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Abstract

We give a category-theoretic formulation of Engeler-style models for the untyped λ-calculus. In order to
do so, we exhibit an equivalence between distributive laws and extensions of one monad to the Kleisli
category of another and explore the example of an arbitrary commutative monad together with the monad
for commutative monoids. On Set as base category, the latter is the finite multiset monad. We exploit the
self-duality of the category Rel, i.e., the Kleisli category for the powerset monad, and the category theoretic
structures on it that allow us to build models of the untyped λ-calculus, yielding a variant of the Engeler
model. We replace the monad for commutative monoids by that for idempotent commutative monoids,
which, on Set, is the finite powerset monad. This does not quite yield a distributive law, so requires a little
more subtlety, but, subject to that subtlety, it yields exactly the original Engeler construction.
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1 Introduction

Dana Scott proved that any model of the untyped λ-calculus, or more directly any

λ-algebra, generates a cartesian closed category in which the model can be seen as

a reflexive object, i.e., an object D together with data exhibiting the exponential

DD as a retract of D [20]. One obtains such a category by taking the Cauchy

completion, equivalently the category of retracts, generated by the model. Although

a fine completeness result from a category-theoretic perspective, this result does not

imply that any λ-algebra appears as an object of a natural cartesian closed category

such as the category ωCpo or some category built from Rel. So, it is an ongoing

natural question, from a category theoretic perspective, to see the various models

of the untyped λ-calculus as reflexive objects in natural cartesian closed categories.

In this paper, we investigate the particular situation of models in the spirit of those

proposed by Engeler in [8], also investigated in [17].

Engeler’s original models for the untyped λ-calculus are given by taking a set

D for which PfD × D is a subset of D, where PfX is the set of finite subsets of

X. The set PfD × D acts as a kind of exponential of D to itself. Every subset is

the splitting of a retraction, thus PfD ×D is a retract of D. If one could make the

sense in which PfD×D is a kind of exponential precise via a natural construction,

we would have answered our question.

Consider the following heuristic argument: if there was a distributive law of the

monad Pf over the powerset monad P , we would have a lifting of the monad Pf

to Rel. The latter category is self-dual, so the lifting can be seen as a comonad on

Rel. The category Rel is symmetric monoidal closed with products and coproducts,

and the lifting sends products to the symmetric monoidal structure of Rel, thereby

making the Kleisli category for the comonad cartesian closed. It follows from the

structure of Rel that the closed structure in the Kleisli category would be given by

PfX × Y . With a little calculation, one could thus see the Engeler construction as

a reflexive object of that Kleisli category. However, the argument fails: the natural

construction does not yield a distributive law of Pf qua monad over P .

But we can step back. Suppose we replace Pf by Mf , the finite multiset monad.

This is the monad for commutative monoids. We can prove that there is always

a distributive law of the monad for commutative monoids over any commutative

monad T on any base cocomplete symmetric monoidal closed category C: see Sec-

tion 2. It follows axiomatically that Mf extends to a monad on the Kleisli category

Kl(T ) of T : see Section 3. The Kleisli category Kl(T ) has a canonical symmetric

monoidal structure, and the extension M̃f of Mf yields the monad for the category

of commutative monoids in Kl(T ): see Section 4. If we then restrict to Set as base

category and take T to be the powerset monad P , it follows that Kl(T ) is self-dual

and is routinely seen to have enough extra structure to make Kl(M̃f )op cartesian

closed: we can give a more general analysis of parts of that. With a little calcula-

tion, it follows that this provides a mild variant of Engeler’s models: see Section 5.

For a range of other variants of Engeler’s models, see [17].

The difference between Mf and Pf is instructive: Mf is the monad for commu-
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tative monoids, while Pf is the monad for idempotent commutative monoids. The

latter involves a cartesian equation, namely x + x = x. It is this repetition of x on

the left-hand side of the equation that makes the crucial difference here. (How the

problem presents itself will be described in Example 2.4.) The argument we gave

above for extension of a monad goes through without fuss in more general situations

providing one only considers symmetric operadic structure rather than general al-

gebraic structure: we give background in Section 2. But it does not extend to Pf

without further effort.

