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1 Introduction

Lawvere theories are a category-theoretic formulation of universal algebra for
which the notion of operation is primitive. Unlike universal algebra, the notion
of Lawvere theory is presentation-independent, i.e., the category of models de-
termines the theory uniquely up to coherent isomorphism. The concept has
proved to be particularly fruitful, generalising to the study of finite limit the-
ories and beyond [2,3]. It corresponds to the study of finitary monads on the
category Set, but its definition is more in the spirit of universal algebra, the
notion of Lawvere theory being essentially an axiomatisation of the notion of
a clone of an equational theory.

Denotational semantics is less concerned with sets with structure than it is
with w-cpo’s with structure, as the latter allow for an account of partiality
and recursion. So one would like to extend the notion of, and results about,
Lawvere theories to include w-cpo’s. Many results, several of them explained
herein, can be extended axiomatically by reference to enriched Lawvere the-
ories [32] with enrichment in the category V = wCpo: to allow for recursion,
one needs to replace finitariness assumptions by countability assumptions, but
that amounts to a minor technical adjustment.

As we shall explain in Section 3, if V' is locally countably presentable as a
symmetric monoidal closed category, e.g., V is wC'po or Set or Poset or Cat, a
countable Lawvere V-theory is a small V-category L with countable cotensors,
which we shall define, together with an identity-on-objects strict countable
cotensor preserving V-functor from Vi to L, where Vg, is a skeleton of the
full sub-V-category of V determined by the countably presentable objects of
V. A model of L in a V-category C with countable cotensors is a countable
cotensor preserving V-functor from L to C. Extending the result for ordinary
Lawvere theories, countable Lawvere V-theories correspond to V-monads on
V' with countable rank.

Taking V' to be Set in the definition of countable Lawvere V-theory, we re-
cover a countable version of the usual notion of Lawvere theory, together with
its associated body of theory. Taking V' to be Cat, enrichment yields a body
of theory for categories with equational structure such as finite or countable
product structure, finite or countable limit structure, finite or countable co-
product structure, and various forms of monoidal structure. It is similarly
fruitful where V' is Poset or wCpo or any number of other naturally arising
base categories. In this paper, which is oriented towards computer science, we
focus on the example of V' being wCpo.

The category Law of Lawvere theories has sums, a tensor, and a distributive
tensor. These constructs appear widely in both mathematics and computer



science. The sum and the tensor of Lawvere theories enrich without fuss,
yielding an account of the two most common ways of combining computa-
tional effects [10,11]. In contrast, the notion of distributive tensor does not
routinely enrich, but it too plays a prominent role in combining effects. For
instance, in combining probabilistic nondeterminism with ordinary nondeter-
minism, the operator for probabilistic nondeterminism distributes over the
operator for nondeterminism, as described implicitly in [23], see also [35,36].
And in combining internal and external nondeterminism, each operator dis-
tributes over the other [7]. So in this paper, we modify the notion of enriched
Lawvere theory so that, while continuing to include our leading examples of
computational effects, and while continuing to admit the constructions and
characterisations of the sum and tensor product of enriched Lawvere theories,
we can incorporate an enriched account of the distributive tensor, extend-
ing our two leading examples of it. In doing so, fortuitously, we also include
an account of the image, which exists for ordinary Lawvere theories but not
for enriched theories in general: the image allows us to take operations and
observations, rather than operations and equations, as primitive notions in
analysing computational effects [33]. In general, our analysis builds upon and
extends the ideas of [10,11,28-30], which began to develop a unified semantics
for modelling the operations associated with computational effects. Note that
our analysis here does not, a priori, include continuations, but some of it can
be extended to do so [9].

There is a very general setting for our analysis that is yet to be investigated
and that we do not study here. The situation might best be explained by anal-
ogy. One has long had a notion of monoid, given by a set M together with an
associative binary multiplication - with left and right unit e. But the theory
of monoids is perhaps best understood by generalising from Set to an ax-
iomatically given monoidal category C. The structure of a monoidal category
mirrors that of a monoid but at one higher dimension; it provides a partic-
ularly natural setting in which to define and analyse the notion of monoid;
and it allows a treatment of constructs such as that of a ring, which is exactly
a monoid in the monoidal category Ab of abelian groups. Such a construct
exists here too: there is a higher-dimensional version of the notion of distribu-
tive tensor that mirrors the ordinary definition but at one higher dimension;
and it provides a natural setting in which to define and analyse the notion of
distributive tensor. But, in contrast to the situation for monoids, we do not
have any compelling example of that higher-dimensional structure beyond a
canonical one determined by standard operations on countable numbers. So
we do not develop the higher dimensional structure in this paper, but rather
we restrict ourselves to studying its leading instance: and that yields what we
call a discrete countable Lawvere V-theory.

For a discrete countable Lawvere V-theory, L is still a small V-category, but
it comes equipped with an identity-on-objects functor from a skeleton of R{”



rather than from V”, so an object of L is either a natural number or is g
rather than being an arbitrary countably presentable object of V' such as Sier-
pinski space when V is Poset. Taking V' to be Set, we recover the notion of
countable Lawvere V-theory. In contrast, when V is C'at, the restriction from
V-theories to discrete countable Lawvere V-theories is substantial, cutting
out examples such as those involving limits and colimits. When V' is Poset
or wC'po, one loses some examples but taps into an already existing body of
logical theory, primarily developed by Jose Meseguer over several decades [22].
In particular, when V' is wCpo, discrete countable Lawvere V-theories still in-
clude the bulk of the structures that appear in practice, including all those of
primary interest in analysing computational effects [10,11], except for contin-
uations, which are not included in [10,11] anyway. There is a sense in which
the correspondence between Lawvere theories and monads extends to one be-
tween discrete Lawvere theories and a kind of monads, but that occurs more
by fiat than by a natural condition on the definition of monad [18]. In Sec-
tion 3, we develop the definition of discrete countable Lawvere V-theory, and
in Sections 4 and 5, we analyse sum and tensor in this context, checking that
they agree with those for arbitrary Lawvere V-theories.

The central reason for introducing discrete Lawvere V' -theories is to define and
analyse a distributive tensor of V-theories extending that for ordinary Lawvere
theories. So we define the notion in Section 6. We want not only a definition
of distributive tensor but also a universal characterisation of it. The natural
universal characterisation is subtle, involving an enriched definition of operad.
If L is finitary and L’ is commutative, as is the case for our leading examples of
distributivity, subject to cartesianness restrictions on the base and enriching
categories, we can give stronger results than are possible in full generality,
developing a relationship with the theory of monads. So we characterise the
distributive tensor under these restricted assumptions in Section 7 and we give
a somewhat more complicated characterisation in full generality in Section 8.

Finally, in Section 9, we analyse the construction of an image: the image exists
for ordinary Lawvere theories but not for enriched ones. But it does exist
for finitary discrete Lawvere V-theories. Its significance is in allowing one to
take operations and observations, rather than operations and equations, as
primitive in defining computational effects.

