
Wellfounded Trees and
Dependent Polynomial Functors

Nicola Gambino? and Martin Hyland

Department of Pure Mathematics and Mathematical Statistics
University of Cambridge

{N.Gambino,M.Hyland}@dpmms.cam.ac.uk

Abstract. We set out to study the consequences of the assumption of
types of wellfounded trees in dependent type theories. We do so by in-
vestigating the categorical notion of wellfounded tree introduced in [15].
Our main result shows that wellfounded trees allow us to define initial
algebras for a wide class of endofunctors on locally cartesian closed cat-
egories.

1 Introduction

Types of wellfounded trees, or W-types, are one of the most important compo-
nents of Martin-Löf’s dependent type theories. First, they allow us to define a
wide class of inductive types [14]. Secondly, they play an essential role in the
interpretation of constructive set theories in dependent type theories [3]. Fi-
nally, from the proof-theoretic point of view, they represent the paradigmatic
example of a generalised inductive definition and contribute considerably to the
proof-theoretic strength of dependent type theories [9].

In [15] a categorical counterpart of the notion of W-type was introduced. In
a locally cartesian closed category, W-types are defined as the initial algebras
for endofunctors of a special kind, the polynomial functors. The purpose of this
paper is to study polynomial endofunctors and W-types more closely. In partic-
ular, we set out to explore some of the consequences of the assumption that a
locally cartesian closed category has W-types, i.e. that every polynomial endo-
functor has an initial algebra. We introduce dependent polynomial functors, that
generalize polynomial functors, to explore these consequences.

Our main theorem then shows that the assumption of W-types is sufficient
to define explicitly initial algebras for dependent polynomial functors. We ex-
pect this result to lead to further insight into the interplay between dependent
type theory and the theory of inductive definitions. In this paper, we will limit
ourselves to giving only two applications of our main theorem. First, we show
how the class of polynomial functors is closed under fixpoints. We haste to point
out that related results appeared in [1, 2]. One of our original goals was in-
deed to put those results in a more general context and simplify their proofs.
? EPSRC Postdoctoral Research Fellow in Mathematics.

Secondly, we show how polynomial functors have free monads, and these free
monads are themselves polynomial. The combination of these two facts leads to
further observations concerning the categories of algebras of polynomial endo-
functors. These results are particularly important for our ongoing research on
2-categorical models of the differential λ-calculus [6].

The interplay between dependent type theories and categories is here ex-
ploited twice. On the one hand, category theory provides a mathematically effi-
cient setting to present results that apply not only to the categories arising from
the syntax of dependent type theories, but also to the categories providing their
models. On the other hand, dependent type theories provide a convenient lan-
guage to manipulate and describe the objects and the arrows of locally cartesian
closed categories via the internal language of such a category [16].

In order to set up the internal language for a locally cartesian closed category
with W-types, it is necessary to establish some technical results that ensure a
correct interaction between the structural rules of the internal language and the
rules for W-types. Although these results are already contained in [15] we give
new and simpler proofs of some of them. Once this is achieved, we can freely
exploit the internal language to prove the consequences of the assumption of
W-types in a category.

Acknowledgements. We thank Thorsten Altenkirch, Marcelo Fiore and Erik
Palmgren for stimulating discussions.

2 Polynomial Functors

2.1 Locally Cartesian Closed Categories

We say that a category C is a locally cartesian closed category, or a lccc for short,
if for every object I of C the slice category C/I is cartesian closed1. Note that if C
is a lccc then so are all its slices: for an object A in C and an object f : B → A
in C/A , there is indeed an isomorphism of categories (C/A)/f ∼= C/B .

For an arrow f : B → A in a lccc C we write ∆f : C/A → C/B for the
pullback functor. The key fact about locally cartesian closed categories is the
following proposition [7].

Proposition 1. Let C be a lccc. For any arrow f : B → A in C , the pullback
functor ∆f : C/A→ C/B has both a left and a right adjoint.

Given an arrow f : B → A in a lccc C , we will write Σf : C/B → C/A
and Πf : C/B → C/A for the left and right adjoint to the pullback functor,
respectively. We indicate the existing adjunctions as Σf a ∆f a Πf .

