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Abstract

We investigate semantics for classical proof based on tteese calculus. We show that
the propositional connectives are not quite well-behavenhfa traditional categorical per-

spective, and give a more refined, but necessarily compledysis of how connectives

may be characterised abstractly. Finally we explain thesequences of insisting on more
familiar categorical behaviour.
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1 Introduction

In this paper we describe the shape of a semantics for ctdgsicof in accord with
Gentzen’s sequent calculus. For constructive proof we tie/&amiliar correspondence
between deductions in minimal logic and terms of a typed @ertalculus. Deductions
in minimal logic (as in most constructive systems) reduca tmique normal form, and
around 1970 Per Martin-Lof (see [18]) suggested using l@guat normal forms as
the identity criterion for proof objects in his constru@i¥ype Theories: normal forms
serve as the semantics of proof. Bif-normal forms for typed lambda calculus give
maps in a free cartesian closed category; so we get a whaje @rcategorical models
of constructive proof. This is the circle of connectionsreunding the Curry-Howard
isomorphism. We seek analogues of these ideas for clagsmaifl. There are a number
of immediate problems.

The established term languages for classical proofs anereimcompatible with the
symmetries apparent in the sequent calculus (Parigot fk6ij) reconciling themselves
to that symmetry at least make evaluation deterministi©@hos et al [5,21]). Either
way the ideas, which derive from analyses of continuatinomsogramming (Griffin [9],
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Murthy [15]) can be thought of as reducing classical proot@astructive proof via a
double negation translation. (A categorical semanticseiscdbed in Selinger [23].)
There are term calculi associated directly with the seqeatdulus (Urban [25]) but
it is not clear how to formulate mathematically appealinigecia for identity of such

terms. What we do here suggests many commutative converiorurban’s terms,

but the matter is not straightforward. Also since redudiom classical proofs in se-
quent calculus form are highly non-deterministic, nornaathis do not readily provide
a criterion for identity of such proofs.

There are problems at the level of semantics. There are mdes®degenerate models
giving invariants of proofs ([7] and [12]) and we know how tonstruct some more
general models. But all that is parasitic on experience Wittear Logic. We lack
convincing examples of models sensitive to the issues oghwmive focus here. The
connection with established work on polarised logic, miiaglboth call-by-name and
call-by-value reduction strategies ([23], [26], [10]),atso problematic. Even if one
considers a system (as in [5]) that mixes the two and corsigléthe normal forms
reachable from representations in it of a proof, one stiksloot exhaust all normal
forms to which a proof in the sequent calculus can reducef(gesxample [24, Page
127]). Moreover, there is no easy way to extract models foisgatem from categorical
models in the style of Selinger.

The project on which we report here was motivated by Urbatmsng normalisation
result ([25] and [24]) for a formulation of classical probi.[11], one of us then outlined
a proposal for a semantics. Unfortunately, the axioms of gtitail full naturality of
logical operations contrary to the clear intentions of thpgr. Here we make that good
and analyse the issue. Since then, another of us suggesied] inasing analysis of
classical proof on a simple (box-free) notion of proof naicls systems have implicit
naturalities built in so this is in contrast with [11]. In [6ihrmann and Pym analyse
Robinson’s proposal further. They give categorical corators, add;)-equalities to the
implicit naturalities and succeed in axiomatizing redoiti The interaction between
the equalities and reduction presents computational diffés, so this is a substantial
achievement. The proof net model is better dynamically teamed, and suggests a
notion of model of classical proof simpler than that anatlybere. We give an exact
account of the relation between the two, and show in whates#res Fihrmann-Pym
equalities identify proofs which differ on a sequent calsuteading.

The question of what are the sensible criteria for identitpofs is a delicate one.
The referee rightly stressed that this is true also of coisitre proofs, the difference
between the classical and constructive case being thakitatter we have a robust
semantic notion which is generally agreed on. We do not exjhet in the classical
case. At the very least different systems of proof can be @epeto lead to different
semantics. A compelling example is the recent work of Lammaend Strassburger [14].



2 Modelling classical proofs
2.1 Sequent Calculus and Polycategories

It is a familiar idea that what the sequent calculus provide®t a collection of ideal
proofs-in-themselves, but something more like instrudidor building proofs. With
this in mind we formulate design criteria for our semantics.

(1) Associativity. Cut should be an associative operatiop@ofs.

(2) Identities. We require that there be a canonical axiatariiity proof)A - A for
all A, and that it should act as an identity under cut.

(3) de Morgan Duality. We take a strict duality on proposis@and proofs.

Of these the first two seem compelling while the third coulddgarded as a matter
of convenience. While we have not written out the detailss ibur impression that
the basics of our analysis would not need to change if we didake full de Morgan
duality.

2.1.1 Polycategories

The general category-like structure which encapsulateditst two criteria is Szabo’s

notion of a polycategory (Szabo [22]). Rather than beingnitefe, in the way that the

notion of an ordinary category is definitive, there are ansnbar of variants adapted to
particular contexts (recent treatments include [4] andl [2]

Definition 2.1. A symmetric polycategor§henceforth just polycategoryh consists of

e A collectionobP of objects ofP; and for each pair of finite sequenceéand A of
objects, a collectio(T'; A) of (poly)maps fronT" to A.

e For each re-ordering of the sequericéo produce the sequen€g an isomorphism
from P (I"; A) to P(I'; A), functorial in its action, and dually fah.

e Anidentityid, € P(A; A) for each objectd; and a composition

PAA) xP(ATLYE) - P(ILILAY).

for eachl’, A, A, 11, 33, coherent with re-ordering.
This data should satisfy identity and associativity lawkich we do not give here.

