(�) i

X

is naturally isomorphic to the identity. This is because, for f : JX ! TY , we

have G

T

(f) � i

X

= f

⇤
i

X

and there is an invertible 2-cell ⌘

f

: f ! f

⇤
i

X

, suitably natural. ⇤

Remark 4.5. Theorem 4.4 allows us to give a more conceptual account of the construction of the

pseudomonad associated to a relative pseudomonad over the identity 1C : C ! C in Remark 3.5.

Given a relative pseudomonad T over 1C : C ! C, we can construct a pseudoadjunction between C

and Kl(T ) as in Theorem 4.4. Then, the pseudomonad associated to this pseudoadjunction is

exactly the pseudomonad described in Remark 3.5. So we have established again the coherence

conditions for a pseudomonad, in a clean (albeit indirect) way.

Let us also note that if we start with a relative pseudomonad T over J : C ! D, form the

associated Kleisli relative pseudoadjunction (as in Theorem 4.4), and take the induced relative

pseudomonad (as in Theorem 3.8), we then retrieve the original relative pseudomonad. The only

issues arise at the 2-cell level and we leave the verifications to the interested readers. In the other
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direction, suppose that we start with a relative pseudoadjunction

E

G

✏✏

C

J

//

F

>>

D ,

form the induced relative pseudomonad T = GF over J : C ! D (as in Theorem 3.8), and then

take the induced relative pseudoadjunction

Kl(T )

G

T

✏✏

C

J

//

F

T
==

D ,

as in Theorem 4.4. We expect a comparison and indeed we have a pseudofunctor C : Kl(T ) ! E

defined on objects by letting C(X) =def FX, for X 2 C. On hom-categories, for X,Y 2 C, we

define

C

X,Y

: D[JX, TY ] ! E [FX,FY ]

by letting C(f) =def f
]

, where we used that TY = GF (Y ).

One can compose adjunctions between categories and, similarly, pseudoadjunctions between

bicategories. It does not make sense to compose relative pseudoadjunctions, but one can form

the composite of a relative pseudoadjunction and a pseudoadjunction.

Proposition 4.6. Let

E

G

✏✏

C

J

//

F

>>

D ,

E

F

0
//

? E

0

G

0
oo

be a relative pseudoadjunction and a pseudoadjunction, respectively. Then there is a relative

pseudoadjunction of the form

E

0

GG

0

✏✏

C

J

//

F

0
F

>>

D .

Proof. The construction is evident and thus omitted. ⇤

We conclude this section by extending some results on no-iteration pseudomonads to relative

pseudomonads. In the next proposition, part (i) generalizes [53, Proposition 3.1], part (ii) gen-

eralizes [53, Proposition 3.2], while part (iii) does not seem to have been made explicit yet for

no-iteration pseudomonads.

Proposition 4.7. Let T be a relative pseudomonad over J : C ! D.

(i) The function T : C ! D admits the structure of a pseudofunctor.

(ii) The family of morphisms i

X

: JX ! TX, for X 2 C, admits the structure of a pseudo-

natural transformation i : J ! T .

(iii) The family of functions (�)

⇤
: D[JX, TY ] ! D[TX, TY ] for X,Y 2 C, admits the struc-

ture of a pseudonatural transformation.
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Proof. Parts (i) and (ii) follow from Lemma 3.7 and Theorem 4.4 via Remark 4.5, but we also

give explicit proofs. We begin from part (i). For f : X ! Y , we define T (f) : TX ! TY

by letting Tf =def (i

Y

J(f))

⇤
. We then define the pseudofunctoriality 2-cells. First, we need

invertible 2-cells ⌧

g,f

: T (g f) ! T (g)T (f), for f : X ! Y and g : Y ! Z. By definition, we have

T (g f) = (i

Z

J(g) J(f))

⇤
, T (g)T (f) = (i

Z

J(g))

⇤
(i

Y

J(f))

⇤
.

We then define ⌧

g,f

as the composite 2-cell

(i

Z

J(g) J(f))

⇤ ⌘

//

((i

Z

J(g))

⇤
i

Y

J(f))

⇤ µ

//

(i

Z

J(g))

⇤
(i

Y

J(f))

⇤

Secondly, we need invertible 2-cells ⌧

X

: T (1

X

) ! 1

TX

for X 2 C. But since T (1

X

) = i

X

⇤
by

definition, we let ⌧

X

=def ✓X , the component of the left unit of the relative pseudomonad.

One should check the three coherence laws for a pseudofunctor. The coherence law for ⌧

g,f

involves a pasting of the associativity condition in (3.1), part (i) of Lemma 3.2 and all the

naturality conditions for the families 2-cells of a relative pseudomonad. One of the coherence

laws for ⌧

X

comes from the unit condition in (3.2), while the other is from part (ii) of Lemma 3.2.

For part (ii), the required pseudonaturality 2-cell for f : X ! Y fits into the diagram

JX

iX

✏✏

J(f)
//

+ īf

JY

iY

✏✏

TX

T (f)
//

TY

Since T (f) = (i

Y

J(f))

⇤
, we can simply let

¯

i

f

=def ⌘
iY J(f) . (4.1)

We should check two coherence conditions for pseudonatural transformations. The composition

condition involves a pasting of a naturality of ⌘ to a diagram coming from part (i) of Lemma 3.2.

The identity condition is just part (iii) of Lemma 3.2 .

Finally, for part (iii), to see the pseudonaturality in X, take u : X

0
! X, observe that

f

⇤
T (u) = f

⇤
(i

X

u)

⇤
and note the 2-cell

(f u)

⇤ ⌘

//

(f

⇤
i

X

u)

⇤ µ

//

f

⇤
(i

X

u)

⇤
.