However, returning to Engeler’s original construction, suppose we try to find a

distributive law of the monad Pf over P . We can readily find a distributive law of

Pf qua endofunctor over P : see Section 3. And we can lift its multiplication natural

transformation. The only difficulty is that the unit of the monad Pf does not lift

from Set to Rel, i.e., it is natural in Set but not in Rel. But that is not so bad: the

endofunctor and the multiplication allow us to build a Kleisli construction, but it is a

semicategory rather than a category. And semifunctors, which are closely related to

semicategories, were investigated precisely in regard to modelling untyped λ-calculus

by Hayashi in [9]. Semicategories have long been investigated in category theory,

see for instance [11]. The data for the unit still exists, and it provides pointwise

idempotents. And that is enough for us to mimic the above argument, modulo the

mild additional subtlety involved with taking and splitting idempotents, returning

Engeler’s original model as we explain in Section 5. A fully axiomatic treatment of

this more refined argument will appear in a subsequent paper.

This work leaves one striking open question that we are keen to pursue: Engeler

models are a simple case of filter models for the untyped λ-calculus. So, with

a category theoretic formulation for Engeler models in hand, as future work, we

intend to extend our category theoretic analysis to account for filter models. Since

at least some filter models are naturally domains, this may require a reconstruction

of domain theory. That is potentially a large job, hence our deferring it.

2 Distributive Laws and Liftings

Given a pair of monads S and T on a category C, the following result appears

widely in the literature, e.g., in [1].

Theorem 2.1 To give a distributive law of monads

λ : ST ⇒ TS

of S over T is equivalent to giving a lifting of the monad T to the category S-Alg.

In this paper, we shall focus on a class of examples of such distributive laws,

which we shall describe, where S is the monad for commutative monoids in a sym-

metric monoidal category C, when such a monad exists, and T is an arbitrary

commutative monad on C. We briefly recall the relevant definitions.

Given a symmetric monoidal category C, a strength for a monad (T, η, μ) on C is

a natural transformation with components of the form tX,Y : X⊗TY −→ T (X⊗Y )

satisfying four axioms expressing coherence with respect to the monad structure of
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T and the symmetric monoidal structure of C [15]. A monad with a strength is

called commutative if the diagram

TX ⊗ TY
tTX,Y� T (TX ⊗ Y )

Tt∗X,Y� T 2(X ⊗ Y )

T (X ⊗ TY )

t∗X,TY

�

TtX,Y

� T 2(X ⊗ Y )
μX⊗Y

� T (X ⊗ Y )

μX⊗Y

�

commutes for all X and Y , where t∗ is defined from t using the symmetry of C [15].

Given an arbitrary symmetric monoidal category C, one can readily define the

category CMon(C) of commutative monoids in C. It inherently comes equipped

with a forgetful functor U : CMon(C) −→ C. In full generality, the forgetful

functor need not have a left adjoint. But it does have a left adjoint in a very wide

class of cases, including all that are of primary interest to us: see [14] for some

such general conditions. For a far more restricted class than necessary but one that

includes our leading examples, if C is closed and cocomplete, the left adjoint exists.

In the case that C is Set, the monad for commutative monoids in C is Mf , the

finite multiset monad. Extending that notation, we shall denote by Mf the monad

for commutative monoids in any symmetric monoidal category for which the left

adjoint and hence the monad exists.

It is routine to verify that U : CMon(C) −→ C always satisfies the other

conditions of Beck’s monadicity theorem, so the existence of the left adjoint is

sufficient to prove monadicity of CMon(C) over C [14]. Putting this together, we

have the following.

Theorem 2.2 If C is a cocomplete symmetric monoidal closed category, the cate-

gory CMon(C) of commutative monoids in C is monadic over C.

The theorem allows us to express our leading class of examples of distributive

laws as follows, cf [15].