We use Kelly’s book [16] as the source book for all definitions and notation
for enriched categories, with [17] being the basic text for locally presentable
V-categories. This paper is an extended version of the conference paper [34],
the main new work appearing in Sections 7 and 8.



2 Enriched Lawvere Theories

In this section, we recall the notions of Lawvere theory and enriched Law-
vere theory and one strand of thought that motivates their use in computer
science. The work in this section is adapted from [10,11], which in turn was
motivated by the desire for a more profound formulation of Moggi’s unification
of computational effects as monads in [24,25].

Definition 1 A Lawvere theory consists of a small category L with finite
products together with a strict finite product preserving identity-on-objects
functor I : Nat® — L, where Nat is the category of all natural numbers
and maps between them [2,3]. A model of a Lawvere theory L in a category C
with finite products is a finite-product preserving functor from L to C.

Implicit in the definition is the fact that the objects of L are exactly the
natural numbers. The definition provides a category theoretic formulation of
universal algebra, with the notion of operation taken as primitive: a map in L
from n to m is understood as being given by m operations of arity n. Unlike
the notion of equational theory, the concept of Lawvere theory is presentation-
independent, i.e., if a pair of Lawvere theories have equivalent categories of
models, the two theories are isomorphic.

The definition of model extends to the definition of the category Mod(L,C)
of models of L in any category C' with finite products: maps of models are
defined to be natural transformations. Note that naturality forces maps of
models to respect the product structure in the definition of model. Observe
also that we do not demand strict preservation in the definition of model: to
do so would eliminate many of the leading examples [31]!

For any Lawvere theory L and any locally finitely presentable category C', the
functor ev; : Mod(L,C) — C has a left adjoint, inducing a monad 77y, on C:
we shall return to this later in the section.

The usual way in which one obtains Lawvere theories is by means of sketches,
with the Lawvere theory given freely on the sketch: Barr and Wells’ book [3]
treats sketches in loving detail and gives a range of examples of both sketches
and Lawvere theories. To give a sketch for a Lawvere theory amounts to giving
operations and universally defined equations, i.e., an equational theory. The
Lawvere theory is an axiomatisation of the notion of the clone of an equational
theory, equivalently of a sketch.

Example 2 The Lawvere theory Lg for exceptions is the free Lawvere theory
generated by an E-indexed family of nullary operations with no equations.
The monad on Set induced by Lg is Ty = — + E. More generally, if C is
any category with finite powers and sums then Mod(Lg,C) is equivalent to



the category of algebras for the monad — + E where E is the E-fold copower
of 1, i.e., [1p 1.

Interactive input/output works similarly to exceptions [11], so we omit de-
tails. For the next example, we use the evident generalisation of the notion
of Lawvere theory to countable Lawvere theory as used in [10,11] and as we
shall make precise shortly: it allows us to use countable arities.

Example 3 The countable Lawvere theory Lg for side-effects, where S =
VL is the free countable Lawvere theory generated by the operations lookup:
V. — L and update : 1 — L X V subject to seven natural equations as
follows [30]: with lookup corresponding to the logical symbol | and with update
corresponding to u, the equations can be expressed syntactically as

(1) lloc(uloc,v(m))v =

(2) lloc(lloc(tvv’)v)v’ = lloc(tvv)v

(3) Uloc,v (U'loc,v’ (iE)) = Ujoc,v (.I)

(4) uloc,v(lloc(tv')v’) = U'loc,v(tv)

(5) lloc(lloc’ (tvv’)v’)v = lloc’(lloc(tm)')v)v’ where loc 7é lOCI
(6) ioen(Uioe v () = Utoer v (Uioew () where loc # loc
(7) ioew(lioe (T )or) = lioer (Uioew (ter)) o where loc # loc'.

These are expressed both as equations and diagrammatically in [30], where
it s shown that Lg induces the side-effects monad. More generally, if C 1is
any category with countable powers and copowers then, slightly generalising
the result in [30], Mod(Lg,C) is equivalent to the category of algebras for the
monad (S x —)5 where we write (S x —) for the S-fold copower [1g —, and
(—)% for the S-fold power []g —.

Example 4 The Lawvere theory Ly for (binary) nondeterminism is the Law-
vere theory freely generated by a binary operation V:2 — 1 subject to equa-
tions for associativity, commutativity and idempotence, i.e., the Lawvere the-
ory for a semilattice. The induced monad on Set is the finite non-empty subset

monad, FT, cf [8,26,27].

Example 5 The Lawvere theory Lp for probabilistic nondeterminism is that
freely generated by [0, 1]-many binary operations +, : 2 — 1 subject to the
equations for associativity, commutativity and idempotence in [6]. The induced
monad on Set is the distributions with finite support monad, Dy, cf [13,14].

In denotational semantics, one is not primarily interested in sets but rather
in w-cpo’s, as the latter may be used to account for recursion. We therefore
seek to generalise the study of Lawvere theories from sets to w-cpo’s. This
may be done axiomatically by recourse to the notion of a countable enriched
Lawvere theory and considering the example of enrichment in the category of
w-cpo’s [10,11,32]. Countability is essential to account for recursion, as seen



for instance in studying side-effects.

Axiomatically, the details are as follows. We first assume our base category V' is
locally countably presentable as a symmetric monoidal closed category [1,16,17].
For the purposes of this paper, we do not require a definition of that: we simply
need to know that the categories Set, Poset, wCpo and Cat are all examples.
In all those examples, the relevant symmetric monoidal closed structure is, in
fact, cartesian closed structure. So we shall assume that when convenient.

The least obvious point to note when enriching Lawvere theories is that the
notion of countable product of a single generator does not generalise most
naturally to a notion of countable product but rather to a notion of countable
cotensor [16]. The notion of cotensor is the natural enrichment of the notion
of a power-object. Given an object x of a category C' and a set A, the A-fold
power z4 satisfies the defining condition that there is a bijection of sets

Cly,z") = C(y,z)"

natural in y. This enriches to the notion of cotensor as follows.

Definition 6 Given an object x of a V-category C and given an object a of

V', the cotensor x® satisfies the defining condition that there is an isomorphism
inV

C(y,z") = C(y,x)*

V-natural in y. The cotensor x® is called countable if a is a countably pre-
sentable object of V.

When C' =V, x® is the exponential in V.

Example 7 Taking V to be Poset, the notion of cotensor allows us not only
to consider objects such as xxXx (= x?) in a locally ordered category, but also to
consider objects such as <, where < is Sierpinski space, the two point partial
order | < T. This possibility allows us, in describing Poset-theories, not only
to retain countable products but also to consider a greater range of arities and,
in particular, to incorporate inequations. For the latter, suppose one wishes
to say that f < g for two morphisms f,q:x — y; this is accomplished by
introducing a third morphism h:x — y= and asserting the equations f = y~oh
and g = y"-h, where L and T are the two evident maps from 1 to <. Observe
that y< only appears here as a codomain of an operation, not as a domain
of one. Poset-enriched Lawvere theories are at the heart of Ghani and Lith’s
work on term rewriting systems in [5].