For the pseudonaturality in Y , take v : Y ! Y

0
, observe that (T (v) f)

⇤
= ((i

Y

0
v)

⇤
f)

⇤
and

T (v) f

⇤
= (i

Y

0
v)

⇤
f

⇤
, and note the 2-cell

�
(i

Y

0
v)

⇤
f

�⇤ µ

//

(i

Y

0
v)

⇤
f

⇤
.

There are coherence conditions to check, but they are straightforward. ⇤

5. Lax idempotent relative pseudomonads

We isolate a special class of relative pseudomonads, which appears to be the appropriate gener-

alization to our setting of the notion of a lax idempotent 2-monad, or Kock-Zöberlein 2-monad,

or KZ-doctrine [38, 65]. An extensive analysis of these 2-monads, with useful equivalent for-

mulations, was given in the course of a study of general property-like 2-monads in [37]. For

pseudomonads, the more general notion of lax idempotent pseudomonad on a bicategory was in-

troduced in [60], with yet another characterisation of the notion, and studied further in [48, 52].

In order to state the definition of a lax idempotent relative pseudomonad, it is convenient to use

the notion of a left extension in a bicategory [40, §2.2.], which we now recall. We consider a fixed

morphism i : X ! X

0
in a bicategory C. By definition, a left extension of a morphism f : X ! Y
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along i consists of a morphism f

0
: X

0
! Y and a 2-cell ⌘ : f ! f

0
i such that composition with ⌘

induces a bijection between 2-cells f ! gi and 2-cells f

0
! g for every morphism g : X

0
! Y . In

this case, one says that ⌘ exhibits f

0
as the left extension of f along i.

Let us fix again a pseudofunctor between bicategories J : C ! D.

Definition 5.1. A lax idempotent relative pseudomonad over J is a relative pseudomonad T

over J : C ! D such that the following conditions hold:

• for all f : JX ! TY , the 2-cell ⌘

f

: f ! f

⇤
i

X

exhibits f

⇤
: TX ! TY as a left extension

of f along i

X

,

• for all f : JX ! TY , g : JY ! TZ, the diagram

g

⇤
f

⌘g⇤f
//

g

⇤
⌘f --

(g

⇤
f)

⇤
i

X

µf,giX

✏✏

g

⇤
f

⇤
i

X

commutes,

• for all X 2 C, the diagram

i

X

⌘iX
//

1
..

i

X

⇤
i

X

✓X iX

✏✏

i

X

commutes.

Our next goal is to give alternative characterizations of lax idempotent relative pseudomon-

ads, which we will use to discuss further the relative pseudomonad of presheaves. For this,

we formulate the relative version of the notion of a left Kan pseudomonad introduced in [52,

Definition 3.1].

Definition 5.2. A relative left Kan pseudomonad over J : C ! D consists of:

• an object TX 2 D, for every X 2 C,

• a morphism i

X

: JX ! TX in D, for every X 2 C,

• a morphism f

⇤
: TX ! TY , for every f : JX ! TY ,

• an invertible 2-cell ⌘

f

: f ! f

⇤
i

X

which exhibits f

⇤
as the left extension of f along i

X

, for

every f : JX ! TY ,

such that the following conditions hold:

• the 2-cell g

⇤
⌘

f

: g

⇤
f ! g

⇤
f

⇤
i

X

exhibits g

⇤
f

⇤
as the left extension of g

⇤
f along i

X

, for all

f : JX ! TX, g : JY ! TZ,

• the identity 2-cell 1 : i

X

! i

X

exhibits 1

TX

as a left extension of i

X

along i

X

, for all X 2 C.

Let us now assume we have an object TX 2 D for every X 2 C, a morphism i

X

: JX ! TX

in D for every X 2 C, a morphism f

⇤
: TX ! TY for every f : JX ! TY and an invertible

2-cell ⌘

f

: f ! f

⇤
i

X

exhibiting f

⇤
as the left extension of f along i

X

for every f : JX ! TY .

Note that this gives us all the data for a relative left Kan pseudomonad, but does not require all

its axioms. Below, we refer to this data simply as T : C ! D. It is evident that, for all X,Y 2 C

we have an adjunction

D[JX, TY ]

(�)⇤
//

? D[TX, TY ] ,

(�) iX

oo

(5.1)
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whose unit has components the invertible 2-cells ⌘

f

: f ! f

⇤
i

X

, for f : JX ! TY , and whose

counit has components 2-cells that will be written "

u

: (u i

X

)

⇤
! u, for u : TX ! TY . We can

then state our characterizations of lax idempotent relative pseudomonads as follows.

Theorem 5.3. The following conditions are equivalent:

(i) T : C ! D admits the structure of a lax idempotent relative pseudomonad over J : C ! D.

(ii) For every f : JX ! TY , the 2-cell "

f

⇤
: (f

⇤
i

X

)

⇤
! f

⇤
is invertible and there are iso-

morphisms

µ

f,g

: (g

⇤
f)

⇤
! g

⇤
f

⇤
, ✓

X

: (i

X

)

⇤
! 1

TX

.

(iii) The bicategory E with objects of the form TX, for X 2 C, and hom-categories given by

defining E [TX, TY ] to be the full subcategory of D[TX, TY ] spanned by the morphisms

u : TX ! TY such that u

⇠

=

f

⇤
, for some f : JX ! TY in D, is a sub-bicategory of D.

(iv) There exists a sub-bicategory E of D such that f

⇤
: TX ! TY is in E for all f : JX ! TY

in D and "

u

: (ui

X

)

⇤
! u is invertible for all u : TX ! TY in E.

(v) T : C ! D is a relative left Kan pseudomonad over J : C ! D.