One thinks of P(T'; A) as the collection of abstract proofs bf - A. We write a
polymapf € P(T'; A)asf : ' — A. We picture it as a box

ri/Ja

with input wiresI" and output wiresA. We have explicit identitiegl 4. Composition
corresponds to cut: in particular maps are plugged togetharsingle object, not an
entire sequence. We adopt a lazy algebraic notation for ogmpn. Forf : I' — A, A



andg : A, 11 — X we write the composite in the diagrammatic orderfag : I', 11 —
A, Y. We do not introduce a formal notation for composing manypwps, but note
that such compositions are determined by trees. Howeveruseful to have a little
home-spun notation for simple cases. We write

{f.9}:{h. k}

to indicate compositions involving the four multimapsg, » andk, where thef and

g come before thé andk. For examplef andg might plug into~ andg also intok.
(There are essentially four distinct cases.) It will alwégspossible to determine what
we mean from the context.

2.1.2 =x-polycategories

Our third design criterion amounts to the simplifying démisto treat negation implic-
itly. In proof theoretic terms that is to take a formulatiornttwan involutory negation

(=) :p—=p",p —p
on atomic formulae, and extend it to all formulae by setting

T =1 1*=T

b

(ANB)*=B*VA* (AVB)*=B*NA*,

that is, more or less, by de Morgan duality. The cyclic cha@iterder may be familiar
from non-commutative linear logic (Ruet [20]). It is notistly necessary here, but
serves as there to preserve a strict duality at the leveladfpr Exact duality permits a
purely one-sided sequent calculus as in Girard [8], but ve¢eprto keep both sides in
play at the semantic level. Abstractly we get-aolycategory

Definition 2.2. A symmetrick-polycategory(henceforth jusk-polycategory P con-
sists of a polycategor equipped with an involutory negation-)* on objects to-
gether with for eacl’, A, A, an isomorphisnP(I'; A, A) = P(A*,T; A) coherent
with re-ordering and composition.

With this in place one should not take the talk of input andoatiabove too literally:

according to the--polycategorical perspective an input wire of kidds effectively an

output wire of typeA*. We shall not need to pay much attention to the* operation

which takes polymapt — A, B to polymapsB*,I" — A. However we shall need
notation for variants of the identitiyl, : A — A. We write these as

ing:—— A" A and evy: A A" — —.

These can be pictured as follows.
A*

A*
DT



We note that the operation taking a polymap I' — A, Bto f* : B*,' — A say
is implemented by composition: one hAs= f;in. Similarly for the operation taking
g: Al - Atog*: ' —» A, A*, one hag* = ev; g. In particular we have equations
of the formin; ev = id as in the following picture.

Mg -

The notion of ax-polycategory satisfies our design criteria and so givessa step
towards a definition of a model for classical proof. It delses a notion of proof with
associative cut, identities and strict duality, but withtmgical operations and without
structural rules. For classical logic we need to add the @sdjmnal connectives and the
structural rules of weakening and contraction. We treagéftevo in turn.

2.2 Logical rules

We consider how rules of inference for the classical corimestshould be treated.
We first describe the operations together with the propefaturality, commutative
conversions) which we regard as implicit; and then we carsichich proof diagrams
should further be identified as a result of meaning presgrigauctions.

2.2.1 Logical operations

As logical operators we consider only, A, and their de Morgan duals,, V. Negation
is defined implicitly by de Morgan duality, and other logioglerators in terms of those
given.

We recall the rules fon and T in sequent calculus form.

ABTEA  TEAC NEAD e A
ANBTFAMN THhurarscab " TTrRA

T-L T T-R.

We recast these rules in terms:epolycategories. So we require operations
P(A,B,T;A) — PAAB,T;A) : h—h,
P(INA,C) x P(ILA, D) — P(UILA A CAD) = (f.9) = f-g,
P(I;A) — P(T,T;A) « h—h™
*€P(;T),

encapsulating the-L, A-R, T-L and T-R rules. This imprecise notation will serve for

' To avoid misunderstanding we stress that there is no corigosif the formev; id. There is
nothing to plug into.



this paper. We can picture the rules thus.
T
AL BRI @w ri A

A notion of duality is built into the notion o%-polycategory. So given what we have
said about the operationisandA, there is no need for substantial discussion of the de
Morgan dualsl. andVv. We may as well overload the notation and take operations

P(T;A,C,D) — P(T';A,CV D) : h—h
P(A,T;A) x P(B, I A) — P(AV B,T,ILAA) = (f,9) = f-g
P(;A) — P(T;A, L) « h— ht
* € P(L;)

each being the dual of the corresponding operation above.

2.2.2 Naturality

Composition in ax-polycategory corresponds to Cut, so the general natyredihdi-
tions implicit in proof nets are clear. Two involve a localesption on just one proof,
and are compelling. In our imprecise notation, these arelasifs.

e Naturality for A-L. Supposeh : A, B — E. Then forw : E — E' we have the
naturality condition
h;w = h;w .
e Naturality for T-L. Supposé: : A — B. Thenforv : B — B’ we have the naturality
condition

htv=(hv)t.
(We omit irrelevant contexts.) By duality that gives us mality as follows
w;h =w;h and v;ht = (v;h)7",

in the right rules forv and L. We adopt these naturality equations.

On the other hand we shall argue against adopting the faligwondition.

¢ Naturality for A-R. Supposef : A — C, g : B — D. Then foru : A” — A and
v : B' — B we have the naturality equation

{u, v} (f-9) = (u; f) - (v;9)

where on the right we have the obvious compositiorf el : A, B — C' A D with
u andw.