In order to enrich the definition of Lawvere theory, we need not only the notion
of a cotensor, but also its dual, i.e., tensor. Given an object x of a C-category
C and given an object a of V| the tensor a ® x is precisely given by taking
the cotensor in the V-category C°. The tensor is called countable if a is a
countably presentable object of V. When C' =V, the tensor a ® = agrees with
the monoidal structure of V.

Define Vi, to be a skeleton of the full sub-V-category of V' determined by
the countably presentable objects of V. It is equivalent to the free V-category
with countable tensors on 1 [16,32].

Definition 8 A countable Lawvere V-theory is a small V-category L with

countable cotensors together with a strict countable-cotensor preserving identity-
on-objects V-functor I:VyY — L. A map of countable Lawvere V -theories

from L to L' is a strict countable-cotensor preserving V -functor from L to L'

that commutes with I and I'. A model of L in a V -category C with countable

cotensors is a countable-cotensor preserving V -functor M :L — C.

Routinely generalising the unenriched case, for any countable Lawvere V-
theory L and any V-category with countable cotensors C, we have a V-
category of models of L in C, Mod(L,C); the homobjects are given by ho-
mobjects of all V-natural transformations [16], and the V-naturality condi-
tion implies they respect countable cotensors. There is a canonical forgetful
V-functor Uy, from Mod(L,C) to C given by evaluation at the unit of V,
which necessarily lies in Vi, and hence in L. If the forgetful V-functor has a
left V-adjoint, as it does whenever C' is a locally presentable V-category, this
forgetful V-functor exhibits Mod(L,C) as equivalent to the V-category T'-
Alg for the induced V-monad 77, on C. We denote the category of countable
Lawvere V-theories by Lawy .

To give a V-enriched V-monad is equivalent to giving a strong monad on
V' [21]. So, in order to make the comparison with Moggi’s unified account of
computational effects as modelled by strong monads a little more direct, we
express the main abstract result of [32] in terms of strong monads.

Theorem 9 If V' is locally countably presentable as a symmetric monoidal
closed category, the construction of Ty, from L induces an equivalence of cat-
egories between the category of countable Lawvere V -theories on V and the
category of strong monads on V with countable rank. Moreover, the compar-

ison V-functor erhibits an equivalence between the V-categories Mod(L,V')
and Ty-Alg.

A common and important way to generate countable Lawvere V-theories is
by taking the free countable Lawvere V-theory on an unenriched countable
Lawvere theory. For instance, let V' be wCpo. Given an unenriched countable
Lawvere theory L, the free countable Lawvere wC'po-theory L, on L is gen-



erated by the operations and equations of L, but it has more objects as there
are countably presentable w-cpo’s other than flat ones, and these additional
objects generate additional maps. See [11] for details, but suffice it for here to
note that Examples 2, 3, 4 and 5 all thereby freely yield countable Lawvere
V-theories where V = wC'po.

For the leading example of a countable Lawvere V-theory that does not arise
freely from an unenriched countable Lawvere theory, let V' be wCpo and con-
sider nontermination.

Example 10 The countable Lawvere wCpo-theory Lq for nontermination is
the theory freely generated by a nullary operation 2:0 — 1 subject to the
condition that there is an inequality

where the unlabelled map is the unique map determined because 0 is the initial
object of Vy, and therefore the terminal object of ViT. The models of L in
wCpo are the w-cpo’s with a least element. The corresponding strong monad Tq
is the lifting construction (=), which adds a new least element. Observe that
there is at most one morphism from Lq to any other countable wCpo-theory
L, reflecting the fact that a least element is unique if it exists.

Adding a nontermination effect allows us to model recursion in the context of
wCpo. If we want to model other effects in addition to recursion, we have to
combine them with nontermination: switching to L, from L does not suffice
(see [11] for details). This generates for us many examples of countable Law-
vere V-theories that are not freely generated by unenriched ones: combining
any of Examples 2, 3, 4 and 5 with Example 10 as is invariably the case in
practice yields examples; the combinations can be given by fiat or may more
generally be seen as examples of the various ways in which one can combine
Lawvere theories that we investigate later in the paper.

3 Discrete Lawvere Theories

As we have seen, countable Lawvere V-theories, for V = wCpo, allow us to ac-
count for all the leading examples of computational effects other than continu-
ations. Moreover, they are closed under two constructions that model natural
ways in which computational effects are combined: sum and tensor [10,11].



But there are other constructions that may be made of countable Lawvere
theories in the original Set-based case, that do not exist for arbitrary count-
able Lawvere V-theories where V' = wC'po, but that do appear in combining
computational effects in practice. So we seek a refinement of the notion of
countable Lawvere V-theory to account for them.

In particular, as we shall discuss in Section 6, consider the operations of one
theory L distributing over those of another theory L', as appear in concur-
rency [7] and in the combination of nondeterminism and probabilistic non-
determinism [23]. The construction does not readily enrich. The problem lies
with the arities: an arbitrary countable Lawvere V-theory has arities that may
be any countably presentable objects of V', but the notion of distributivity a
priori only makes sense for arities that are sets (see Section 6 for details).

Lawvere V-theories also are not closed under taking the image of a model, as
one wants when taking observations as a primitive notion. We give an outline
of this in Section 9, cf [33]. Again, the problem lies with the arbitrariness of
the arities.

So in this section, we refine the notion of enriched Lawvere theory by restrict-
ing the arities to be sets, but still including all our examples, still allowing
us to take sum and tensor, but also allowing us to take a distributive tensor
and an image. This yields our notion of discrete Lawvere theory. Motivated
by recursion, we describe a countable rather than a finite version here.

The notion of discrete countable Lawvere theory lies between that of ordinary
countable Lawvere theory and that of countable Lawvere V-theory: in the
former, the arities are objects of N; and the homs are sets; in the latter, arities
are countably presentable objects of V' and the homs are objects of V'; but for
discrete countable Lawvere V-theories, we demand that the arities lie in N;
but allow the homs to be objects of V. The definition, using the notation we
have already established, is as follows. The underlying ordinary category of a
V-category C is denoted by Cy [16].

Definition 11 A discrete countable Lawvere V-theory is a small V -category
L with countable products and a strict countable-product preserving identity-
on-objects functor I : R?? — Lo. A map of discrete countable Lawvere V -
theories from L to L' is a (necessarily strict countable-product preserving)
V -functor from L to L' that commutes with I and I'. A model of L in a V-
category C with countable products is a countable product preserving V -functor
M : L — C. (Slightly more generally it suffices to have products of countably
many copies of the object X = M(1).)

So an object of a discrete countable Lawvere theory L is a countable ordinal,
the countable products of L are given by a choice of countable sum of the
countable ordinals, with projections given by the images of the corresponding

10



injections of the category N;. Just as for ordinary Lawvere theories, discrete
countable Lawvere theories are typically generated by sketches, as we shall
illustrate. We denote the category of discrete countable Lawvere V-theories
by D Lawy .