Example 2.3 Let C be a cocomplete symmetric monoidal closed category, and let

T be a commutative monad on C. It is routine to verify that T lifts to the category

CMon(C) of commutative monoids in C. So, Theorem 2.1 yields a distributive law

of Mf over T . In particular, taking C to be Set, this induces a canonical distributive

law of the monad Mf for finite multisets over any commutative monad T .

This example evidently extends, generalising from the category CMon(C) of

commutative monoids in C to the category of models in C of any symmetric operad.

We shall not develop that point further here but we intend to do so in future work.

For a class of non-examples of a distributive law of monads, but in the same spirit

as Example 2.3 and whose structure we shall consider in detail later, consider the

following.
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Example 2.4 Let C be a category with finite products and let T be a commuta-

tive monad on it. Attempting to restrict Example 2.3 to the category ICMon(C)

of idempotent commutative monoids (semi-lattices) in C, one fails: the lifting de-

scribed in Example 2.3 sends an idempotent commutative monoid to a commutative

monoid that need not be idempotent. For the specific example relevant to this pa-

per, let C be Set and let T = P be the usual power-set monad. Now the lifting

from Example 2.3 amounts to the following. If (A, · ) is a commutative monoid, then

P (A) inherits the structure of a commutative monoid with multiplication given by

X · Y = {a · b | a ∈ X, b ∈ Y }. But for A idempotent, P (A) is generally not idem-

potent (with that multiplication). Now the monad for idempotent commutative

monoids is Pf , the finite powerset monad, and we see that the distributive law of

Example 2.3 does not quotient to give a distributive law of the monad Pf over the

monad P . (It is routine to check the failure of lifting directly.)

It follows from the ideas in [21] that one can generalise Theorem 2.1 and the

definitions in it to happen inside a 2-category subject to mild axiomatic conditions.

Rather than have a category C, one has an object of a 2-category; similarly for

functors and natural transformations; one can readily generalise the construction

of the category S-Alg to a construction within a 2-category with some finite 2-

categorical limits. The work of the next section, where we investigate the Kleisli

construction Kl(S) rather than S-Alg, can also be done in Street’s setting and can

be seen as a kind of dual.

3 Distributive Laws and Kleisli Extensions

Given a monad (T, η, μ) on a category C, we denote the Kleisli category for (T, η, μ)

by Kl(T ), and we denote the canonical identity-on-objects functor from C to Kl(T )

by J : C −→ Kl(T ). Note that the functor J need not be faithful, so need not be

an inclusion. Nevertheless, it usually is an inclusion, and it is usually harmless to

think of it as such. In fact, the functor J is faithful if and only if η is a pointwise

monomorphism.

Definition 3.1 Given a monad (T, η, μ) on a category C, and an endofunctor H on

C, an extension of H to Kl(T ) is an endofunctor H̃ on Kl(T ) such that H̃J = JH.

Observe that, in the definition, we demand an equality of functors, not merely

an isomorphism. That is not only convenient in avoiding coherence conditions, but

it is also essential to providing a precise and reasonable result.

Definition 3.2 A distributive law of an endofunctor H over a monad T on a cate-

gory C is a natural transformation

λ : HT ⇒ TH

subject to commutativity of the evident two diagrams expressing coherence with

respect to the unit and multiplication of T .

Proposition 3.3 To give a distributive law of an endofunctor H over a monad T

is equivalent to giving an extension of H to Kl(T ).
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Proof. To go from a distributive law to an extension is routine. And, given an

extension H̃, applying H̃ to the map in Kl(T ) from TX to X given by idTX in C,

i.e., to the counit of the canonical adjunction, yields a distributive law. It is routine

to verify that the two constructions are mutually inverse. �

Given a distributive law λ : HT ⇒ TH, we denote the induced extension by

H̃λ. The combination of Theorem 2.1, Example 2.3 and Proposition 3.3 immediately

yields a class of examples of extensions for us.