Proof. To prove that (i) implies (ii), observe that the axioms for a lax idempotent relative

pseudomonad imply that the following diagram commutes:

f

⇤
i

X

⌘f⇤iX
//

f

⇤
⌘iX

--

1
00

(f

⇤
i

X

)

⇤
i

X

µiX,f iX

✏✏

f

⇤
i

⇤
X

i

X

f

⇤
✓X iX

✏✏

f

⇤
i

X

By one of the triangular laws for the adjunction in (5.1), "

f

⇤
is the composite

(f

⇤
i

X

)

⇤ µf,iX
//

f

⇤
(i

X

)

⇤ f

⇤
✓X

//

f

⇤

and it is therefore invertible. For (ii) implies (iii), the given isomorphisms show that E as

defined is closed under composition and contains identities. The implication from (iii) to (iv) is

immediate. For the implication from (iv) to (v), observe that the following diagram commutes:

g

⇤
f

⌘g⇤f
//

g

⇤
⌘f

✏✏

(g

⇤
f)

⇤
i

X

(g⇤
⌘f )

⇤
iX

✏✏

g

⇤
f

⇤
i

X

⌘g⇤f⇤ iX
//

1
..

(g

⇤
f

⇤
i

X

)

⇤
i

X

"g⇤ f⇤ iX

✏✏

g

⇤
f

⇤
i

X

This shows that g

⇤
⌘

f

is the composite of ⌘

g

⇤
f

(which exhibits (g

⇤
f)

⇤
as an extension of g

⇤
f

along i

X

) with an invertible 2-cell. It then follows that g

⇤
⌘

f

exhibits g

⇤
f

⇤
as the left extension
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of g

⇤
f along i

X

, as required. Similarly, we have

i

X

1
..

⌘iX
//

i

X

⇤
i

X

"1TX

✏✏

i

X

which implies that the identity 1: i

X

! i

X

exhibits 1

TX

as a left extension of i

X

along i

X

.

Finally, we show that (v) implies (i). We begin by defining the remaining parts of the data

for a relative pseudomonad, namely the families of invertible 2-cells µ

f,g

: (g

⇤
f)

⇤
! g

⇤
f

⇤
and

✓

X

: i

X

⇤
! 1

TX

. Using the universal property of ⌘

g

⇤
f

, we define µ

f,g

to be the unique 2-cell

such that

g

⇤
f

⌘g⇤ f
//

g

⇤
⌘f

,,

(g

⇤
f)

⇤
i

X

µf,g iX

✏✏

(g

⇤
f)

⇤
i

X

Similarly, using the universal property of ⌘

iX , we define ✓

X

to be the unique 2-cell such that

i

X

⌘X
//

1
--

i

X

⇤
i

X

✓X iX

✏✏

1

TX

i

X

.

It then remains only to check the coherence conditions of Definition 3.1. There are two ways

of doing this. The first is by a diagram-chasing arguments using the universal properties defin-

ing µ

f,g

and ✓

X

. The second is to express µ

f,g

and ✓

X

in terms of the unit and counit of the

adjunction. Taking that approach, first observe that the diagram

(h

⇤
u i

X

)

⇤ (h⇤
⌘u iX

)⇤
//

++

(h

⇤
(u i

X

)

⇤
i

X

)

⇤
"h⇤ (u iX )⇤

//

(h⇤
"u iX)⇤

✏✏

h

⇤
(u i

X

)

⇤

h

⇤
"u

✏✏

(h

⇤
u i

X

)

⇤
"h⇤ u

//

h

⇤
u

(5.2)
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commutes by a triangle identity and the naturality of ". The associativity coherence condition

is then given by the diagram

((h

⇤
g)

⇤
f)

⇤

((h

⇤
g)

⇤
f

⇤
i)

⇤

(h

⇤
g)

⇤
f

⇤

(h

⇤
g

⇤
i)

⇤
f

⇤

h

⇤
g

⇤
f

⇤

h

⇤
(g

⇤
f

⇤
i)

⇤

h

⇤
(g

⇤
f)

⇤

(h

⇤
(g

⇤
f)

⇤
i)

⇤

(h

⇤
g

⇤
f)

⇤

((h

⇤
g

⇤
i)

⇤
f)

⇤

((h

⇤
g

⇤
i)

⇤
f

⇤
i)

⇤

(h

⇤
g

⇤
f

⇤
i)

⇤

(h

⇤
(g

⇤
f

⇤
i)

⇤
i)

⇤

((h

⇤
g)

⇤
⌘

f

)

⇤

))

"(h⇤
g)⇤ f

⇤

✏✏

(h

⇤
⌘

g

)

⇤
f

⇤

✏✏

"

h

⇤
g

⇤
f

⇤

✏✏

h

⇤
"

g

⇤
f

⇤

44

h

⇤
(g

⇤
⌘

f

)

⇤
**

"

h

⇤ (g⇤
f)⇤

✏✏

(h

⇤
⌘

g

⇤
f

)

⇤

✏✏

("

h

⇤
g

⇤
f)

⇤

✏✏

((h

⇤
⌘

g

)

⇤
f)

⇤

uu

("

h

⇤
g

⇤
f

⇤
i)

⇤

✏✏

(h

⇤
⌘

g

⇤
f

⇤
i

)

✏✏

((h

⇤
g

⇤
i)

⇤
⌘

f

)

⇤

**

((h

⇤
⌘

g

)

⇤
f

⇤
i)

⇤

tt

"(h⇤
g

⇤
i)⇤ f

⇤

!!

"

h

⇤
g

⇤
f

⇤

!!