(Note that there is no context in-R and so no corresponding naturality.) The problem
which we will come to in 4.3 is that taken together with contran and weakening
this naturality equation identifies proofs with essenyidifferent collections of normal
forms.

However there are cases where that cannot happen; and sele@seasonable to allow
some maps andwv to slip harmlessly past the imagined box aroyrid g). After all
we inevitably have

{id,id}; (f-9) = f -9 = (id; f) - (id; g) .

So we adopt a restricted form of an idea from [11]. We call majps for which both
the A equations

w (f-9)=(u; f)-g, v;(f-9)=(f)(v;9), and so{u,v}; (f-g) = (u; f) - (v; g)

and the dual equations for hold linear. (This definition does make sense!) We have
the following.

Additional assumption Linear maps are closed under the logical operations intro-
duced above.

In view of the other naturalities, the essential assumpigotihat x is linear and that
linear maps are closed under- —.

2.2.3 Commutation: logical rules

The polycategorical perspective supports equalitiesrgyisom the commuting con-
versions in sequent calculus. We sketch, again using oureicige notation, the basic
phenomena for the binary operators.

First given proofs
f:TT—=>ALA B, ¢g:Ts—=A,,C, h:T3—> A5 D,
we have (perhaps modulo exchange) an equality of the form
(f-g)-h=(fh)-g:T—=>AAANC,BAD

(with T', A, the sum of thd”; and A; respectively). Of course there are other versions
obtained by duality

Secondly given proofs
f+ABT = A, 0, g:Ty— Ay, D,

we have an equality of form

fr9g=f-9g: ANB,I' - A CAD



(with T, A, the sum of thd’; and A, respectively). As before there are variants by
duality.

Finally from a proof
f:A BT —>ACD,

we can apply the operatidn) in two different orders getting an equality of the form
f=f:AABT A, CVD.

There are variants by duality. The picture is as follows.

A/\B..> @C\/D

So far we have only considered the binary operators. Therenany similar examples
involving also the rules for” which we merely list.

frog=(f-9t, T =77, ftt=rtt.

(The final equation reflects the two different orders of apmyrules to obtain a proof
of T,I' - A, 1.) We are happy to adopt all these equalities.

2.2.4 Reduction

Most of our equalities on proofs keep track of inessentiafritengs, but in itself that
is dull. The critical equalities take account of meaningspreing reductions. We take
these to arise from logical cuts.

Supposethaf : A-C,g: B+ Dandk: C,D + E are proofs. (Again we suppress
further contexts.) We can form the proof

AFf ¢ Br9D CDFYE
ABFCAD CADFE
ABFE

cuT

which reduces to
ArfC BHD C,DFHE

ABFE

CUTs

where by associativity we write the two Cuts together. Thvega simple equation for
our polycategory:

(f-9)ik={f.ghk.
Similarly suppose thaf : A+ B is a proof. We can form the proof

A+ B
H*T T,AFB
A+ B

cuT

and this reduces outright to
A B.



This gives another equation in our polycategory:

* fr=1.

These equations (and their duals) constitb&ereduction principle for logical cut$-or
us the reduction of logical cuts is meaning preserving.

2.3 Structural Rules

2.3.1 Implementation

The structural rule of Exchange is implicit in our notion ghsmetricx-polycategory,
but we need to consider Weakening and Contraction.
A r-A AATHA I'FA,B,B

W-L W-R

ATEA . TFAB . Arra CL . TtrEAB SR

Naturalities implicit in proof nets in tandem with our redion principle for logical
cuts suggest a nice way to represent these irkquolycategory.

We treat contraction first. For all, ‘generic’ instances of contraction give maps
A—ANAandm : AV A — A arising from the proofs

AbA AFA o AFA AFA
AAFANA AVAFAA
Arana b Avara CR

V-L

These are obviously constructed as de Morgan duals, so wenadbat they are inter-
changed by the duality in owpolycategory, that is,

(dA)* = ma~, (mA)* =da- .

Itis consonant with earlier assumptions to suppose thataneraplement the C-L rule
by composition with its ‘generic’ instancé that is, we formf : AA A" = A and
then compose withi to gived; f : A,T" = A as in the following picture.

AQANA [T

Duallym : Av A — Aimplements contraction on the right: contractingB — D, D
on the right isg; m.

Similarly we have a way to implement weakening. In our potggary we should have
mapst : A — T andu : L — A arising from the proofs

TET n Ir e
AFT . 1FA

Again these are de Morgan duals and should be interchangdddiyy:

(ta)" =wa-, (ua)” =ta-.



Now suppose that we have a prgbt I' - A, and we wish to weaken on the left. We
form f*: T,T' = A and compose withto givet; f* : A, = A. Thust can be used
to implement weakening on the left. Duatlycan be used to implement weakening on
the right: in that case is weakened tg™; u.

2.3.2 Commuting conversions

Implementing rules by composition with generic instan@®s$ care of naturality is-
sues; and some commuting conversions are an immediatequmrsee of the associa-
tivity of composition in a polycategory. However there arermsuch.

We expect C-L to enjoy the same commuting possibilities-ds This requires equa-
tions of the form

(df)-g=d;(f-9), df=df, df=(df)*.

(In the second equation, the typing should give a commutimyersion ind; f, not a
logical cut.) Similar considerations for W-L and-L give the equations

&G -g=t(f9), tf=tf, tff=ENT.

(In the last equation the typing should give a commuting egsion int¢; f*, not a
logical cut.) We take all these.