Example 3.4 Let C be a cocomplete symmetric monoidal closed category and let

T be a commutative monad on C. As explained in Example 2.3, T lifts to a monad

on the category CMon(C) of commutative monoids in C. By Theorem 2.1, this

lifting yields a canonical distributive law of the monad Mf for commutative monoids

over T . A fortiori, this is a distributive law of Mf qua endofunctor over T . So,

applying Proposition 3.3 yields a canonical extension of the functor Mf to Kl(T ).

Example 3.5 Taking C to be Set and P to be the powerset monad, the distributive

law of Example 3.4 quotients to give a distributive law of the finite powerset functor

Pf over P and hence an extension of Pf to Rel, i.e., to Kl(P ). This result does not

seem to hold for an arbitrary commutative monad T in place of P . The distributive

law sends a finite subset A of P (X) to the subset Y of PfX determined by those

finite subsets B of X for which ∀b ∈ B∃a ∈ A.b ∈ a and ∀a ∈ A∃x ∈ a.x ∈ B.

Trivially, an extension of an endofunctor H to Kl(T ) induces an extension of the

composite HH to Kl(T ): one requires a little care as there may be more than one

extension of H to Kl(T ). It is routine to verify that a distributive law λ : HT ⇒ TH

induces a distributive law of HH over T given by

HHT
Hλ� HTH

λH� THH

which we denote by λ2. It is straightforward to prove the following result.

Proposition 3.6 Given a distributive law λ of an endofunctor H over a monad T ,

the extension H̃λ2
is exactly the composite H̃λH̃λ.

We extend the notion of an extension of an endofunctor to Kl(T ) and the equiv-

alence with a distributive law to the situation of a natural transformation between

endofunctors as follows.

Definition 3.7 Given a monad T on a category C, given endofunctors H and K on

C and extensions H̃ and K̃ of H and K to Kl(T ), and given a natural transformation

α : H ⇒ K, an extension of α to Kl(T ) is a natural transformation α̃ : H̃ ⇒ K̃

such that α̃J = Jα.

An extension of a natural transformation is unique if it exists: the data for α̃ is

determined by the fact that J : C −→ Kl(T ) is the identity-on-objects, so the only

question is whether the data satisfies the naturality axiom with respect to H̃ and

K̃. Observe that we make mild abuse of notation here: we speak of α extending to
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Kl(T ) whereas its extension really relies upon a pre-existing choice of extensions of

H and K to Kl(T ), of which there may be many.

Definition 3.8 Given endofunctors H and K on a category C, a natural transfor-

mation α : H ⇒ K, and a monad T on C, and given distributive laws λH : HT ⇒
TH and λK : KT ⇒ TK, we say α distributes over T if the diagram

HT
λH � TH

KT

αT

�

λK

� TK

Tα

�

commutes.

Proposition 3.9 Given distributive laws λH : HT ⇒ TH and λK : KT ⇒ TK,

and a natural transformation α : H ⇒ K, the natural transformation α distributes

over T if and only if there is an extension (necessarily unique) of α to Kl(T ).

The proof is routine.

We can combine the above propositions to yield easy proofs of several results.

We do not spell out the definitions of a distributive law of each of a pointed end-

ofunctor, a copointed endofunctor, a monad, and a comonad, over a monad: the

four definitions are routine consequences of the above definitions and propositions

(see [16] for the cases involving a comonad). But writing down the result of primary

interest to us that flows from the above analysis, we have the following.

Definition 3.10 Given monads (S, η, μ) and T on a category C, an extension of S

to Kl(T ) is a monad (S̃, η̃, μ̃) on Kl(T ) such that S̃, η̃, and μ̃ extend S, η and μ

respectively.

Theorem 3.11 Given monads S and T on a category C, to give a distributive law

of S over T is equivalent to giving an extension of the monad S to Kl(T ).

This immediately allows us to develop Example 3.4.

Example 3.12 Let C be a cocomplete symmetric monoidal closed category, and let

T be a commutative monad on C. Then the monad Mf for commutative monoids

in C extends to Kl(T ).