The definition of model extends, as before, to yield a natural V-category
Mod(L,C) of models of L in any V-category C' with countable products:
the homobjects are given by the usual internalisation to V of the set of all
V-natural transformations between models [16].

Let us consider, in concrete terms, what a model M of a discrete countable
Lawvere V-theory L in a V-category C' with countable products is. First, one
must send the object 1 to an object X of C. Since M preserves countable
products and since all objects of L are countable products of copies of 1, this
completely determines the behaviour of M on objects, indeed also on all maps
in R{”, up to coherent isomorphism. It remains to give the behaviour of M on
homs. That amounts to giving, for each a and b in Ny, a map in V' of the form

M,y : L(a,b) — C(X% X"

subject to preservation of identities and composition. So, in particular, if L is
freely generated by some sort of signature and equations, equivalently by some
generalised notion of sketch (see [20] for a general definition and treatment of
the sketch idea), it simply amounts to giving a model of each constructor of
the generalised signature subject to the generalised equations, exactly as for
Lawvere V-theories as in Section 2 but with arities restricted to be objects of
N; rather than arbitrary countably presentable objects of V.

One can construct a forgetful functor from the category Lawy of countable
Lawvere V-theories to DLawy as follows. Observe that N{¥ being the free
category with countable products on 1 and V¥ including the object 1 ® I
(where [ is the unit of V, and so 1 ® [ is I) and having countable products
determine a canonical functor J : XY — VQ*.

Definition 12 The forgetful functor U : Lawy — D Lawy sends a countable
Lawvere V -theory I : V§f’ — L to the V-category and functor determined by
factorising the composite

[ J o I
Nlp > Nlp > L

as an identity-on-objects functor followed by full faithful one, and using the
latter functor to induce V -structure on the factorisation from that on L.

So the objects of the factorisation are exactly the objects of R” with the hom
from a to b given by L(IJa,IJb), and with composition determined by that

11



of L. This tells us that, given a countable Lawvere V-theory L, the discrete
countable Lawvere V-theory U(L) is given by taking the full sub-V-category
of L determined by the countable products of the generating object 1.

Proposition 13 If V is locally countably presentable as a cartesian closed
category, the functor V(1,—) : V. —» Set has a left adjoint, and the left
adjoint sends countable sets to countably presentable objects of V.

By the proposition, if a is an object of Ny, it follows that the free object of
V on it, which, with mild overloading of notation, we also denote by a, is an
object of Vy,.

Theorem 14 The forgetful functor U : Lawy — D Lawy has a left adjoint
F'. Moreover, given any V -category C with countable cotensors, the unit of the
adjunction determines a canonical equivalence

Mod(L,C) ~ Mod(F(L),C)

where the first occurrence of Mod refers to models of a discrete theory, thus
V -functors that preserve countable products, while the second refers to models
of a V-theory, thus V -functors preserving countable V -cotensors [4].

PROOF. The first statement may be seen as an instance of the theory of
(countable) essentially algebraic theories [1,3] or alternatively via the study
of V-categories with equational structure [4,19]. The second follows from the
work relating strict maps and pseudo-maps of categories with structure in [4].
Alternatively, one can check it by direct calculation.

So, for every countable discrete Lawvere theory L, there is a countable Lawvere
V-theory, namely F'(L), whose V-category of models in any V-category C with
countable cotensors agrees with the V-category of models of L in C qua V-
category with countable products of copies of any object.

There is also a forgetful functor U’ from D Lawy to the category of ordinary
countable Lawvere theories Law,: it simply forgets the V-structure of L by
taking its underlying ordinary category L.

Theorem 15 The forgetful functor U' : DLawy — Law. has a left ad-
joint F' with the additional property that for any V -category C with countable
products, the unit of the adjunction determines a canonical equivalence

Mod(L,Cy) ~ Mod(F'(L),C)

12



where here, the first occurrence of Mod refers to models of an ordinary theory,
thus functors that preserve countable products, while the second refers to mod-
els of a discrete V-theory, thus V -functors preserving countable V -products [4].

PROOF. The free V-category (without insisting upon a countable product
condition) on L in fact has countable products and acts as F'(L): one must
observe that countable products of the former freely yield countable products
of the latter.

Thus, for any ordinary countable Lawvere theory L, there is a discrete count-
able Lawvere V-theory, namely F'(L), whose category of models in any V-
category C with countable products agrees with the category of models of L
in the underlying category Cj of C', which necessarily has countable products
in the ordinary sense.

By Theorem 15, Examples 2, 3, 4 and 5 may all be seen as discrete count-
able Lawvere V-theories: it is safe for us to identify these ordinary countable
Lawvere theories with the discrete countable Lawvere V-theories they freely
generate. A non-free example is as follows.

Example 16 Consider Example 10, the Lawvere wCpo-theory for nontermi-
nation. As presented, it gives a sketch from which the Lawvere wC'po-theory is
given freely. But one can see by inspection that the sketch may equally be seen
as a sketch for a discrete wCpo-theory, in that one could equally consider the
free discrete wC'po-theory generated by it and consider its models: the arities
appearing in Example 10 are all discrete sets, in this case finite sets, and the
homs of a discrete Lawvere V -theory may be arbitrary objects of V, in this
case allowing us to express the inequality in the example, i.e., we can replace
the use of y< as the codomain of an operation in Example 10 by two oper-
ations into y with an inequality between them. But the example does not, in
any reasonable sense, freely generate an ordinary Lawvere theory as ordinary
Lawvere theories do not allow us to treat inequality nontrivially.

Extending the remarks after Example 10, an assortment of further non-free
examples of discrete countable Lawvere V-theories is given by combining any
of Examples 2, 3, 4 and 5 with Example 16. One can check that directly, or
one can see it as a consequence of the following axiomatic body of theory.

There are four constructions on Lawvere theories that are of primary interest
to us: the sum, the tensor, the distributive tensor, and the image. These all
arise in the study of computational effects. One considers the sum in com-
bining exceptions with any other computational effect [10,11]; one considers
the tensor in combining side-effects with all other effects other than excep-
tions [10,11]; the distributive tensor or a two-sided version of it appears in
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combining two sorts of nondeterminism, for instance internal and external
nondeterminism as used by Hennessy in modelling concurrency [7], or in com-
bining ordinary nondeterminism with probabilistic nondeterminism [23]; and
one considers the image in deriving equations from a theory of observations.
So, in forthcoming sections we consider these constructions in turn.

4 Sum

In this section, we consider the sum of discrete Lawvere V-theories. We only do
so briefly as we already investigated sums of arbitrary Lawvere V-theories [10,11],
so we just need to check that the construction of a sum restricts from arbitrary
Lawvere V-theories to discrete ones. A fortiori, our various examples of sums
restrict from arbitrary V-theories to discrete ones.

Theorem 17 The category of discrete countable Lawvere V -theories is co-
complete.