"

h

⇤(g⇤
f

⇤
i)⇤

✏✏

(h

⇤
(g

⇤
⌘

f

)

⇤
i)

**

(h

⇤
g

⇤
⌘

f

)

⇤
**

where, starting from the top in a clockwise direction, we use interchange, two naturalities of ",

the diagram in (5.2), a naturality of ", a naturality of ⌘, and finally an interchange again. Finally,

the unit condition is given by the following diagram:

f

⇤ ⌘f
⇤

//

⌘f
⇤

✏✏

1

%%

(f

⇤
i

X

)

⇤

(f⇤
⌘X)⇤

✏✏

1

uu

(f

⇤
i

X

)

⇤

"f⇤

✏✏

(f

⇤
(i

X

)

⇤
i

X

)

⇤
(f⇤

" iX)⇤
oo

"f⇤ iX
⇤

✏✏

f

⇤
f

⇤
i

X

⇤
f

⇤
"1TX

oo

where we have two uses of the triangle identities and a naturality ⇤

Example 5.4. We can apply Theorem 5.3 to show that the relative pseudomonad of presheaves

of Example 3.9 is lax idempotent. For this, observe that for X,Y 2 Cat, there is an adjunction

of the form

CAT[X, P (Y)]
(�)⇤

//

? CAT[P (X), P (Y)]
(�) yX

oo

(5.3)

in which the components of the unit are natural isomorphisms. The left adjoints in (5.3) fac-

tor through COC, the sub-2-category of cocomplete locally small categories and cocontinu-

ous functors, and if U : P (X) ! P (Y) is cocontinuous, then "

U

is an isomorphism. Part (iii)

of Theorem 5.3 then applies. A similar example arises by considering the Ind-completion, which
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is also lax idempotent. This is because the corresponding left adjoint factors through FIL
the sub-2-category of Ind-complete categories and functors preserving filtered colimits; and if

U : D(X) ! D(Y) preserves filtered colimits then "

U

is an isomorphism.

Remark 5.5. Theorem 5.3 and [52, Theorems 4.1 and 4.2] imply that a pseudomonad T on a

bicategory C is lax idempotent in the usual sense if and only if it is lax idempotent as a relative

pseudomonad over the identity 1C : C ! C in the sense of Definition 5.1.

6. Liftings, extensions, and compositions

We now discuss a general method to extend a 2-monad to the Kleisli bicategory of a relative pseu-

domonad, which we will apply in Section 7 to extend several 2-monads from the 2-category Cat
of small categories and functors to the bicategory Prof of small categories and profunctors.

Let us begin by introducing the setting in which we will be working. We fix a pseudofunctor

between 2-categories J : C ! D, a relative pseudomonad T over J with data as in Definition 3.1

and a 2-monad S : D ! D with data as in Section 2. We assume that the 2-monad S restricts

along J . Explicitly, this means that we have a dotted functor

C

J

//

S

✏✏

D

S

✏✏

C

J

//

D ,

and that, for X 2 C, the components of the multiplication and the unit, written m

X

: S

2
X ! SX

and e

X

: X ! SX, respectively, are in C. This implies that the pseudofunctor J : C ! D can be

lifted to pseudofunctors J : Ps-S-AlgC ! Ps-S-AlgD and J : S-AlgC ! S-AlgD (the definition of

these 2-categories is recalled in Section 2), making the following diagram commute:

S-AlgC
J

//

✏✏

S-AlgD

✏✏

Ps-S-AlgC
J

//

✏✏

Ps-S-AlgD

✏✏

C

J

//

D ,

(6.1)

where the vertical arrows in the top square are inclusions and those in the bottom square are for-

getful 2-functors. We shall deal with two types of liftings, one involving only strict algebras (Def-

inition 6.1) and another one involving both strict algebras and pseudoalgebras (Definition 6.2).

We begin by defining the simpler type of lifting, involving only strict algebras.

Definition 6.1. A lifting of T to strict algebras for S, denoted

S-AlgC
T̄

//

U

✏✏

S-AlgD

U

✏✏

C

T

//

D ,

consists of

• a strict algebra structure on TA, for every A 2 S-AlgC ;
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• a pseudomorphism structure on f

⇤
: TA ! TB, for every pseudomorphism f : JA ! TB;

• a pseudomorphism structure on i

A

: JA ! TA, for every A 2 S-AlgC ;

such that

• µ

f,g

: (g

⇤
f)

⇤
! g

⇤
f

⇤
is an algebra 2-cell for every pair of pseudomorphisms f : JA ! TB

and g : JB ! TC;

• ⌘

f

: f ! f

⇤
i

A

is an algebra 2-cell for every pseudomorphism f : JA ! TB;

• ✓

A

: i

A

⇤
! 1

TA

is an algebra 2-cell for A 2 S-AlgC .

Note that a lifting of T to strict algebras gives immediately a relative pseudomonad

¯

T over the

pseudofunctor J : S-AlgC ! S-AlgD such that applying the forgetful 2-functors to the data of

¯

T returns the corresponding data of T . We shall give several examples of liftings of the relative

monad of presheaves to strict algebras for some 2-monads in Section 7. However, it is not useful

to work with liftings to categories of strict algebras for other 2-monads, since typically for a strict

algebra A there is no evident structure of strict algebra structure on TA. In order to address

this situation, we introduce the following definition.