Example 3.13 By dint of Theorem 2.1 and Example 2.4, Example 3.12 does not

induce an extension of the monad Pf from Set to Rel: the latter is Kl(P ) and we

know that the distributive law of Mf qua monad over P does not quotient to one of

Pf over P , as otherwise the lifting of P to CMon(C) would restrict to ICMon(C),

as discussed in Example 2.4. However, by Example 3.5, there is a distributive law

of Pf qua endofunctor over P . Moreover, it is routine to verify that the natural

transformation given by the multiplication of Pf distributes over P too. So the

functor Pf together with its multiplication natural transformation extend to Rel.
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Our development in this section extends readily to the situation of 2-categories

and pseudo-monads. Considerably more care is required there with coherence is-

sues, making our perhaps apparently slow progress through this section vital to

providing rigorous proofs at that increased level of generality. We shall return to

the two-dimensional case in future work, as it coheres with the work of Winskel

and colleagues on domain theory for concurrency, where Set is replaced by Cat,

the powerset monad is replaced by the presheaf construction, which is a pseudo-

monad in every way except for size, and where commutative monoids are replaced

by symmetric monoidal categories [4]. The notion of commutative monad gener-

alises to that of pseudo-commutative 2-monad, and our axiomatic development of

commutative monads and their relationship with commutative monoids extends to

pseudo-commutative 2-monads and symmetric monoidal categories [12]. Details of

the definitions and constructions involved with pseudo-distributive laws will appear

in [22] but see also [5] for an outline.

4 Symmetric Monoidal Adjunctions and Commutative

Monoids

Our attention so far has focused on a commutative monad T on a symmetric

monoidal closed category C, and we have considered the relationship between the

monad Mf for commutative monoids on C and T , equivalently the extension of Mf

to Kl(T ). The latter is a statement about the monad structure of Mf . In this

section, we address issues that more specifically involve the commutative monoid

structure of Mf : but the following does still apply to symmetric operads more gen-

erally. The commutative monoid structure of Mf involves the symmetric monoidal

structure of C more directly, together with the notion of commutative monoid in C

and in Kl(T ). We recall some elementary definitions from [7].

Given symmetric monoidal categories C and D, a symmetric monoidal functor

from A to B is a functor H : A −→ B together with natural transformations with

components HX ⊗ HY −→ H(X ⊗ Y ) and I −→ HI subject to four coherence

conditions to the effect that the associativity, left and right unit, and symmetry

isomorphisms are respected. A symmetric monoidal functor is called strong if the

structural natural transformations are invertible. A symmetric monoidal natural

transformation between symmetric monoidal functors H and K is a natural trans-

formation α : H ⇒ K that respects the rest of the structure for a symmetric

monoidal functor. Small symmetric monoidal categories, symmetric monoidal func-

tors, and symmetric monoidal natural transformations form a 2-category SymMon.

A symmetric monoidal adjunction is an adjunction in the 2-category SymMon.

The following result is straightforward to prove and is implicit in [7].

Theorem 4.1 Every symmetric monoidal adjunction from A to B lifts to an ad-

junction from CMon(A) to CMon(B).

That is the result we need, providing we can obtain a symmetric monoidal

adjunction between a base category C and Kl(T ) for a commutative monad on C.
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In fact, we can do that, via the following line of argument. The following result is

not in its most general form (see [3]) but is in the form we need here [13].

Theorem 4.2 Given symmetric monoidal categories A and B and given an ordi-

nary adjunction F � G : A −→ B, to extend the adjunction to an adjunction of

symmetric monoidal categories is equivalent to giving a strong symmetric monoidal

structure on the ordinary functor F : B −→ A.

We can combine that characterisation of symmetric monoidal adjunctions with

the following result in [19].

Theorem 4.3 Given a symmetric monoidal category C and a monad T on it, to

give a commutative strength for T is equivalent to giving a symmetric monoidal

structure on Kl(T ) such that the Kleisli adjunction is a symmetric monoidal ad-

junction.

The significance of this for us is that, given a commutative monad T on a

cocomplete symmetric monoidal closed category C, it yields a characterisation of

the extension M̃f of Mf to the category Kl(T ).