One way to prove this is by observing that the category of discrete countable
Lawvere V-theories is locally countably presentable [1]. An explicit construc-
tion of the sum is complicated as a general construction involves a transfi-
nite induction, with inductive steps being given by a complicated coequaliser,
cf [15]. But, just as in [11], all our examples of discrete countable Lawvere
theories are given freely by sketches. And in those terms, the sum is easy to
describe: one takes all operations of both equational theories, including infor-
mation such as partial order information, subject to all axioms of both. The
complication arises in passing from the induced sketch to the Lawvere theory
freely generated by it, as, in doing so, one may apply the operations of one
theory to the operations of the other, hence the transfinite induction.

Even in terms of sketches, care is required. For instance, given Lawvere theories
L and L', there are always maps of Lawvere theories given by coprojections
L — L+ L and L' — L + L'. But these coprojection functors need not
be faithful. For instance, L might be the trivially collapsing theory, i.e., its
equations may force L to be equivalent to 1. In that case, L + L' is also
equivalent to 1, so the coprojection from L' is trivial.

It is a simple observation, comparing the above with [11], that the sum of
discrete countable Lawvere V-theories qua countable Lawvere V-theories is
discrete. One would certainly hope so as left adjoints, in particular the left
adjoint F' to the forgetful functor U : Lawy — D Lawy, preserve sums. For
the same reason, a sum of countable Lawvere theories qua discrete countable
Lawvere V-theories is free on the sum of ordinary countable Lawvere theories.
For computational effects, the leading examples are given by the combination
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of exceptions with all other effects and the combination of interactive I/O with
most other effects [11].

5 Tensor

The tensor of theories arises when one wants to combine side-effects with most
other computational effects. Along with Gordon Plotkin, we investigated the
tensor product of countable Lawvere V-theories in detail in [11]. So we shall
not repeat that analysis here.

It was shown in [11] that a tensor product of countable Lawvere V-theories
always exists and may be characterised by a universal property or equivalently,
more naturally, as a representing object. Here, we make the easy observations
that we can adapt the construction and characterising theorem of the tensor
given in [11] from countable Lawvere V-theories to discrete countable Lawvere
V-theories and that the left adjoints F' and F’ to U : Lawy — DLawy and
U': DLawy — Law, preserve tensor products. It follows that our examples
of the tensor studied in [11] are immediately examples of the tensor described
here: we shall not repeat the details.

Definition 18 Given discrete countable Lawvere V -theories L and L', a com-
mutative cocone over L and L' consists of a discrete countable Lawvere V -
theory L" together with maps of discrete countable Lawvere V -theories from
each of L and L' to L" subject to commutativity of all diagrams of the form

L(a,b) ® L'(d', V) Llaxb,bxbd)®L'(axad,ax?)

Liaxa,bxa)®L(bxa,bxb)

L'"(axad,bxb)

where the right-hand and lower maps are canonically determined by the maps
from each of L and L' to L", together with composition in L", and where the
other maps are given axiomatically by the product structure.

Definition 19 [11] Given discrete countable Lawvere V -theories L and L',
the discrete countable Lawvere V -theory L ® L', which we call the tensor prod-
uct of L and L', together with canonical maps to it from each of L and L',
is defined to be the universal commutative cocone over L and L', i.e., for
any commutative cocone L" over L and L', there is a unique map of discrete
countable Lawvere V -theories from L ® L' to L" making the two canonically
determined triangles commute.
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The tensor product always exists and may be described as the free theory on an
enriched sketch [20], cf [11]. It may equally, indeed more elegantly, be proved
to exist by appeal to an enrichment of the delicate 2-categorical analysis of the
form appearing in [12], from which the following result, adapting the central
result about arbitrary V-theories in [11], also follows:

Theorem 20 e The construction L ® L' on discrete countable Lawvere V -
theories extends to a symmetric monoidal structure on DLawy, and

e for any small V-category C with countable products, there is a coherent
equivalence of V -categories between Mod(LQL', C) and Mod(L, Mod(L',C)).

Just as in [11], the unit for the tensor product is the initial discrete countable
Lawvere V -theory, i.e, the theory generated by no operations and no equations.
This is the initial object of the category of discrete countable Lawvere V-
theories, so is also the unit for the sum; it corresponds to the identity monad.

As we have already observed, Examples 2, 3, 4, 5 and 10 may all be seen as
discrete countable Lawvere V-theories, and so we may simply translate our
study of tensor of countable Lawvere V-theories in [11] to that of discrete
countable Lawvere V-theories, while retaining all our examples. Its impor-
tance, as studied in detail in [11], lies in combining side-effects with almost all
other effects, the main counter-example to that being in the combination with
exceptions, which is covered by the previous section. As was the case for sum,
the left adjoints F' and F” preserve the tensor product, making the adjunctions
U : Lawy — DLawy and U’ : DLawy — Law, into symmetric monoidal
adjunctions.

6 Distributive Tensor

We now turn to the distributive tensor. This is where the concept of dis-
crete countable Lawvere V-theory starts to yield its value relative to arbitrary
countable Lawvere V-theories: one can speak of a distributive tensor product
of ordinary Lawvere theories without difficulty, but there is not a natural way
to speak of a distributive tensor of arbitrary countable Lawvere V-theories
in the absence of further higher dimensional data or conditions, although it
appears in computational practice.

For ordinary Lawvere theories, the distributive tensor is defined similarly to
the tensor except that the two sets of operations are not required to commute,
but rather the first are required to distribute over the second.

Consider Lawvere theories L and L' and what it means to say that the opera-
tions of L distribute over the operations of L'. The idea of distributivity is that
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one has an operation f : X"t! — X of L, and an operation g : X* — X
of L', and one wants the diagram

(f - (X" X 7))irew

X" x X" X"
X"x g g
Xn—|—1 N X

f

where the top horizontal map is given by the n'-tuple of maps into 1 with i'-th
component f- (X" X m;), to commute, and similarly for all other n variants of
the diagram given by varying the choice of an element of n+1 in the exponent
in the bottom left-hand corner from being the last element to being any of its
n predecessors. This motivates the following:

Definition 21 Given Lawvere theories L and L', the Lawvere theory L 1> L',
called the distributive tensor of L over L', is defined by the universal property
of having maps of Lawvere theories from L and L' to Lt> L', with all operations
of L distributing over all operations of L', i.e., given f: (n+1) — 1 in L
and f':n' — 1 in L', we demand commutativity of the diagram

! (f(n X Wi’))i’EH" n'

n+n

idn X [’ !

n+1 -1
f
together with commutativity of all other n variants of the diagram given by
varying the choice of an element of n+ 1 in the bottom left-hand corner from
being the last element to being any of its n predecessors.

In succeeding sections, we shall characterise the distributive tensor in terms of
models of L in Mod(L',C') along the lines of Theorem 20: it involves the use
of operads and symmetric monoidal structure or more generally multicategory
structure on Mod(L',C). But for the moment, we just remark that the dis-
tributive tensor does arise naturally in computation, sometimes in a two-sided
framework such as in Hennessy’s modelling of internal and external choice
in [7] for modelling concurrency, and sometimes for modelling the combina-
tion of probabilistic nondeterminism and ordinary nondeterminism [14,23].