Definition 6.2. A lifting of T to pseudoalgebras for S, denoted

S-AlgC
T̄

//

✏✏

Ps-S-AlgD

✏✏

C

T

//

D

consists of the following data:

• a pseudoalgebra structure on TA, for every A 2 S-AlgC ;
• a pseudomorphism structure on f

⇤
: TA ! TB, for every pseudomorphism f : JA ! TB;

• a pseudomorphism structure on i

A

: JA ! TA, for every A 2 S-AlgC ;

such that

• µ

f,g

: (g

⇤
f)

⇤
! g

⇤
f

⇤
is an algebra 2-cell for every pair of pseudomorphisms f : JA ! TB

and g : JB ! TC;

• ⌘

f

: f ! f

⇤
i

A

is an algebra 2-cell for every pseudomorphism f : JA ! TB;

• ✓

A

: i

A

⇤
! 1

TA

is an algebra 2-cell for every A 2 S-AlgC .

Similarly to what happened for liftings to strict algebras, a lifting of T to pseudoalgebras

gives a relative pseudomonad

¯

T , but now over the pseudofunctor J : S-AlgC ! Ps-S-AlgD, again
suitably related to

¯

T via the appropriate forgetful 2-functors. Note here that for the inclusion

J : Cat ! CAT, the corresponding inclusion J : S-AlgCat ! Ps-S-AlgCAT is not merely about

size distinction, but involves both strict algebras and pseudoalgebras. Indeed, the notion of a

relative pseudomonad was designed to encompass these situations as well.

Our next goal is to show how a lifting of a relative pseudomonad T gives rise to a pseudomonad

on the Kleisli bicategory of T . In the one-dimensional situation, such a step commonly involves

passing via a distributive law [6]. In our setting, where we are dealing with both coherence and

size issues, such an approach would be rather complicated, as one would have to adapt the theory

of pseudo-distributive laws [34, 49, 50] to relative pseudomonads. However, it is possible to take

a more direct approach.

Theorem 6.3. Assume that T has a lifting to either strict algebras or pseudoalgebras for S.

Then S has an extension to a pseudomonad

˜

S : Kl(T ) ! Kl(T ) on the Kleisli bicategory of T .

Proof. We only deal with the case of a lifting to pseudoalgebras, since the case of lifting to

strict algebras is completely analogous. First, we consider the relative pseudomonad

¯

T over
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J : S-AlgC ! Ps-S-AlgD and its Kleisli bicategory Kl(

¯

T ). The objects of Kl(

¯

T ) are strict algebras

with underlying object in C, and its hom-categories are given by

Kl(

¯

T )[A,B] = Ps-S-AlgD[JA, TB] .

Secondly, we observe that there is a forgetful pseudofunctor U : Kl(

¯

T ) ! Kl(T ), defined on

objects by sending a strict algebra to its underlying object. To define the action on hom-

categories, let A,B 2 S-AlgC . Then, the required functor is determined by the diagram

Kl(

¯

T )[A,B]

UA,B
//

Kl(T )[A,B]

Ps-S-Alg[JA, TB]

UA,B

//

D[JA, TB] .

We claim that U has a left pseudoadjoint. The action of the left pseudoadjoint on objects is

defined by sending X to SX, the free pseudoalgebra on X (which is in fact a strict algebra since

S is a 2-monad). Next, for X 2 C, we define morphisms ẽ

X

: X ! SX in Kl(T ) as the composite

JX

eX
//

SJX = JSX

iSX
//

TSX

in D. We wish to show that these are suitably universal. For this, let us observe that the diagram

Kl(T )[X,A] Kl(

¯

T )[SX,A]

U(�)�ẽX
oo

Ps-S-AlgD[JSX, TA]

D[JX, TA] Ps-S-AlgD[SJX, TA]

U(�) eX

oo

(6.2)

commutes up to natural isomorphism, since if f : SJX ! TA is a pseudomorphism, then

f � ẽ

X

= f

⇤
ẽ

X

= f

⇤
i

SX

e

X

⇠

=

f e

X

.

Since the horizontal arrow at the bottom of (6.2) is an equivalence, we have the desired univer-

sality of the morphism ẽ

X

. Now that we have a pseudoadjunction

Kl(T )

F

//

? Kl(

¯

T ) ,

U

oo

we obtain the desired extension

˜

S as the pseudomonad associated to this pseudoadjunction. ⇤

We conclude this section by showing how to compose a relative pseudomonad and a 2-monad.

Theorem 6.4. Assume that T admits a lifting to pseudoalgebras of S. Then the function sending

X 2 C to TS(X) 2 D admits the structure of a relative pseudomonad over J : C ! D.

Proof. First, recall that, by Theorem 4.4, we have a relative pseudoadjunction

Kl(T )

G

T

✏✏

C

F

T
<<

J

//

D .

(6.3)
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Secondly, let us consider the pseudomonad

˜

S : Kl(T ) ! Kl(T ) constructed in the proof of The-

orem 6.3 and its associated Kleisli bicategory Kl(

˜

S). Applying again Theorem 4.4, this time in

the case of an ordinary pseudomonad, we have a pseudoadjunction

Kl(T )

F

S̃
//

? Kl(

˜

S) .

G

S̃

oo

(6.4)

By Proposition 4.6, we can then compose the pseudoadjunctions in (6.3) and the relative pseu-

doadjunction in (6.4) so as to obtain a new relative pseudoadjunction

Kl(

˜

S)

G

T
G

S̃

✏✏

C

F

S̃
F

T
==

J

//

D .

By Theorem 3.8 we then obtain a relative pseudomonad over J : C ! D. Unfolding the defini-

tions, one readily checks that the underlying function of this relative pseudomonad sends X 2 C

to TS(X) 2 D, as required. ⇤

7. Substitution monoidal structures

We apply our results to obtain a homogeneous method for extending several 2-monads from the

2-category Cat of small categories and functors to the bicategory Prof of small categories and

profunctors, encompassing all the examples considered in the theory of variable binding [24, 55,

61], concurrency [13], species of structures [23], models of the di↵erential �-calculus [21], and

operads [25].