2.3.3 Correctness equations

There are further issues to consider arising from the decisi implement the structural
rules. We implement contraction via composition withA — AAAandm : AVA —

A. Butd andm are themselves produced by contractions on prabfsid, : A, A —
ANAandid,-ids : AVA — A, Arespectively. So we need to make these agree. This
gives us equations:

d (ldAldA):d, (1d,41d,4),m:m

Similarly, we implement weakening via composition withA — T andu : 1L — A.
But again these are themselves produced by weakening pxoof$—-) — T and
*: L — (—) respectively. Making these agree gives us equations

There is a further delicate point which we mention here. Give-/ A there are two
distinct ways to introducé on the left:
LA rEA

T,TFA , T,FI—AW_L.

In our notation these arg™ andt; f* respectively: they are not taken as equal. This

decision arises from an austere view of cut reductions whadast rule is structural. In
this paper we make no equality assumptions in such circuroeta

10



2.3.4 Structural congruence

In the interests of simplicity, we subject the structurdésuto structural congruence in
a sense popular in concurrency theory.

Consider the process of Weakening only immediately to Gattr

ATFA
AATFA
ATFA

That seems as pointless a detour as a logical Cut, and we iallowe deleted. Given
the analysis above we can express this by the equation:

Similarly it seems willful to distinguish between the var®oways in which a series of
contractions may be performed. This provides the seemipgiiytless equation
d; (d;T) = d; (d F)

which properly indexed is a version of associativity. Fipahere is an issue relating
contraction to exchange: one can exchange before comigattio copies ofA. One
may as well identify the proofs. Write-)* to indicate a use of symmetry. Then modulo
elimination of logical cuts we can express this by

diidy-ids  =d: A— ANA.

Thus structural congruence gives us identity, assoctgtand commutativity condi-
tions. We assume these in the interests of mathematicalrateg

3 Categorical formulation

In section 2 we surveyed all the structure ofnpolycategory needed to model classical
proofs, and we gave the equations which we think should Adlc gives us a genuine
though unwieldy notion of model. We shall not spell it outstead we shall extract
from the x-polycategorical formulation structure on its underlyicgtegory giving an
equivalent notion of categorical model.

Before we get down to work, we note that the involutary newati-)* extends to maps
as we have (for example) natural isomorphisms

C(A;B) =C(—;A",B) = C(B"; A").

It is easy to see that

Proposition 3.1. The operatior{—)* : C°” — C is a strict functorial self-duality on our
categoryC.

11



The duality more or less halves the work which we now have ta/eoenever we have
structure we shall have its dual.

3.1 Categorical Preliminaries

We start by introducing some preliminary notions. We coesithtegorie€ equipped
with a special class af;q of idempotents, which we shall cdlhear idempotentsin
our application these will be idempotents (mapsith e; e = ¢) which are linear in the
sense of 2.2.2. For the moment we need assume nothing beyemibtious require-
ment that every identity is in the class. We call such dajaarded category

Definition 3.2. A guarded functorr : C — D between guarded categories consists of
the usual data for a functor such thaimaps linear idempotents to linear idempotents;
and whenever ande’ are linear idempotents, then

Fle); F(f); F(g); F(e') = F(e); F(f;9); F(€)

We say that a guarded functéris domain absorbingvhenF'(e); F/(f) = F'(e; f) for
linear idempotents; it is codomain absorbingvhenF'(f); F(e) = F(f;e) for linear
idempotents.

We should interpret this in the cagéds the trivial one object categorywith its only
choice of linear idempotents. A guarded funcior 1 — D is a choice of objech € D
and linear idempotent, : D — D. We call this aguarded object

We also need some notion dicell between guarded functors
Definition 3.3. Let F, G : C — D be guarded functors. guarded transformationr
simply transformationconsists of data, : FFA — G A satisfying

F(ida); F(u);ap = aa; G(u); G(idp)

forallu: A— BinC.
We do not spell out here the consequences of these definibahsote the following.

Theorem 3.4. Guarded categories, guarded functors and transformationg a 2-
category, theguarde®-category

The only subtle point is the composition ®fcells along &-cell, where one needs to
compose additionally with maps of the foi&#'(id). We shall not need that here. The
composition of2-cells along al-cell by contrast is straightforward, and we shall need
terminology suggested by it.

2 The terminology is intended to suggest a focus on good behawnce we compose with the
idempotents or guards. There is no stronger connectiorsathiter uses of “guarded” in logic
or computer science.

12



Definition 3.5. Suppose thatr : I — G andp : G — F are (guarded natural)
transformationsa and 5 are mutually inversga inverse tog) just whena,; 54 =
F(ldA) andBA; ay = G(ldA)

This amounts to taking inverses dicells in the guarded-category.
3.2 Logical operators

3.2.1 Extension to maps

Clearly C must be equipped on objects with the structuree, and false or, not of
classical logic: we write this structure ds A, 0, V. There is a compelling way to
extend the propositional operators to maps. Given prdofd B andC ¢ D, there is
a canonical proofi A C' -9 B A D given by the following

ArB CFD
A, CFBAD

ANCEFBAD

Similarly we havef Vv g a proof of AV C = BV D. So in terms of our algebraic notation
we should define

fhng=(f-9) . fVg=(f-9).
ThusC is equipped with operations andV on maps. It turns out that they are not
functorial, but in a suitable sense guarded functorial. Bkensense of that we need a
collection of linear idempotents. We identify that classa@lows.

We first note a useful computation in osipolycategories for classical logic. We give
just the version for conjunction as that for disjunction usbto it.

Proposition 3.6. Suppose that : A - C,9g: B — D,h:C - Fandk: D —» F
are maps. TheQf Ag); (hAk)={f,g}; (h-k).