Now try extending this to arbitrary countable Lawvere V-theories: one would
replace the n + 1 in the bottom left-hand corner of the diagram by an arbi-
trary finitely presentable object v of V' that, in some coherent sense, can be
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subdivided into an element together with the rest of v. But it is not clear how
to do that. For instance, when V is Poset, it is not clear how to handle an
exponent such as that given by Sierpinski space, i.e., the two element poset
1 <T.

The most obvious simple solution that includes all our examples seems to be to
restrict to discrete countable Lawvere V' -theories: so the arities are all discrete
sets, from which we can choose an element as a possible codomain, while
leaving the rest of the set alone. We are still able to consider inequalities as in
Example 10 seen as a discrete theory in Example 16. So that is how we proceed
here, while remarking that this is an instance of a more general construct at
one higher dimension, for which we do not yet have other compelling examples.

Definition 22 Given discrete countable Lawvere V -theories L and L', the
discrete countable Lawvere V -theory L > L', called the distributive tensor of
L over L', is defined by the universal property of having maps of discrete
countable Lawvere V -theories from L and L' to L > L', with all operations of
L distributing over all operations of L'. Le., for all objects a and a' of ¥, and
for all elements x of a (so a > 1), suppressing canonical isomorphisms, we
demand commutativity of the diagram

Ly, 1)ica ®id
(7T )e ®Z~L

L(a,1)® L'(d',1) (a—z+d,d)®L'd,1)
id® (a—z+(-)) comp

L(a,1)®@ L'(a—z + d, a) » (L L) (a—x+d,1)
comp

This definition internalises a countable version of the notion of distributivity,
in particular allowing us to include Example 16, the example of nontermina-
tion, without running into an arity problem. Thus we can extend our list of
constructions on discrete countable Lawvere V' -theories to include combina-
tions involving various forms of nondeterminism.

Note that we really only need discreteness of L in order to make this definition:
one can readily extend the definition to allow for non-discrete L', but the
additional generality of allowing L' not to be discrete has not arisen in practice
yet, so we shall not give it much attention.
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7 Characterising distributivity: the commutative case

The notion of tensor L ® L' of Lawvere theories is validated by Theorem 20,
which characterises the category of models of L ® L' in terms of categories of
models of L and L'. We should like to do similarly for the distributive tensor,
and we shall do so in full generality in Section 8. But all our leading examples of
distributivity, all of which arise in regard to various forms of nondeterminism,
satisfy the assumptions that L is finitary, L' is commutative, V is cartesian
closed, and the V-category C in which we take models is also cartesian closed.
And under those circumstances, we can give a smoother account that can also
naturally be formulated in terms of monads.

The notion of commutativity of a theory can be defined for ordinary Lawvere
theories, for countable Lawvere V-theories, or for discrete countable Lawvere
V-theories. The various assertions are respected by both forgetful functors
and their adjoints. For generality, we shall define it for an arbitrary countable
Lawvere V-theory.

Emulating Definition 19, commutativity of a countable Lawvere V-theory L
is the assertion that, suppressing canonical isomorphisms (meaning those in-
duced by the structural symmetries, associativities, and units),

L(a,b) ® L(d',b") » L@V, bV)® Lla®d,a®b)
comp
Le®d,b@d)@L'(bd,b ) La®d, bl
comp

always commutes. The definition relates closely with that of commutativity
for a monad:

Proposition 23 If L is a commutative countable Lawvere V -theory and C
15 locally countably presentable as a symmetric monoidal closed V -category,
the V-monad Ty, induced by U : Mod(L,C) — C acquires a canonical
commutativity.

PROOF. As in Section 2, the V-category Mod(L,C) enriches canonically
over C, and UL, : Mod(L,C) — C has a left C-enriched adjoint. Thus the
V-monad T}, enriches over C, and thus its underlying ordinary monad has a
canonical strength relative to C'. The commutativity condition of L yields that
for Ty, by the (easy direction of the) enriched Yoneda embedding.
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This result has a converse when C' = V: in that case, if 1}, is commutative as
a V-monad, then L is commutative as a countable Lawvere V-theory. Com-
mutativity for a V-monad was characterised by Kock in [21] essentially as
follows:

Theorem 24 Let V' be locally countably presentable as a symmetric monoidal
closed category, and let T be a commutative V-monad with countable rank on
V. Then the V -category T-Alg is symmetric monoidal closed, and the canon-
tcal V-adjunction F 4 U : T-Alg — V s a symmetric monoidal closed
adjunction.

The last line of the theorem requires some explanation. It implies that the
left adjoint F' preserves symmetric monoidal structure up to coherent isomor-
phism, but it does not imply that the forgetful functor U : T-Alg — V
does so. It implies that the latter is a symmetric monoidal functor, i.e., it
comes equipped with maps UAQ UB — U(A ® B) and 1 — U satisfying
coherence conditions.

A map of the form (X,z) ® (Y,y) — (Z, %) in T-Alg may be characterised
asamap f: X®Y — Z in V that acts as a map of T-algebras with respect
to each of (X, z) and (Y, y) separately. We can duly express our development
so far directly and a little more generally in terms of models of L as follows:

Corollary 25 Let L be a commutative countable Lawvere V -theory and let C'
be a cocomplete symmetric monoidal closed V -category. Then the V -category
Mod(L,C) is canonically symmetric monoidal closed, and the forgetful V-
functor U : Mod(L,C) — C' is part of a symmetric monoidal closed adjunc-
tion. The maps MQN — P amount to maps in C of the form UMQQUN —
UP that respect the L-structure of each of M and N separately.

So, for the unenriched setting, given a finitary Lawvere theory L and a com-
mutative Lawvere theory L', a model of L > L' in Set amounts essentially to
a model of L in Mod(L',Set) but using the canonical symmetric monoidal
closed structure of Mod(L', Set) rather than its finite product structure. The
details of such a characterisation require a little care at two points: because we
are not dealing with the finite product structure of Mod(L', Set), we cannot
quite speak of a model of L in it as we need some way to discard the diagonals
of L; and, given such a partial model M : L — Mod(L', Set), we need to
add coherence detail to relate the composite UM : L — Set, a symmetric
monoidal functor from L to Set, with a model in the usual sense of L in Set.

Our assumption of finitariness of L here is merely a convenience: the tensor
product on Mod(L,C) extends readily to a countable tensor determined by a
colimit similar to that in the usual construction of the canonical symmetric
monoidal structure on Mod(L, C); we shall explore it more in the next section.
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But assuming finiteness, we can characterise Mod(L > L, C) as follows.

Definition 26 An operad consists of, for each natural number n, a set O,,
and for each (n,(m;)ien), a composition operation - : O, X l;jc, O, —
Os,c,m;> and an identity operation 1eOy, such that composition is associative
and 1 yields both left and right identity for composition.

The definition of operad extends routinely to give a category Oper, the maps of
which are indexed families of functions respecting composition and identities.