The simplest examples of liftings for the relative pseudomonad for presheaves are with respect

to 2-monads on CAT whose strict algebras are locally small categories equipped with suitable

classes of limits. These 2-monads are co-lax, as discussed in [37]. The specific examples of

2-monads that we consider here are those for categories with terminal object, categories with

chosen finite products (by which we mean categories with chosen terminal object and binary

products) and categories with chosen finite limits (by which we mean categories with chosen

terminal object and pullbacks). Each of these 2-monads is flexible in the sense of [9, 10] and

restricts along the inclusion J : Cat ! CAT to a 2-monad on the 2-category Cat of small

categories, so as to determine a situation as in (6.1). We speak of small (or locally small) strict

algebras to indicate small (or locally small) categories equipped with a strict algebra structure.

We make some preliminary observations about the pseudomorphisms (cf. (2.1)) in the cases

under consideration. Since limits are determined up to a unique isomorphism, the pseudomor-

phisms are exactly the functors that preserve the specified limits in the usual up to isomor-

phism sense: the coherence conditions for a pseudomorphism are automatic [37]. Similarly, one

sees directly that any 2-cell between functors preserving the relevant limits is an algebra 2-cell.

In the terminology of [37], these 2-monads S are fully property-like. It follows in particular

that S-AlgCAT[A,B] can be regarded as a full subcategory of CAT[A,B]. All this is in fact

an abstract consequence of the fact that the 2-monads in question are all co-lax. That fact is

evident and the general theory appears in [37].

Theorem 7.1. Let S : CAT ! CAT be the 2-monad for categories with terminal object, or

categories with finite products, or categories with finite limits. Then the relative pseudomonad of

presheaves P : Cat ! CAT has a lifting to strict S-algebras,

¯

P : S-Alg(Cat) ! S-Alg(CAT) .
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Proof. Let us begin by observing that we have a choice of limits in Set, so for any X 2 Cat,
P (X) has chosen limits defined pointwise. Thus, there is a strict S-algebra structure on P (X).
Furthermore, the Yoneda embedding yX : X ! P (X) preserves those limits. Hence, if A 2

S-AlgCat is a small strict algebra, then yA : A ! P (A) is a pseudomorphism of S-algebras in an

evident fashion. Composition with yA thus gives us a functor

S-AlgCAT[A, P (B)] S-AlgCAT[P (A), P (B)] .
(�) yA

oo

Now, suppose that F : A ! P (B) is a pseudomorphism, that is to say, F preserves the relevant

limits. Then the left Kan extension F

⇤
: P (A) ! P (B) also preserves these limits. This is critical,

and for the separate classes of limits needs to be proved on a case by case basis. The case when

S is the 2-monad for a terminal object is simple. If F preserves the terminal, then so does F

⇤
yA

(being naturally isomorphic to F ). But the Yoneda yA : A ! P (A) preserves the terminal object,

and hence so does F

⇤
. The case when S is the 2-monad for finite products can be seen as a

corollary of the results in [31] (see also Theorem 7.3), but we provide a direct argument. Suppose

that F and hence F

⇤
yA preserves finite products. As the Yoneda yA : A ! P (A) preserves finite

products, F

⇤
preserves finite products of representables. But the objects of P (A) are colimits of

representables. Since F

⇤
and products with objects (are left adjoints and so) preserve colimits, it

follows that F

⇤
preserves finite products. Finally, the case when S is the monad for finite limits

is similar, though in this case the result is standard. If A has finite limits and F : A ! P (B)
preserves finite limits, then F is flat [42, §VII.10, Corollary 3] and hence F

⇤
preserves finite

limits.

Thus, in each case, F

⇤
is a pseudomorphism of strict S-algebras; and, as we observed above,

any 2-cell between pseudomorphisms will be an algebra 2-cell. Hence, the left Kan extension

gives us a functor

S-AlgCAT[A, P (B)]
(�)⇤

//

S-AlgCAT[P (A), P (B)] .

Now we exploit the fact that the relative pseudomonad for presheaves is lax idempotent

(see Example 5.4). So we have an adjunction

CAT[A, P (B)]
(�)⇤

//

? CAT[P (A), P (B)] .
(�) yA

oo

(7.1)

We observed that S-Alg[A, P (B)] and S-Alg[P (A), P (B)] are full subcategories of CAT[A, P (B)]
and CAT[P (A), P (B)], and it is clear from the above discussion that this adjunction restricts to

an adjunction

S-AlgCAT[A, P (B)]
(�)⇤

//

? S-AlgCAT[P (A), P (B)] .
(�) yA
oo

In view of Theorem 5.3, the claim is proved. ⇤

Remark 7.2. With the experience of these examples of liftings, it is easy to give examples of

2-monads which do not lift as above.

• Consider the 2-monad for a category with zero object (i.e. an object which is both terminal

and initial). No category of presheaves of sets over a non-empty category has a zero object.

So the 2-monad cannot lift. The same applies to the monad for direct sums or biproducts

(in the terminology of [41]).
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• Consider the 2-monad for a category with initial object. Given a category A with initial

object, while the presheaf category P (A) does indeed have an initial object, the Yoneda

embedding does not preserve it. Hence the 2-monad cannot lift.

• Consider the 2-monad for a category with equalisers. Given a category A with equalisers,

the presheaf category P (A) also has equalisers, and the Yoneda embedding yA : A ! P (A)
preserves them. But now suppose that A has equalisers and that F : A ! Set preserves

them. It does not follow that F

⇤
: P (A) ! Set preserves equalisers. For a counterexample

one can obviously just take A to be the fork (i.e. the generic equaliser). Then for example

take F : A ! Set mapping the parallel pair to the identity and twist on 2 with equaliser 0.

