
Combining continuations with other effects

Martin Hyland,1 Paul Blain Levy,2 Gordon Plotkin and John Power3,?

1 Department of Mathematics, University of Cambridge, Cambridge CB3 0WB,
England. Email: M.Hyland@dpmms.cam.ac.uk

2 School of Computer Science, University of Birmingham, Birmingham B15 2TT,
England. Email: P.B.Levy@cs.bham.ac.uk

3 Laboratory for the Foundations of Computer Science, University of Edinburgh,
King’s Buildings, Edinburgh EH9 3JZ, Scotland. Email:gdp@dcs.ed.ac.uk,

ajp@dcs.ed.ac.uk. Tel: +44 131 650 5159. Fax: +44 131 667 7209.

1 Introduction

A fundamental question, in modelling computational effects, is how to give a uni-
fied semantic account of modularity, i.e., a mathematical theory that supports
the various combinations one naturally makes of computational effects such as
exceptions, side-effects, interactive input/output, nondeterminism, and, partic-
ularly for this workshop, continuations [2, 3, 5]. We have begun to give such an
account over recent years for all of these effects other than continuations [8], de-
scribing the sum and the tensor, or commutative combination, of effects, starting
from Eugenio Moggi’s proposal to use monads to give semantics for each indi-
vidual effect [15]. That has yielded the most commonly used combinations of the
various effects. Here, we extend our account to include continuations.

We consider three distinct ways in which continuations combine with the
other effects: sum, tensor, and by applying the continuations monad transformer
C(−); we analyse each of these in the following three sections. We did not include
continuations in [8] as they are of a different nature, both computationally and
mathematically, to the other effects. Computationally, the other effects arise
naturally from algebraic operations and equations [16], but continuations seem
not to do so and seem better developed in terms of control operators such as
Felleisen’s C operator [4, 7, 6]. Mathematically, the monads generated by the
other effects all have rank [1, 9, 10], which implies that the sum and tensor of
any two of them always exist. The continuations monad RR− does not have rank;
a sum with it does not exist in general; and nor might a tensor with it.

One might ask, why go to this trouble? After all, Moggi and his colleagues
have already given us a notion of monad transformer [2, 3], and the construc-
tions we develop all yield known monad transformers. But the work on monad
transformers has not explained how to derive a monad transformer from the
associated monad; and nor has it shown how to extend operations to the com-
bination of two effects. Our analysis here and in [8] yields such a derivation in
the cases of sum and tensor, and it shows there is no fundamental asymmetry
? This work has been done with the support of EPSRC grants GR/M56333 and

GR/N64571.

as the monad transformers are derived from the symmetric sum and tensor. It
also allows us to redefine algebraic operations systematically: there are canonical
monad maps from T to T + T ′, to T ⊗ T ′, and to C(T), and operations, qua
generic effects [8], extend systematically along monad maps; this yields operation
transformers.

For control by itself, given a cartesian category with a strong monad T and
Kleisli exponentials, we assume a distributive initial object 0 (i.e., x×0 ∼= 0) and
a family Cx : ¬¬x −→ Tx, where ¬x =def T0x, inverse to the canonical strong
monad map dT : T −→ ¬¬, cf. [7, 6]. These axioms also hold in the models
given below for the combination of control with all the other effects, apart from
exceptions. There C is a retract, not an isomorphism; the counterexample in [12]
shows that this also holds operationally.

We end the paper with a formula for a typical combination of effects, making
clear the elegance and simplicity obtained by our analysis, followed by some
discussion of what remains to be done. For simplicity of exposition, we generally
restrict attention to monads on Set.

2 Sum and exceptions

The sum of effects appears in the combination of exceptions with all other com-
putational effects we consider, including continuations. It follows from Theorem 1
below that the sum of an arbitrary monad T with the (simple) exceptions monad
TE =def −+ E in the category of monads on Set is T (−+ E). So RR− + TE is
RR(−+E)

, the usual combination of the two effects [17].
On the other hand, the sum of RR− with even a very simple monad need not

exist:

Example 1. Let Tu be the monad on Set generated by a single unary operation,
i.e., Tu = Id∗. If RR− + Tu did exist, then, by the analysis below, its value at
∅ would solve the isomorphism equation Z ∼= RRZ×N

. But that fails for evident
cardinality reasons when |R |> 1.

So we cannot take a sum of the continuations monad with an arbitrary monad,
but we can take a sum of the exceptions monad with an arbitrary monad. The
argument follows.