Every Lawvere theory L has an underlying operad Op(L) defined by putting
Op(L), = L(n,1), with the composition of Op(L) determined by that of L
together with the bifunctoriality of product in L, with the identity given by
the identity of L at 1. This yields a functor Op : Law — Oper.

Proposition 27 The functor Op : Law — Oper has a left adjoint F'.

We shall use the left adjoint, together with cocompleteness of Law, to char-
acterise L > L', which is the free theory generated by all operations of L and
L' such that the operations of Op(L) distribute over all operations of L'.

One can define the notion of model of an operad in any symmetric monoidal
category. For an object X of a symmetric monoidal category C' and a natural
number n, let X™ denote a choice of n-fold tensor product of X.

Definition 28 Let O be an operad and let C' be a symmetric monoidal cate-
gory. A model of O in C consists of an object X of C' together with, for each
feOn, a map M(f) : X® — X, respecting the composition and identity.
(Equivalently, we have a map of operads from O to the endomorphism operad

of X.)

Any symmetric monoidal functor U : C' — D induces, by composition, a
functor Mod(O,U) : Mod(O,C) — Mod(O, D). So for any operad O, any
commutative Lawvere theory L', and any cocomplete cartesian closed category
C (for instance C' = Set), the forgetful functor U’ : Mod(L',C) — C induces
a functor Mod(O,U") : Mod(O,Mod(L',C)) — Mod(O,C). It follows for
general reasons [3,19] that the category Mod(O, Mod(L',C)) is of the form
Mod(O * L', C) for some Lawvere theory O % L', and the functor Mod(O,U’)
is of the form Mod(h,C) for some map of Lawvere theories FO — O x L'.

Theorem 29 For any Lawvere theory L and commutative Lawvere theory L,
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and for any cocomplete cartesian closed category C, the pullback

P Mod(Op(L), Mod(L', C))
Mod(Op(L),U")
Mod(L,C) i Mod(Op(L),C)

is given by Mod(L > L', C).

PROOF. Anobject of P consists of an object X of C' together with structures
for each of a model of L and a model of L' in C, such that the operations of
Op(L) distribute over all operations of L', i.e., a model of L > L'.

Corollary 30 The Lawvere theory L > L' is characterised by the pushout in
Law

FOp(L) — Op(L) x L'

L> L

A countable enriched version of the above is as follows:

Definition 31 IfV is locally countably presentable as a symmetric monoidal
closed category, a countable V-operad consists of, for each object a of Ny, an
object O, of V', and for each (a,(b;)ica), a composition operation - : O, ®
IL;caOp; — Osyc by, and an identity operation 1 : 1 — Oy, such that compo-
sition 1s associative and 1 yields both left and right identity for composition.

The definition of countable V-operad extends routinely to give a category
V-Oper, the maps of which are indexed families of maps in V respecting
composition and identities.

Every discrete countable Lawvere V-theory L has an underlying countable
V-operad Op(L) defined by putting Op(L), = L(a, 1), with composition de-
termined by the composition of L and with the identity given by the identity
of L at 1. This yields a functor Op : D Lawy, — V-Oper.

Proposition 32 The functor Op : DLawy — V-Oper has a left adjoint F.
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It is routine to generalise Definition 28 to define the notion of a model of a
countable V-operad in a category C' with a countable generalisation of sym-
metric monoidal V-structure. But the axioms for the countable version are a
little complex, so we shall not develop it here. For a model of a finitary V-
theory, one routinely generalises the construction, for each f € O, of M(f),
in Definition 28 to the request for a map in V' from O,, to C(X™, X), subject
to the evident coherence conditions.

Using that definition, and assuming that the symmetric monoidal structures
of V and (' are cartesian, we obtain exactly the same characterisation in the
enriched setting as we have above for the unenriched setting as follows:

Theorem 33 Let V' be locally countably presentable as a cartesian closed cat-

egory, and let C' be a cocomplete cartesian closed V -category. For any finitary

discrete Lawvere V -theory L and any commutative discrete countable V -theory
L', the pullback in V-Cat

Mod(L> L',C) — Mod(Op(L), Mod(L',C))

Mod(Op(L),U")

Mod(L,C) Mod(Op(L),C)

is given by Mod(L > L', C).

PROOF. A proof is given by the same argument as that for Theorem 29,
with the additional routine checking that the argument enriches and is not
dependent upon finitariness of Set.

As we have mentioned before, our results do not make any substantial use
of the discreteness of L'. They can also routinely be extended to dropping
finitariness of L, and, at expense of the relationship with commutative monads,
does not require V to be cartesian or C' to be closed.

Corollary 34 For a finitary discrete Lawvere V -theory L and a commutative
discrete countable Lawvere V -theory L', the discrete Lawvere V -theory L > L'

23



s characterised by the pushout in D Lawy

FOp(L) — Op(L) * L'

L> L

8 Characterising distributivity in general

In this section, we drop the assumptions of finitariness of L, commutativity of
L', cartesianness of V' and closedness of C, yet still characterise the distributive
tensor L > L', albeit in somewhat less agreeable terms.

Definition 35 An N;-multi-V-category C' consists of

e a set ObC' of objects

e for each a in Ny, each a-indexed family (X;)icqa of objects of C' and each
object X of C, an object C((X;)ica, X) of V

e composition and identity data

such that composition is associative and the identities act as identities.

For simplicity of exposition, we shall express the following proposition in un-
enriched terms: the enrichment is routine but looks a little less clear.

Proposition 36 Let L be a countable Lawvere theory and let C be a category

with countable products. The following data forms an Ni-multicategory we call
Mod(L,C):

e an object is a model M : L — C
e Mod(L,C)((M;)ica, M) is given by the subset of C(Il;caM;1, M1) deter-
mined by those maps f : I;cqM;1 — M1 such that for each i € a and each
map f':n' — 1 in L, the diagram, suppressing commutativities,
n' n' fn’ n’
(M;1)" x Myea—gin M1l — (ieaM;1)" — (M1)

Mf' x 1 My

HiEaMi]- > M]_

commutes
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e composition and identities lifted from C

The principal difference between this and the work of Section 7 is that here
we do not demand the existence and functoriality of a representing object
in Mod(L,C), i.e., a tensor product in Mod(L,C) with universal property
determined by Proposition 36. Our only use of commutativity of L in Section 7
was to force the existence and functoriality of such an object. The second
main difference is that we use product structure of C' rather than symmetric
monoidal structure: the only reason for using symmetric monoidal structure
in Section 7 was to characterise the work in terms of commutative monads.

The notion of a model of a countable operad in any N;-multicategory C is
evident, upon which we can consider the category Mod(O, C): note that this
is naturally a category rather than a multicategory. We can now routinely
emulate the latter part of Section 7 to characterise Mod(L t> L', C) in terms
of the V-category of models of Op(L) in the R;-multi-V-category Mod(L',C).
Note that a V-category C with countable products can trivially be regarded as
an N;-multi-V-category, for instance by a trivial application of Proposition 36.