Corollary 4.4 For any cocomplete symmetric monoidal closed category C and for

any commutative monad T on C, the extension M̃f of Mf is the monad describing

the free commutative monoid in the symmetric monoidal category Kl(T ).

Proof. By Theorem 4.2 and Theorem 4.3, the Kleisli adjunction extends canoni-

cally to a symmetric monoidal adjunction between C and Kl(T ). By Theorem 4.1,

the adjunction lifts to an adjunction between CMon(C) and CMon(Kl(T )). In

particular, the diagram of categories

CMon(Kl(T )) � CMon(C)

Kl(T )
�

� C
�

commutes, with the evident labelling of functors. The left adjoint of the composite

is JMf = M̃fJ , and the counit of the symmetric monoidal adjunction extends

from Kl(T ) to CMon(Kl(T )). So M̃f must act as the free commutative monoid in

Kl(T ). �

We have one final axiomatic result here. In some categories with finite products

and finite coproducts, notably Set, the monad Mf admits the property that the

canonical comparison map

Mf (X + Y ) −→ MfX × MfY

is always an isomorphism. For those categories C for which that is true, we seek

conditions under which, given a commutative monad T , that fact lifts to M̃f , by

which we mean that the isomorphism induces an isomorphism from M̃f (X + Y )
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to M̃fX ⊗ M̃fY , using the fact that coproducts extend to Kl(T ) and using the

symmetric monoidal structure on Kl(T ) induced by Theorem 4.3. The only issue

is one of naturality of the comparison map with respect to Kl(T ).

Proposition 4.5 For any commutative monad T on a cocomplete cartesian closed

category C, the extension M̃f of Mf sends coproducts in Kl(T ) to the symmetric

monoidal structure of Kl(T ) if the diagram

Mf (TX + TY ) � MfTX × MfTY � TMfX × TMfY

MfT (X + Y )
�

� TMf (X + Y ) � T (MfX × MfY )
�

with all maps given by the canonical choices, commutes.

Evidently, this result extends beyond Mf to any symmetric operad and to some

non-operadic monads such as that for Abelian groups.

In order to analyse Engeler-style models of the untyped λ-calculus as we shall

do in the next section, we should like to find axiomatic conditions under which the

category Kl(M̃f )op for a commutative monad T on Set is cartesian closed: we know

it has finite products, as Kl(M̃f ) has finite coproducts. And the above proposition

helps, as it means that a map out of a binary product in Kl(M̃f )op, i.e., a map into

a binary coproduct in Kl(M̃f ), can be seen as a map into a tensor product in Kl(T ),

but from that point, at present, we do not see how to proceed without using the

self-duality and closedness of our leading example, that where T is P and therefore

Kl(T ) is Rel. We can, however, generalise in a non-trivial way to 2-categories: the

bicategory Prof of small categories and profunctors is not quite self-dual in the

sense we use here, but it has enough self-dual structure to allow us to mimic our

argument.

5 Engeler Models

In this section, we finally link our axiomatic development of previous sections with

Engeler’s construction. We first consider the variant given by finite multisets, as that

provides easier and more elegant category-theoretic models of untyped λ-calculus.

We then proceed to Pf , as Engeler originally considered. That involves more com-

plex category theory, but it also allows us to make a more precise statement of the

relationship.

The following easy result has been fundamental to the semantics of linear logic

over many years [2].

Theorem 5.1 Let C be a symmetric monoidal closed category with finite products,

and let G be a comonad on C that sends finite products to the symmetric monoidal

structure. Then the Kleisli category Kl(G) is cartesian closed, with exponential

given by the linear exponential [GX,Y ] in C.
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Example 5.2 The category Rel is symmetric monoidal closed, in fact compact

closed, with the symmetric monoidal structure given by the product of sets, and it

has both products and coproducts given by the coproduct of sets. Moreover, it is

self-dual and the linear exponential is given, most unusually, by the product of sets.