Using also the Additional Assumption of 2.2.2 we deduce atdhe following.

Proposition 3.7.1fe4, : A — Aandeg : B — B are linear and idempotent, then so
arees ANeg andey Vep.

We now associate with our categorical modd class of linear idempotents. We simply
close the collection of identity maps under the logical apiens. (We make clear what
that means in case df and |..) We introduce some notation for tlianonical linear
idempotentsvhich we have identified. We write

ea,B = eanp = idy Aidp eas = eavp = idy Vidg .
We also take a nullary version of these, setting
eT = *+ €| =%

with the obvious interpretation in each case.

13



Theorem 3.8.(i) T with et and dually L with e, are guarded objects.
(i) The operatorA : C x C — C is a domain absorbing guarded functor, while dually
V :C x C — Cis acodomain absorbing guarded functor.

3.2.2 Coherence

When we come to reconstructgpolycategory from our category we need to observe
some relations between our canonical linear idempotergsillMétrate the point here.
Concentrating on conjunction we have on the one hand thegdeant

€A,BAC :idA/\idB/\ciA/\(B/\O) —>A/\(B/\C)
and on the other
€A,B,C:id,4/\(id]3/\idc) 2A/\(B/\C) —)A/\(B/\C) .

Intuitively the second decomposes things more than the dinst this is reflected in the
fact that the second absorbs the first in the sense that

€AB,CieABNC = €apc and esprci€aBc = €aBC -

The first calculation depends on the linearityidf - id from the Additional Assump-
tion of 2.2.2.

Generally the situation is as follows. Given propositiohsve have many bracketings

to give a conjunction\ A;. Given one such we have a variety of idempotents depending
on how deeply we ‘analyse the bracketings’. The shalloweslyais yieldsd , 4, the
deepesé/\ 4, = Nidy,. The coherence of these idempotents is the following fact.

Proposition 3.9. Suppose in the given situation thatis an idempotent corresponding
to a deeper analysis thaf3. Thene;; e; = ey = es; €.

We note the nullary version of the propositiony;; id+ = et = idr;er.
3.3 Structure

3.3.1 Units and associators

Our logical operations are only guarded functorial, butytde come equipped with
structure familiar in the case of tensor products. We cotraénon the case of and
A; the case ofl. andV follows by duality.

First we can define maps

l=%-idy: A TAA  [=id,: TAA= A
r=idg-*x: A—=>AANT F=@Gd})s : AANT = A

14



where the superscript indicates a tacit use of exchange. We also have assogyativit
maps defined as follows

a
(There is only one sensible way to read those definitions!jdie at once that all these
structural maps are linear.
By direct computation we show the following.

Theorem 3.10.The pairs of mapéand!, » and#, « anda, are in each case mutually
inverse guarded transformations.

Note that the equations given by our definitions are not giiéefamiliar ones. For
example since\ is domain absorbing we do have

(fAg)ANhia=a; f A (gAh);eanmacy
but we only have the more familiar

(fAg)ANh;a=a;fA(gAh)

whenf, g andh are linear.

Perhaps surprisingly, it is automatic that our associgivisatisfy the Mac Lane pen-
tagon condition and the usual unit conditions on the nose.diagrams are familiar
and we do not exhibit them here.

Theorem 3.11.The Mac Lane pentagon and unit conditions
A B,CAD; @ArB,c,p = 1da A ap.c,p;aapac,p; Gapc Nidp

aar,c:TA A\ ldB = ldA N lB
both hold.

Of course many other version of the diagrams (e.g. involing) hold. However the
information contained in the coherence diagrams is quitélsuOne needs to bear in
mind that e.ga 4 sc,p IS NOt guarded natural iF andC'. Let us say that enixed path
in the pentagon is one which involves batlanda. Many but by no means all mixed
paths are equal. For example, the two maps

a:AN(BAN(CAD))— (AANB)A(CAD)

and
idaAa;a;anidp;a: AN(BA(CAD)) — (ANB)A(CAD)

are not equal. (There are some similar issues for the treagigigrams.)
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3.3.2 Symmetry

We have maps induced by the symmetry of etpolycategory. We use a superscript
()* to indicate a use of a symmetry I, and define a twist map

c=(idg-ids)* : ANB — BAA.

The picture is as follows.

We note at once that this further structural map is lineariN'ém compute.

Proposition 3.12.c4 g;cp 4 = eann : ANB — A A B, thatis,c is a transformation
inverse to itself in the guarded sense.

Finally we look at coherence.

Theorem 3.13.The Mac Lane hexagon and unit conditions

aapc;CANB,Ciacap =ida Acpcoiaacpicac Nidp CT,A374 = g

both hold.

We note a nuance. A symmetry of the formgac) : AN (BAC) = (BAC)ANA
cannot be defined in the usual way from associativities anthsstriesc, 5 andc c.
Rather one has an equation of the form

CA(BAC); €(BACIAA = GaB,ciCAB Nidesap aciidp Acaciapac .

Thus the usual definition holds in the guarded sense. Howhbigers quite enough to
establish the following.

Theorem 3.14.The symmetry satisfies the standard braid identities.

CAB VAN idc; ldB VAN CA,C;CB,C VAN ldA = ldA VAN CB,c;CAC N idy; ldc VAN CA,B -

3.3.3 Linear distributivity

So far we have the operatioris A and L, v, which are dual. We need something like
the usual connection between them from Linear Logic to capgeneral polycategori-
cal composition. We define

w=1id4 - (idg - id¢) = (id4 - idg) -ide : AN(BVC) — (AANB)VC
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where the many commuting conversions are indicated in th@dong pictures.