Because of this failure it follows that the 2-monad cannot lift.

Next, we consider 2-monads associated with various notions of monoidal category. To start

with, we consider 2-monads which are flexible in the sense of [9, 10] and we have again a situation

as in (6.1).

Theorem 7.3. Let S : CAT ! CAT be the 2-monad for monoidal categories, or symmetric

monoidal categories, or monoidal categories in which the unit is a terminal object, or symmet-

ric monoidal categories in which the unit is a terminal object. The relative pseudomonad of

presheaves P : Cat ! CAT has a lifting to strict S-algebras,

¯

P : S-AlgCat ! S-AlgCAT .

Proof. The base case is that of a monoidal category. We discuss that case and derive the others.

We use the analysis in [31] of the univeral property of Day’s convolution tensor product [18]. We

writeMon (respectively, MON) for the 2-category of small (respectively, locally small) monoidal

categories, strong monoidal functors and monoidal natural transformations. For cocomplete

categories A, B, a functor F : A ⇥ B ! C is separately cocontinuous if for every a 2 A, b 2 B
both F (a,�) : B ! C and F (�, b) : A ! C are cocontinous. We write COC[A,B;C] for the

category of such functors and natural transformations between them. A cocomplete category A
equipped with a monoidal structure is monoidally cocomplete if the tensor product is separately

cocontinuous. We then have a straightforward 2-category MONCOC of monoidally cocomplete

locally small categories, strong monoidal cocontinuous functors, and monoidal transformations.

In [18] Day showed how for any small monoidal category A, the category P (A) of presheaves
on A can be equipped with a monoidal structure, called the convolution tensor product, which

makes P (A) into a biclosed monoidally cocomplete category, defined by letting

(F1 ˆ⌦F2)(a) =def

Z
a1,a22A

F1(a1)⇥ F2(a2)⇥ A[a, a1 ⌦ a2]

for F1, F2 2 P (A) and a 2 A. Furthermore, the Yoneda embedding yA : A ! P (A) has then the

structure of a strong monoidal functor. For A 2 Mon and B 2 MONCOC, we have the adjoint

equivalence obtained in [31]

MON[A,B]
(�)⇤

//

? MONCOC[P (A),B] ,
(�) yA

oo

(7.2)

as required. In particular, for any A ,B 2 Mon, we have an adjoint equivalence

MON[A, P (B)]
(�)⇤

//

? MONCOC[P (A), P (B)] .
(�) yA

oo
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In our terminology, the adjoint equivalences in (7.2) amount to saying that we have a relative

pseudoadjunction

MONCOC

✏✏

Mon //

P

88

MON .

This provides exactly a lifting of the relative pseudomonad P : Cat ! CAT to a relative pseu-

domonad

¯

P : S-AlgCat ! S-AlgCAT. All these considerations extend to symmetric monoidal

categories, again by the results in [18, 31]. For the 2-monads for monoidal categories with the

condition that the unit is terminal, the lift follows from the above, observing that the unit of the

convolution monoidal structure is the Yoneda embedding of the unit on the base category and

so it remains a terminal object. ⇤
Our final group of examples of a lifting involve 2-monads on CAT which are not flexible. In

this case, we have a lifting to pseudoalgebras in the sense of Definition 6.2.

Theorem 7.4. Let S : Cat ! Cat be the 2-monad for either strict monoidal categories, or

symmetric strict monoidal categories, or strict monoidal category in which the unit is termi-

nal, or symmetric strict monoidal categories in which the unit is terminal. Then the relative

pseudomonad P : Cat ! CAT has a lifting to pseudo-S-algebras,

¯

P : S-AlgCat ! Ps-S-AlgCAT .

Proof. There is a direct and an indirect approach to this. Directly, one follows through the

arguments of the previous section making the necessary adjustments. Indirectly, observe that

in each case S

0
, the flexible 2-monad associated to S, is the 2-monad whose strict algebras are

categories with unbiased structure (in the sense of [46]) as in the list in Theorem 7.3. Now

S-Alg is a full sub-2-category of S

0
-Alg

⇠

=

Ps-S-Alg. So the lifting of the relative pseudomonad

of presheaves P : Cat ! CAT to

¯

P : S

0
-Alg(Cat) ! S

0
-Alg(CAT) restricts to S-Alg(Cat) !

S

0
-Alg(Cat). ⇤

Corollary 7.5. All the 2-monads on Cat listed in Theorems 7.1,7.3, and 7.4 admit an extension

to pseudomonads on Prof .

Proof. Immediate consequence of Theorem 6.3 and Theorems 7.1, 7.3, and 7.4. ⇤
For each of the monads S : Cat ! Cat above, one can consider the Kleisli bicategory as-

sociated to the pseudomonad

˜

S : Prof ! Prof determined by Corollary 7.5. The composition

functors of these Kleisli bicategories can be understood as generalizations of various kinds of sub-

stitution monoidal structures [22, 23, 24, 25, 27, 36, 57], among those giving rise to the notions of

a many-sorted Lawvere theory and of a coloured operad. We conclude the paper by illustrating

this idea in the case of coloured operads.