We know from previous sections that Mf extends to a monad on Rel, hence equally

to a comonad on Rel, and the extension sends coproducts to tensors. Thus, if we

denote the comonad corresponding to M̃f by M̂f , it follows that Kl(M̂f ), equally

Kl(M̃f )op, is cartesian closed. The closed structure is given by MfX × Y .

Example 5.2 gives us a cartesian closed category. To give a reflexive object

of the category is to give a set D together with data to exhibit MfD × D as a

retract of D in Kl(M̂f ). But retractions are preserved by all functors, and there

is a canonical composite inclusion functor from Set to Kl(M̂f ). So, given any

retraction in Set, i.e., any set D together with an inclusion of MfD × D into D,

application of the canonical inclusion yields a reflexive object of Kl(M̂f ). One can

obtain sets satisfying the conditions required of D by solving the evident domain

equation. Thus the variant of Engeler models given by replacing Pf by Mf may be

seen as reflexive objects in the cartesian closed category Kl(M̂f ).

We now consider exactly Engeler’s models by replacing finite multisets by finite

subsets. In principle, we wish to remain as axiomatic in our development as reason-

ably possible. But, as discussed in Example 3.13, the natural extension of the monad

Pf to Rel does not satisfy the axioms for a monad on Rel, and so does not yield a

Kleisli category for a monad on Rel. This leads us to relax the definition of cate-

gory to consider semicategories: a semicategory consists of the data for a category

except for the existence of identity maps, the only axiom being that composition is

associative. Semifunctors are graph morphisms that preserve composition, see for

instance [11].

We do not assert definitiveness of the following definition, but it is convenient

for us in expressing the results of this section.

Definition 5.3 A near-monad on a category C consists of an endofunctor S on C,

a natural transformation μ : S2 ⇒ S satisfying the associativity condition

S3 μS � S2

S2

Sμ

�

μ
� S

μ

�

and an ObC-indexed family of maps ηX : X −→ SX such that the following dia-
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grams commute:

SX
SηX� S2X SX

ηSX� S2X

SX

μX

�

id
�

SX

μX

�

id
�

Example 5.4 Our leading example is given by the extension to Rel = Kl(P )

on Set of the endofunctor Pf and its multiplication natural transformation as in

Example 3.13, together with the data for the unit of Pf .

Definition 5.5 Let S be a near-monad on C. Denote by Kl(S) the semicategory

whose objects are those of C, with the homset Kl(S)(X,Y ) defined to be C(X,SY ),

and with composition defined by

X
f � SY

Sg � S2Z
μZ � SZ

The construction Kl(S) is limited as a generalisation of the Kleisli construction:

observe that the canonical graph morphism from C to Kl(S) need not even satisfy

the axiom for a semifunctor as it need not preserve composition. So in order to

make any axiomatic progress, we need to make ancillary constructions as follows.

Definition 5.6 Given a near-monad S on C, denote by Cη the subcategory of C

with the same objects as C, with a map f : X −→ Y of C lying in Cη if the diagram

X
f � Y

SX

ηX

�

Sf
� SY

ηY

�

commutes.

Definition 5.7 Given a near-monad S on C, denote by Kl(S)η the subsemicat-

egory of Kl(S) determined by all objects of Kl(S) together with those maps f :

X −→ Y for which the following diagram in Kl(S) commutes:

X
f � Y

X

ηX

�

f
� Y

ηY

�
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There is a key difference between the above two definitions residing in the direc-

tion of the right-hand vertical arrow: in the former definition, it points downward,

while in the latter, it points upward. In the former, the arrow can only point down-

ward as there is no natural arrow upward. But in the latter, the direction of the

arrow is exactly that required to make Kl(S)η the full subcategory of the idem-

potent splitting of Kl(S) determined by the idempotents (X, ηX ) in Kl(S). The

idempotent splitting is the cofree category on the semicategory Kl(S).

Note that the maps ηX need not lie in the category Cη: they do not form a

natural transformation, so there is no reason to believe that they are natural with

respect to themselves. But they do lie in Kl(S)η , where they act as identity maps.