Note that these maps are linear.

There are two distinct kinds of symmetry at play here. On the band we have the
following.

Proposition 3.15. w andw are self-dual: that is, we have

(wapc) =wes p-a« and (Dapc)’ = Wes g A -

Essentially this follows from the de Morgan duality of theopf rules. On the other
hand we have the following.

Proposition 3.16.w andw are interderivable using the symmetry: that is, we have the
following equation and its dual.

WA BCc = CABve; o Nida;We p aide V ca g coann

Many other relations between andw are consequences of these equations and the
idempotency of the symmetry

The basic result is as follows.
Theorem 3.17.The linear distributivities are guarded transformations.

There are a considerable number of coherence diagrams &k @istributivities. They
are clearly laid out in [2] and we do not have space to repeanhthere.

Theorem 3.18.The coherence diagrams for weak distributivities hold.

The only place where this bears interpretation is in the ca8énit Coherence’ where
one finds canonical idempotents (identities in 2heategory of guarded functors).

3.3.4 Duality

A x-polycategory supports polymaps, : — — A*, A andev, : A, A* — — which
enable us to define something like a unit

ng:inA-idB:B%A*\/(A/\B),
and something like a counit

en=evy-idg: AN(A*VB) = B.
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One expects that the unit and counit are interchanged byeifielgality, though our
conventions on duality require mediating symmetries. (Miite other choice of con-
vention, the problem emerges elsewhere!)

Proposition 3.19. Then ande are dual in the sense that the equations

c 1L AYE LA Ay _ AL
ca- g Nida; (N5)" = carvp aiep- @aNd(e5)*; ca= ponar = Ng.;ida- V cp- 4 hold.

Finally we get triangle identities in a guarded sense.
Theorem 3.20.We haved, A ng;c4,5 = eanp aNdni., p;ida- Vg = ea-vp.

This essentially gives an adjunction in the guardezhtegory.

3.3.5 Algebras and coalgebras

We consider now the structural maps

d:A—=ANAt: A—=T m:AVA—=-Au: 1 =5 A

The de Morgan duality of the proof rules shows that thesecgiras are dual to one
another:

% % k %
/A:mA*, mA:dA*, tA:“‘A*’ “’A:tA*'

In familiar category theoretic settings maps of these kiamdsusually associated with
product and coproduct structure; but here we do not even iaaeded naturality. But
the correctness equations of 2.3.3 give at once the follgwetation to canonical linear
idempotents.

Proposition 3.21. The mapsl, ¢ are codomain absorbing whiles and« are domain
absorbing in the sense that following equations hold.

diegpa=d, tier=t and egqua;m=m, e ;u=u.

Moreover some structure holds on the nose.

Proposition 3.22. The structurg A, ¢ 4, d 4) forms a commutative comonoid, while the
structure(A, m 4, u4) forms a commutative monoid.

We list the equations involved in the comonoid case.

dit ANida; 7 =idy  diida Ayl = idy
d;ida Nd;a=d;dAidy d;dNidyg;a =d;idg Ad
dic=d.
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3.4 The definition

We are now in a position to explain a notion of categorical eiddr classical proof.

In the definition one should think of the hom-s€éts4; B) as being the collection of
classical proofs of - B. Proofs of more complex sequents are coded indirectly in the
model.

Definition 3.23. A (static) model for classical (propositional) prootensists of the
following data satisfying the given axioms.

e A guarded categorg equipped with a (strictly) involutive self-duality-)*.

e Guarded objectS and L of C and guarded functors, Vv (respectively domain and
codomain absorbing) satisfying the usual de Morgan laws respect to the duality.
Linear maps are maps v such that

uNv;fAg=(u;f)N(v;g) and fVguVoe=(fu)V(gv).

e Linear mutually inverse guarded transformations foand A

[:A—=TAA, [: TANA—= A,
r:A—ANT T:ANT = A
a:AN(BANC)—= (ANB)ANC a:(ANB)ANC — AN(BAC)

of the left and right unit laws and associativity satisfyithg usual pentagon and
triangle laws .
By duality we have also the same structure foandVv.

e Alinear self-inverse guarded transformation

c:ANB—=BAA

giving a symmetry for\, and satisfying the usual hexagon condition.
By duality we have also the same structure\for
e Linear guarded transformations

w:AN(BVC)—= (AANB)VC, w:(AVB)AC — AV (BACQC)

interchanged by duality, interdefinable using the symmatrgt satisfying standard
coherence conditions for distributivities.

e Linear and mutually dual guarded transformatiogis: B — A* v (A A B) and
g4 AN (A* v B) — B satisfying the triangle identities.

e An association to all objectd of mapsd: A — AA A, t: A — 1, and their duals
m:AVA— Aandu: I — Ain(C, codomain and dually domain absorbing, and
giving to each object! the structure of a commutative comonoid with respect to
and the structure of a commutative monoid with respeét.to

This definition may seem substantially more complex thanogpes for linear logic;
but that may well be more a matter of lack of familiarity. Muohthe definition is
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concerned to say that one has-autonomous category, modulo issues of canonical
idempotents.

We now explain how, given a modgélof classical proof in the sense just described, we
can construct a-polycategoryC modelling classical proof in the sense analyzed earlier.
Splitting idempotents is a basic tool in category theorgifear in particular from the
theory of Morita equivalence. Here we could use it for a nguebose: splitting some
canonical idempotents provides objects representingsptdyof objects on either sides
of polymaps. This means that we recover the sets of polydpsA ). We explain the
point in a simple case. We have canonical polymaps

iAAB:idA'idBZA,B%AAB and i(j\/D:id(j'idDZC\/D—)C,D.