Theorem 37 For discrete countable Lawvere V-theories L and L' and V-

category C with countable products, the following diagram forms a pullback in
V-Cat:

Mod(L> L',C) — Mod(Op(L), Mod(L', C))

Mod(Op(L),U")

Mod(L,C) Mod(Op(L),C)

PROOF. A proof of this is given by the proof of Theorem 29, subject to
the observations that the proof generalises to allow for enrichment and to the
situation of Mod(L',C) being an N;-multi-V-category without the necessity
of that structure inducing symmetric monoidal structure.

Corollary 38 For discrete countable Lawvere V -theories L and L', the dis-
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crete Lawvere V -theory L > L' is characterised by the pushout in D Lawy

FOp(L) — Op(L) x L'

L L> L

We again remark that the discreteness of L' is only used incidentally here.

9 Image

The image construction is of a somewhat different nature to those we have
studied so far, and it is used for a somewhat different purpose. Here, rather
than starting with a pair of Lawvere theories, one starts with a single Lawvere
theory and a model of it. We first consider a construction that is not quite
what we want but which does exist for arbitrary countable Lawvere V -theories.

Definition 39 Given a countable Lawvere V -theory L and a model M : [, —
C, the full image L;M of M is the (bijective-on-objects, fully faithful) fac-
torisation of M, i.e., up to isomorphism of V -categories, it is determined by
putting

(LyM)(m,n) = C(Mm, Mn)

A variant of this, where one removes the size limitation at the cost of consider-
ably less elegance, appears in the study of continuations, where M is typically
taken to be the free model on a test set R [9]. But what we want to do here
is a little more subtle. First we consider the situation for ordinary Lawvere
theories.

The image, as opposed to the full image, appears when one wants to take
observations rather than equations as primitive [33]. The idea is that one
only considers the signature with which one starts, and then puts equations
or inequations between derived terms depending upon what an observational
model demands. One cannot just take the full image, i.e., the (bijective-on-
objects, fully faithful) factorisation, as that would include maps that are not
generated by a signature. So we need a more subtle factorisation, one which, in
a precise sense, moves the fullness from the right to the left of the factorisation
system. The factorisation system we need is defined as follows:

Definition 40 Given a Lawwvere theory L and a model M : L — C, the
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image Ly of M is determined by the (bijective-on-objects and full, faithful)
factorisation of M, i.e., up to isomorphism of categories, it is determined by
putting Lyr(m,n) equal to the image of the function

My L(m,n) — C(Mm, Mn)

Example 41 Following Example 3, let S = VL. The standard semantics of
a command is generally understood to be a state-changing function, i.e., a
function of the form S — S. So the operations lookup and update should
act on powers of the set S. They are generally deemed to act as follows: the
operation lookup is modelled by the function

(S—9)Y — (S— 9)*

determined by composition with the function from L x S to V x S that, given
(loc,0), “looks up” loc in o : L — V to determine its value, and is given by
the projection to S; and the operation update is modelled by the function

(S = 8) — (S = 9)*V

determined by composition with the function from L xV x S to S that, given
(loc,v,0), “updates” o : L — V by replacing the value at loc by v. We wish to
set a pair of operations generated by lookup and update equal precisely when
they yield the same functions on powers of S — S. And that is given as follows:
first take the free countable Lawvere theory L, ; generated by operations lookup
and update as in Example 3 but without imposing the axioms of Example 3.
Then take the model M : L;, — Set of L, determined by the set S — S
together with the functions defined above. Now take the image determined by
M. The result is exactly Ls as defined in Example 3.

The above example appears, along with several others, in [33]. The difficulty
with enriching the idea arises even when V' is Poset. If one replaces categories
by V-categories with finite cotensors in the definition of image, the factori-
sation need not have finite cotensors: the problem arises when one considers
cotensors with non-discrete posets such as Sierpinski space. Looking harder at
why that is not a problem for ordinary Lawvere theories, one notes that the
homs are sets, and in Set, all epimorphisms are retracts, so are preserved by
all functors, whereas that is not the case in Poset. In contrast, products often
do preserve epimorphisms or at least strong epimorphisms. For instance, in
Poset, an epimorphism is pointwise a surjective function, and the product of
surjective functions is again surjective.

For simplicity of exposition and because it includes all our examples, we shall
assume that V is cartesian closed: one needs to add some routine additional
assumptions if it is not. The central result we need is as follows:
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Theorem 42 Given a factorisation system (€, M) on'V for which & is closed
under countable products, and given a discrete countable Lawvere theory L and
a model M : L — C, taking the (£, M)-factorisation of the map in V

M,y = L(a,b) — C(Ma, Mb)

yields a factorisation of M as a V-functor that preserves countable products.

PROOF. The statement of the theorem determines the objects and homs of
the putative image of M: the objects are those of L, with Lys(a,b) given by
the factorisation. We must now determine the composition of Lj,;. Consider
the diagram

L(b,c) x L(a,b) — Lys(b,c) x Ly(a,b) — C(Mb, Mc) x C(Ma, Mb)
compy, compc

L(a,b)

Ly(a,b) » C(Ma, Mc)

with the upper and lower arrows determined by factorising. Because £ is closed
under countable products, it is necessarily closed under finite products, and
so the upper left map lies in £. The lower right arrow lies in M. So the
factorisation condition yields a unique composition for L;, that allows M to
factorise as a V-functor. It is routine to verify associativity and unit conditions
for Ly;. The unicity up to isomorphism of a factorisation system, together
with the closedness of £ under products, allows one, by a similar argument,
to deduce that Lj; has countable products and that the induced V-functors
from L and to C' preserve countable products.

It follows from the statement of Theorem 42 that the factorisation L;; is a
discrete countable Lawvere V-theory. That allows us to make the following
definition:

Definition 43 Given a factorisation system (£, M) on V for which £ is
closed under countable products, and given a discrete countable Lawvere theory
L and a model M : L — C, the (£, M)-image Ly; of M is determined by the
(bijective-on-objects and locally (£, M)) factorisation of M, i.e, determined
by putting Lys(a,b) equal to the (€, M)-factorisation of the map in V

M, : L(a,b) — C(Ma, Mb)

Example 44 Let V be Poset and let £ be the class of epimorphisms, which
are precisely the pointwise epimorphisms. So M s necessarily the class of
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strong monomorphisms. The pointwise surjections of Poset are closed under
countable product, so satisfy the conditions of Theorem 42. Thus one can, for
instance, give a Poset-enriched version of Example 41. As remarked before, the
pointunse surjections in Poset are not closed under cotensor, so the restriction
to discrete theories is essential here.

Enrichment in the category wC'po requires more care, as countable products
there involve more subtlety than finite products do: a finite product of epimor-
phisms is always an epimorphism by cartesian closedness. The solution to that
difficulty seems likely to involve making more subtle use of the relationships
developed in this paper between discrete countable Lawvere V-theories and
arbitrary countable Lawvere V-theories, and their relationships with finitary
versions.
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