Example 7.6. As an illustration of the theory developed here, we revisit the construction of the

bicategory of generalized species of structures of [23] and relate more precisely its composition

with the substitution monoidal structure for coloured operads [4] (see also [20]). For this, let us

begin by recalling the definition of the 2-monad S : Cat ! Cat for symmetric strict monoidal

categories. Let X 2 Cat. For n 2 N, define S

n

(X) to be the category having as objects n-tuples

x̄ = (x1, . . . , xn

) of objects x

i

2 X and as morphisms (�,

¯

f) : x̄ ! x̄

0
given by pairs consisting of

a permutation � 2 ⌃

n

and an n-tuple of morphisms f

i

: x

i

! x

0
�(i). We then let

S(X) =def

G

n2N
S

n

(X) .
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The category S(X) is equipped with a strict symmetric monoidal structure: the tensor product,

written x̄ � x̄

0
, is given by concatenation of sequences, and the unit is given by the empty

sequence; the symmetry is given by a permutation of identity maps. This definition can be

extended easily to obtain a 2-functor S : Cat ! Cat. The multiplication of the monad is given

by taking a sequence of sequences and forgetting the bracketing, while the unit has components

eX : X ! S(X) mapping x 2 X to the singleton sequence (x) 2 S(X). By the theory developed

above, and Corollary 7.5 in particular, we obtain a pseudomonad

˜

S : Prof ! Prof . (7.3)

For our purposes, it is convenient to describe explicitly the relative pseudomonad associated to

˜

S.

Its action on objects is the function mapping X 2 Cat to S(X) 2 Cat. The component of the

unit for X 2 Cat is the profunctor ẽX : X ! S(X) corresponding to the functor

X eX
//

S(X)
yS(X)

//

PS(X) .

The extension functors of the relative pseudomonad have the form

(�)

]

: Prof [X, S(Y)] ! Prof [S(X), S(Y)] ,

where X,Y are small categories. For a functor F : X ! PS(Y), we can define the functor

F

]

: S(X) ! PS(Y) recalling that, since S(Y) has a symmetric strict monoidal structure, PS(Y)
has an unbiased (in the sense of [46]) symmetric monoidal structure. Hence, by the universal

property of S(X), we have an essentially unique F

]

fitting into a diagram of the following form:

X eX
//

F

++

⇠=

S(X)

F

]

✏✏

PS(Y) .

For brevity, we omit the description of the invertible natural transformations

⌘

F

: F ) F

]

� ẽX , µ

F,G

: (G

]

� F )

]

) G

]

� F

]

, X : (ẽX)
]

) IdX .

The Kleisli bicategory of

˜

S is the bicategory S-Prof of S-profunctors defined in [25], which has

small categories as objects and hom-categories defined by

S-Prof [X,Y] = Prof [X, S(Y)] = CAT[S(Y)op ⇥ X,Set] .

Indeed, one can readily check that composition and identity morphisms of S-Prof , as defined

in [25], coincide with those given by instantiating the general definition of a Kleisli bicategory.

Following [25], we write CatSym for the bicategory of categorical symmetric sequences, which

is defined as the opposite of S-Prof . Thus, the objects of CatSym are small categories and its

hom-categories are given by

CatSym[X,Y] =def S-Prof [Y,X] = CAT[S(X)op ⇥ Y,Set] .

We write F [x̄; y] for the result of applying F : S(X)op ⇥ Y ! Set to (x̄, y) 2 S(X)op ⇥ Y. Given

categorical symmetric sequences F : X ! Y and G : Y ! Z, i.e. functors F : S(X)op ⇥ Y ! Set
and G : S(Y)op ⇥Z ! Set, their composite G �F : X ! Z in CatSym is given by considering F

and G as S-profunctors in the opposite direction, taking their composition in S-Prof using the

definition of composition in a Kleisli bicategory, and then regarding the result as a categorical
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symmetric sequence from X to Z. Explicitly, one obtains that

(G � F )(x̄; z) =def

G

m2N

Z (y1,...,ym)2Sm(Y)
G[y1, . . . , ym; z]⇥

Z
x̄12S(X)

· · ·

Z
x̄m2S(X)

F [x̄1; y1]⇥ . . .⇥ F [x̄

m

; y

m

]⇥ S(X)[x̄, x̄1 � . . .� x̄

m

] . (7.4)

Happily, this formula yields the definition of the substitution monoidal structure for coloured

operads given in [3] by considering the special case where X and Y are discrete and coincide with

a fixed set of colours of the coloured operads under consideration.

The bicategory CatSym can be seen to be equivalent to the bicategory of generalized species

of structures Esp previously introduced in [23]. To see this, let us recall the definition of Esp.
For this, observe that the duality pseudofunctor (�)

?
: Prof ! Prof defined by X?

=def Xop

allows us to turn this pseudomonad in (7.3) into a pseudocomonad. The bicategory Esp is then

defined as the co-Kleisli bicategory of this pseudocomonad. More explicitly, its objects are small

categories and its hom-categories are given by

Esp[X,Y] = Prof [S(X),Y] = CAT[Yop
⇥ S(X),Set] .

The bicategory Esp is then equivalent to CatSym, via the pseudofunctor that sends X to Xop
.

Indeed,

CatSym[X,Y] = CAT[S(Xop
)⇥ Y,Set] ⇠

=

[Y⇥ S(X)op,Set] ⇠
=

Esp[Xop
,Yop

] .

Furthermore, the composition operation of categorical symmetric sequences defined in (7.4) cor-

responds exactly to composition of generalized species of structures defined via co-Kleisli com-

position given in [23].
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[65] V. Zöberlein. Doktrinen auf 2-Kategorien. PhD thesis, University of Düsseldorf, 1974.

Computer Laboratory, University of Cambridge

E-mail address: Marcelo.Fiore@cl.cam.ac.uk

School of Mathematics, University of Leeds

E-mail address: n.gambino@leeds.ac.uk

DPMMS, University of Cambridge

E-mail address: m.hyland@dpmms.cam.ac.uk

Computer Laboratory, University of Cambridge

E-mail address: Glynn.Winskel@cl.cam.ac.uk