SinceiAAB;?; icvp = {ida,idg}; f; {id¢,idp} = f, we can regard (A, B; C, D) as
arising by splitting the idempotent

g — m = €AAB Y €CcvD
onC(AAB;CVD,).

So in outline the construction of the polycategorical modehs follows. We make
a choice of bracketings of both and A. This gives us hom-set§(A T,V A) and
canonical idempotents,  and ey ». We can then tak& (T'; A) to consist of the
f e C(ANT,VA) such thate/\r; f; eya = f. Finally we have a series of fiddly but
routine tasks.

(1) We show that’(T'; A) is essentially independent of the bracketing chosen. This
follows from the coherence of the canonical linear idemptste

(2) We show how to define composition on the sets of polymalpis. Jombines point
(1) with heavy use of the linear distributivities. And we shthat the result is
indeed ax-polycategory.

(3) We define the logical operations on the collections ofypaps and derive the
many equations. This is pretty much routine.

4 Explanation and comparison
4.1 Representable polycategories

We recall the relationship betweerpolycategories and-autonomous categories (see
[2] or [11] for example). Take the obvioscategoriest Poly of x-polycategories and
xAut of x-autonomous categories: &Hcells are invertible so we are in the groupoid
enriched setting. Any-autonomous category determines-@olycategory, with the
linear tensor and par representing polymaps; so one seeththra is a groupoid en-
riched forgetful functorSPoly : *Aut — xPoly. On the other hand one can freely
construct ax-autonomous category generated by-polycategory, subject to obvious
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identifications. This gives a groupoid enriched funciotut : xPoly — xAut and a
groupoid enriched adjunctiofiAut - SPoly. The basic conservativity result proved
by direct syntactic considerations in [2] (though see [DI}dn indication of a semantic
proof) is as follows.

Theorem 4.1.In the groupoid enriched adjunctia®Aut 4 S Poly, the unit
P — SPolyS Aut(P)

is full and faithful for any«-polycategoryP.

When does a&-polycategoryP arise from ax-autonomous category, that is when is it

in the essential image ¢fPoly? This occurs just when there are maps
iAﬁB:A,B%A/\BiT:——)T Z’C’DZCVD—>C,DZ’L2L—>—

composition with which induces isomorphisms

P(AANB,T;A)=P(A, B, T;A) P(T,I;A) =PI A),
P(I;A,CV D)= P(;A,C, D) P(O;A L) 2 P(I;A).
In particular for anyl’, A we have isomorphism&(T'; A) = C(AT;V A) where we
write AT and\/ A for a conjunction and disjunction according to some braokest

In these circumstances we say thats, i, ic,p and:, provide a representation of
polymapsor more loosely that, T, Vv, | represent polymaps

4.2 Representability and functoriality

Consider now a&-polycategorical modef for classical proof: it comes equipped with
structure

1A,B =1lArB, IT =%, lop=Ilove, 1L =%
(using earlier notation) potentially providing a repretsion of polymaps.

From our outline of the reconstruction of thepolycategory, we see that we have rep-
resentability just when the canonical linear idempotents
eans =tan, er=01)", ecvwn=1tlcp, e = ()"

are in fact identities. By duality, we only need half of thesrepresentability is equiva-
lent to the conditions

et = idt and idy Aidg = idaag -
Next note that, as is guarded domain absorbing, we have

fAghAkjidg Aidp = (f;h) A (b k);ide Aidg
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SO thatldp ANidp = idgar giveS
fAghNE=(f;h)A(hik)

which is functoriality ofA. One should regarelr = id+ as functoriality ofT. Then one
can summarise the discussion in the following.

Theorem 4.2. LetC be a model for classical proof. Then the following are eqlana

(1) The identity conditionsl4 A idg = id4,p ander = id.
(2) Full functoriality of A, and T.
(3) Representability of polymaps by T andv, L.

This makes clear the oversight in [11]. There linear mapsewassumed to form a
x-autonomous category; but that givids, A idg = ida,p and so functoriality of the
logical operators. Note also that the conditjong; hAk = (f; h)A(h; k) follows from
that naturality of the\-R rule which we did not adopt. However that condition is warak
than full functoriality. It is easy to find models in which iblis butid 4 Aidg = idaxp
fails.

4.3 Why functoriality should fail

As we shall see the assumption of representability provadasgbstantial simplification
of the notion of categorical model. So it is time to explainywire do not adopt it.

First we argue against the tempting naturality\aR

{u, v} (f-9) = (u; f) - (v;9).

Consider first{m, idg}; (id4, idz). Composing withidz does nothing so this is equal
to m; (id4, idg), which is represented by the proof

AFA AFA

AVAFA/A A+ A BFB
AVAF A A BFAAB

AVABFAAB 1)

There are two distinct ways to eliminate the Cut. One resultse normal form

AFA AFA
AVAF A A

AVAFA BFB

AVABFAAB )

and the other in the normal form

A-rA BrB AFA BFB
ABFAANB ABFAAB

AVA B BFAAB,ANB
AVABFAAB (3)
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Now considelm;id.) - (idg;idg). Thisis clearly equal tan - id 5 which is represented
by the first of the above two normal forms. There is no way toeg¢te second (though
that is the normal form in which: has done its intended job of copying). Now we take
the view that failure to have the same normal forms (even rwoolovious rewritings)

is a clear sign of non-identity. We conclude that the naityraljuation

{m,idg}; (id - idg) = (m;id,) - (idp;idp)

is not faithful to the notion of proof encapsulated in thewssd calculus.