First, for notation, given an endofunctor Σ on a category A, if the forgetful
functor from Σ-alg to A has a left adjoint, we say that the resulting monad is
the free monad on Σ and write it as Σ∗. Explicitly, assuming A has binary sums,
Σ∗ is µy.(Σy + −), with one existing if and only if the other does (where, for
any endofunctor F , we write µy.Fy for the initial F -algebra, if it exists). In [8],
we proved:

Theorem 1. Let Σ be an endofunctor on a category with binary sums for which
Σ∗ exists, and let T be a monad. If µy.T (Σy + −) exists, then the sum of
monads T +Σ∗ exists and is given by a canonical monad structure on the functor
µy.T (Σy +−).

Theorem 1 includes the example of exceptions, taking Σ to be the constantly E
functor; one can also give a direct proof [8, 14]. Note that the sum of monads is
not the sum of the underlying functors, i.e. is not given pointwise.

Although not stated in [8], there is a converse: if the sum exists, it must be
given by the formula. The conclusion in Example 1 follows; a similar argument
shows the sum of RR− with the I/O monad TI/O = def µY.(Y I + O × Y + −)
also fails to exist.

In regard to Felleisen’s C operator, we have:

Proposition 1. If dT has an inverse, then dT+TE
has a left inverse, but need

not itself be invertible.

3 Tensor and side-effects

The natural combination of the continuations monad with the side-effects monad
is (RS)(R

S)− , as used in Scheme [11]. It follows from Theorem 2 below that this is
the tensor, or commutative combination, of the two monads. The general notion
of tensor is not easy to motivate in terms of monads: it exists more naturally
as a construct on, e.g., countable Lawvere theories, an equivalent formulation of
the notion of monad with countable rank [8].

There are two possible ways to extend the notion of tensor from countable
Lawvere theories to arbitrary monads. One is to define a notion of a theory of
arbitrary size, equivalent to arbitrary monads, and then generalise to such theo-
ries. The other is to translate the construction of a tensor product of countable
Lawvere theories into monadic terms. Here, we do the latter:

Definition 1. Given monads T and T ′, the monad T ⊗ T ′, which we call the
tensor product of T and T ′ if it exists, is defined by the universal property of
having monad maps α and α′ from T and T ′ to T ′′ = T ⊗ T ′, subject to the
commutativity of

TX × T ′Y
α× α′- T ′′X × T ′′Y

T ′′X × T ′′Y

α× α′

?

σ̄
- T ′′(X × Y)

σ

?

where σ and σ̄ are the two canonical maps induced by the strength of T ′′ (which
is uniquely determined for any monad on Set).

The coherence condition of the tensor product, expressed in terms of Lawvere
theories, is the assertion that the operations of one theory commute with those
of the other. There do not seem to be computationally natural operations and
equations that generate the continuations monad, but the Lawvere theory for-
mulation is more natural for most other examples [8].

In general, the tensor product of two arbitrary monads seems not to exist, but
we do not know a counterexample. We do, however, have some partial positive
results: the tensor product of 22− with any monad with rank exists, and the
tensor product of any continuations monad with any monad T whose Lawvere
theory contains a constant is the trivial (= constantly 1) monad.

Theorem 2. If T is an arbitrary monad, the tensor product of T with TS exists
and is given by the monad T (S ×−)S.

One can prove this theorem by brute force from the definition; a more elegant
proof follows from the formulation of tensor product in terms of Lawvere theories
applied to the characterisation of global state in [16].

In regard to Felleisen’s C operator, we have the following result:

Proposition 2. If dT is invertible (has a left inverse) then dT⊗TS
is invertible

(has a left inverse).

4 The continuations monad transformer

The continuations monad transformer, C(T) =def TRTR− [3, 2], is a unary con-
struction, whereas sum and tensor are binary constructions, applied to continu-
ations and some other effect. It applies naturally to nondeterminism and to I/O,
e.g., taking the finite non-empty powerset monad F+ to (F+R)(F

+R)− . Note
that for any monad T , the canonical map dC(T) : C(T) −→ ¬¬ is invertible.

The continuations monad transformer seems to be more primitive than the
continuations monad: we have RR− = C(Id), but we do not see any principled
way to derive C(−) from RR− . Moreover, it seems there is, in general, no monad
map from RR− to C(T), whereas there is one from T to C(T). Nevertheless, a
universal characterisation is available:

Theorem 3. Given a monad T and a set R, there is a universal monad map
α :T −→ C(T) together with a T -algebra isomorphism f :T (R) ∼= C(T)(0). The
universal property says that given any such α′ : T −→ S and f ′ : T (R) ∼= S(0),
there is a unique β :S −→ C(T) such that βα′ = α and β0f

′ = f .