And they do lie in C, allowing us to prove the following result.

Proposition 5.8 Given a near-monad S on C, the canonical graph morphism from

C to Kl(S) restricts to a functor J : Cη −→ Kl(S)η.

We can extend this proposition to deal with coproducts in C: in our leading

class of examples, C is of the form Kl(T ), which always has coproducts if the

base category does, and we are trying to make a further Kleisli-like construction on

Kl(T ) that is functorial, so preserves retracts, and preserves coproducts: the latter

become products in the presence of self-duality. In fact, preservation of coproducts

is routine.

Proposition 5.9 Suppose C has finite coproducts. Let S be a near-monad on C

for which the coprojections Xi −→ X0 + X1 lie in Cη. Then Cη has and J : Cη −→
Kl(S)η preserves finite coproducts. Hence, Kl(S)η has finite coproducts.

From this point, an axiomatic development seems forced. So we shall restrict to

the particular example of primary interest to us, where C is Rel and S is given by

P̃f together with its multiplication and the data for the unit of Pf , i.e., the singleton

maps X −→ PfX.

By Proposition 5.9, the category Kl(P̃f )η has finite coproducts, and, as η is

natural on Set, and using the self-duality of Rel, we have a canonical functor from

Set into Kl(P̃f )op
η . The latter category need not in general be cartesian closed,

but, as in [9], its idempotent-splitting is, with the exponential Y X of sets X and

Y given by splitting an evident idempotent on PfX × Y , exactly analogously to

the situation for finite multisets in Example 5.2. So, analogously to Example 5.2

but with one further step, any set D with PfD × D exhibited as a subset of D

yields the structure making D a reflexive object of the cartesian closed category

determined by the idempotent-splitting of Kl(P̃f )op
η : for the exponential DD is a

retract of PfD × D, which is in turn a retract of D.

Once again, as was the case for finite multisets, in order to obtain a par-

ticular reflexive object D, one simply needs solve in Set the domain equation

D = A + PfD × D for countable A 	= ∅. The least fixpoint yields a countable set,

with the binary operation on Pf (D) given by the relation R from Pf (D) × Pf (D)

to D defined as follows:

(u, v)Rb if (u = {(u1, b), · · · , (un, b)}) ∧ (v =
⋃

i ui).
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This generates a set-theoretic λ-model on any homset with codomain D, and, con-

sidering the hom of 0 into D yields exactly Engeler’s original model [8].

By way of conclusions we say something about the connection between our

view of Engeler’s model and that current in the literature. (A good survey of

constructions from this domain-theoretic point of view is in Plotkin [18].) The

simplest story starts from the theory of semifunctors (Hayashi [9]). As shown by

Hoofman [10] (but see also [11]) this theory allows the construction of the category

POW of power sets and continuous maps using a quite different structure associated

to finite subsets. Hoofman observed that Engeler’s model can be regarded as lying

in (the idempotent completion of) POW which is a category of domains. For us

Engeler’s model lies naturally in Kl(P̃f )op
η . This latter category is emphatically not

a category of domains; specifically it does not have enough points. What we wish to

stress then is that Engeler’s model works for a combinatorial reason independent of

domain theory. However POW is locally a retract of Kl(P̃f )op
η and in a way which

is a bijection on points. In this way one can retrieve the domain-theoretic point of

view.

We close by explaining the programme of work which we initiate here. Filter

lambda models as introduced by the Torino school (see [6] for example) are usually

taken to amount to a presentation of domain theoretic models. Certainly they

are lambda models as they appear to come from categories with enough points.

But our analysis of the Engeler model is that it naturally arises from a category

without enough points. So in our formulation it is naturally a lambda algebra in

the established terminology. Now the Engeler model is taken to be part of the

general family of filter models. So this raises (at least for us) questions along the

following lines. Which filter models really are domain models (after all nobody

doubts Scott’s D∞), and which are naturally something else? There seems much

more to understand about concrete constructions of models for the lambda calculus

(that is, in general about lambda algebras).
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