We explain the significance of this for the functorialityof Considerid 4 A id 3. Note
that

(m/\ldB)(ldA/\ldB) :{m,ldB}(ldAldB) and m/\ldB:mldB .

i

Now we just argued that we should not have

But asiag; h = h, the operatior{ ) is injective. So we cannot have the equation

The general point seems to be this. If we cut a classical ppeen with such simple
proofs as given by our canonical linear idempotents, thercare in general, obtain
additional normal forms that were not available from thessleal proof on its own.

4.4 FRihrmann-Pym Axioms

We observed already thatsapolycategory in which the polymaps are represented by
A andV is in effect ax-autonomous category. If one has a model for classical pbof
this kind the structure simplifies drastically.

Theorem 4.3. To give a model of classical proof in whiety T and vV, | represent
polymaps is to give the following data.

e A x-autonomous category (with a strict duality): tensor is\ and parV.

e The equipment on each objeétof C of the structure of a commutative comonoid
with respect to tensor (and so dually the structure of a cotatiue monoid with
respect to par).

This is the equality component of the structure proposedimrifiann and Pym [6]. (It
is not the only simple possibility. We have recently seenknd#] of Lamarche and
Strassburger which leads to an even more restrictive ngtion

There are a number of further connections between the RirmmAPym notion and the
one described in this paper. One simple thought is as foll®wppose that is a model
for classical logic in the general sense, freely generayesbime category of objects and
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maps. (This makes sense by Kelly-Power [13].) We can indeigtdefine idempotents
e on objectsA of C: we sete, = id 4 for atomic objects (which includes the duai¥)
andthenset .z = es Aeg andeyyp = e, V eg. (Implicitly we have taker+ ande |
as we found them.) Then we can define a quotieat C with

C(A,B) ={f € C(A,B) |es; frep = [}
The quotient functor is given by
C(A,B) — C(A,B) : f—eaifien.

Now it is easy to see thathas on the nose the structure whizhas up to idempotents.

Theorem 4.4.1f C is a model for classical proof freely generated by a categirgnC
is a model in the Bhrmann-Pym sense.

4.5 Semantic possibilities

We hope to write more fully about models in further papersfosmow we survey the
possibilities. We distinguish between the following.

e Degenerate models: that is categorical models based onamtrolmsed categories
(and so ignoring the difference betwegsrandV). We think of these as abstract in-
terpretations, allowing one in particular to associatergetaof invariants to proofs.
Preliminary observations are in [12], [7].

e Categorical models: that is models satisfying the FuhmR@ym equality axioms
[6]. We know some examples of these, and have a little théorythere is more to
do.

e General models: that is, models which are equivalent togaaégories which do not
arise froms«-autonomous categories. We know almost nothing about these

5 Provisional Conclusions
5.1 Guiding Principles

The notion of model for classical proof theory which we haegaloped has unfamiliar
features. Hence it seems worth reflecting on the principleghvhave informed our

analysis.

Reduction principle for logical cuts. For us this is the remnant of the Martin-Lof
criterion (see Prawitz [18]) for identity of proofs. At ldasome part of normalisation
preserves meaning: we ask that simple detours should neém&his is an essential
component of our analysis, without which we would not havenesting equalities

between (representations of) proofs.

Structural congruence This an idea taken from concurrency theory. We follow that
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culture in taking the structural rules of Weakening and @axtton to behave well with
respect to themselves: so we end up with commutative cordastaicture forT, A
and commutative monoid structure far, V. However not a great deal rides on this
choice. We note that the optical graphs of Carbone [3] pmfriee models for a notion
of abstract interpretation in which this choice is not made.

Computation of values We take something from ideas of non-determinism: a clasic
proof has a non-deterministic choice as to the normal foowgtich it reduces. We take
account of all plausible commuting conversions and the Wkt a view to having some
good representation of proofs. For these we hope that itaggpble that if proofs are
equal then they should have the same normal forms. Where wessvedence of distinct
normal forms we have taken it to be evidence that the pro&satinct. Though we
need to say more about equality to make the claim precisegli@ve that our analysis
is consistent with this principle in the following sense.

Proposition 5.1. If two proofs are equal then they reduce to the same colleciio
normal forms.

5.2 Further issues

Normal forms and meaning We consider the question whether our general principle
in the last proposition should be an equivalence: does gawie same set (or maybe
multiset) of normal forms entail equality of proofs? At thement we would argue
against that.

MIX . There is something right about the idea that proofs in aassogic involve
some kind of non-determinism: the computation or reducpoocess is in principle
non-deterministic. But we do not for example have primiifer non-deterministic
choice. In particular in view of [1] we should investigate approach to the idea of
non-deterministic choice in proofs using the MIX rule.

Idempotents While it is not clear whether our formulation of semantios €lassical
proof is robust, its use of canonical idempotents would ledher investigation. We
have not space to describe here the consequence of spliléimgotents in a model for
classical proof in our sense.

Linearity . In this paper we have used a notion of linearity which hasgaiéd to
some extent the general failure of functoriality of the aioperations. We have not
troubled with natural refinements (linearity in the domaircodomain). In a properly
algebraic formulation we would expect to follow Power [1Tidatake this explicitly
as part of the structure. Before doing that we should probdbtide just how much
use to make of it. In [11] where already an explicit notion iofehrity is proposed,
the idea was that linear maps would also be maps of the contireutaalgebra and
commutative algebra structure. It seems that to make gawks# that one must forbid
some superficially natural ways to reduce Cuts. (For exampleould allow to reduce
proof (1) in Section 4.3 to only (2) but not (3).)
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