Observe in particular the directions involved with the universal property: there
is some, but not full, reversal from that for sum and tensor. This property can
also be described naturally in terms of Lawvere theories.

Finally, we note that the transformer is parametrised on R, but this can be
extended to an arbitrary T -algebra (A, a), replacing TR by A [13]; Theorem 3
then extends too. Curiously, the combination of the state monad with the contin-
uations monad, analysed above as a tensor, can also be regarded as being of this
form, taking the TS-algebra to be (RS , a) with the evident a : (S×RS)S → RS .

5 Discussion

Using the constructs we have developed, we propose formulae for combining
exceptions, side-effects, interactive input/output, (binary) nondeterminism and
continuations. For all of them together we propose:

TE + (TS ⊗ C(TI/O + F+))

or, more explicitly:

((F+(µY.(O⊗F+Y +(F+Y)I+(R+E))))S)((F
+(µY.(O⊗F+Y +(F+Y)I+(R+E))))S)−+E

which we note is linear, having the form ME(MS(C(MI/O(F+)))) with each
M derived from + or ⊗ applied to a particular monad. To omit effects, omit
the corresponding parts of the formula. We have no independent justification of
these proposals, but they are consistent with all the cases we know.

The main thing missing in our account of the combinations of continuations
with other effects is an understanding of why they are the right choices (if indeed
they are!); one puzzle here is that the combination of state with continuations
can be explained in two different ways. For the combination of effects other
than continuations with each other, the choices were justified computationally,
in terms of the equations involving the sets of operations inherited from each
effect [8]; perhaps there is some analogous explanation involving the interaction
between the operations and Felleisen’s C operator.

A closely related question concerns finding the right axiomatisation of Moggi’s
computational λ-calculus with continuations and the various effects, cf. [12, 18].
One would also like to understand combinations of continuations with local ef-
fects, such as local store or exceptions.

References

1. J. Adámek & J. Rosický, Locally Presentable and Accessible Categories, London
Mathematical Society Lecture Note Series, 189, CUP, 1994.

2. N. Benton, J. Hughes & E. Moggi, Monads and Effects, Proc. APPSEM 2000,
LNCS 2395, 42–122, 2002.

3. P. Cenciarelli & E. Moggi, A Syntactic Approach to Modularity in Denotational
Semantics, Proc. 5th CTCS, CWI Technical report, 1993.

4. M. Felleisen, D. P. Friedman, et al, A Syntactic Theory of Sequential Control. TCS
52, 205–237, 1987.

5. M. P. Fiore, A. Jung, et al, Domains and Denotational Semantics: History, Accom-
plishments and Open Problems, Bulletin of EATCS (59), 227–256, 1996.

6. C. Fuhrmann & H. Thielecke, On the Call-by-Value CPS Transform and its Seman-
tics, I. & C., to appear.

7. M. Hofmann, Sound and Complete Axiomatisations of Call-by-Value Control Op-
erators, MSCS, 5(4), 461–482, 1995.

8. J. M. E. Hyland, G. D. Plotkin & A. J. Power, Combining Effects: Sum and Tensor,
submitted.

9. G. M. Kelly, A Unified Treatment of Transfinite Constructions for Free Algebras,
Free Monoids, Colimits, Associated Sheaves, and so on, Bull. Austral. Math. Soc.,
22, 1–83, 1980.

10. G. M. Kelly & A. J. Power, Adjunctions whose Counits are Coequalizers, and
Presentations of Finitary Enriched Monads, JPAA, 89, 163–179, 1993.

11. R. Kelsey, W. Clinger & J. Rees (eds.), Revised5 Report on the Algorithmic
Language Scheme, HOSC, 11, 7–105, 1998.

12. J. Laird, Exceptions, Continuations and Macro-expressiveness, Proc. ESOP, LNCS
2305, 133-146, 2002.

13. P. B. Levy, Call-By-Push-Value, Ph.D. thesis, Queen Mary, University of London,
2001.

14. C. Luth & N. Ghani, Composing Monads Using Coproducts, Proc. ICFP ’02,
133–144, ACM Press, 2002.

15. E. Moggi, Notions of Computation and Monads, I. & C., 93(1) 55–92, 1991.
16. G. D. Plotkin & A. J. Power, Notions of Computation Determine Monads, Proc.

FOSSACS ’02, LNCS, 2303, 342–356, 2002.
17. H. Thielecke, Comparing Control Constructs by Double-Barrelled CPS, HOSC,

15, 141–160, 2002.
18. H. Thielecke, Contrasting Exceptions and Continuations, Submitted.