1 Here and in the following, when we require the existence of some structure in a
category, we always mean that this structure is given to us by an explicitly defined
operation.

2

An abuse of language. For an arrow f : B → A, we write the image of X → A
in C/A under ∆f as ∆f (X) → B : the arrows fit into the following pullback
diagram

∆fX

��

// X

��
B

f // A

The Beck-Chevalley condition. The Beck-Chevalley condition, which holds in
any lccc, expresses categorically that substitution behaves correctly with respect
to type-formation rules. More precisely, it asserts that for a pullback diagram of
the form

D

g

��

k // B

f

��
C

h // A

the canonical natural transformations

Σg ∆k ⇒ ∆h Σf , (1)
∆h Πf ⇒ Πg ∆k (2)

are part of natural isomorphisms. For details see [8].

The axiom of choice. The type-theoretic axiom of choice [14] is expressed by
the fact that, for two arrows g : C → B and f : B → A , the canonical natural
transformation

Σh Πp ∆εC ⇒ Πf Σg ,

is part of a natural isomorphism, where

∆fΠfC
p //

q

��

ΠfC

h

��
B

f // A

is a pullback diagram and εC : ∆f Πf C → C is a component of the counit of
the adjunction ∆f a Πf .

2.2 Internal Language

Associated to a lccc C there is a dependent type theory Th(C) to which we shall
refer as the internal language of C . A complete presentation of such a dependent

3

type theory can be found in [16]. See also [13] for more information. We limit
ourselves to recalling only those aspects that are most relevant for the remainder
of this work. We use the judgement forms

(Ba | a ∈ A) , (Ba = B′a | a ∈ A) , (ba ∈ Ba | a ∈ A) , (ba = b′a ∈ Ba | a ∈ A)

to express, for a ∈ A , that Ba is a type, that Ba and B′a are equal types, that b
is a term of type Ba, and that ba and b′a are equal terms of type Ba , respectively.
The dependent type theory Th(C) has the following primitive forms of type:

1 , IdA(a, a′) ,
∑
a∈A

Ba ,
∏
a∈A

Ba .

We refer to these as the unit, identity, dependent sum and dependent product
types, respectively. As usual, these primitive forms of type allow us to define the
forms of type A × B and BA , to which we refer as the product and function
types. The dependent type theory Th(C) has a straightforward interpretation
in C and thus provides a convenient language to define objects and arrows in C .
An example: to define an arrow g : C → B in C/A with domain C → A and
codomain B → A in C/A it is sufficient to derive in Th(C) a judgement of form

(ga(c) ∈ Ba | a ∈ A , c ∈ Ca) .

The required arrow is then defined as the interpretation of this judgement in C .

2.3 Polynomial Functors

Let C be a lccc. For an object X we write X also for the unique arrow X → 1
into the terminal object 1 of C . Observe that arrows B : B → 1 and A : A→ 1
determine functors ∆B : C → C/B and ΣA : C/A → C . We are now ready
to introduce polynomial functors. For an arrow f : B → A in C we define an
endofunctor Pf : C → C, called the polynomial functor associated to f , as the
composite

C
∆B // C/B

Πf // C/A ΣA // C . (3)

Definition 2. We say that an endofunctor on C is polynomial if it is naturally
isomorphic to a functor Pf : C → C explicitly defined as

Pf =df ΣA Πf ∆B

for some arrow f : B → A of C .

Let us look more closely at the definition of polynomial endofunctors. Given
an arrow f : B → A , let us consider ΣA : C/A → C and ∆B : C → C/B. The
functor ∆B takes an object X of C to the left side of the pullback diagram:

X ×B //

��

X

X

��
B

B // 1

4

We can therefore write ∆BX = X ×B . The action of ΣA is very simple: given
an object Y → A of C/A let ΣA(Y → A) =df Y . These observations lead to
a description of polynomial functors in the internal language, which we shall
exploit. The object f : B → A of C/A determines the judgement (Ba | a ∈ A)
of Th(C). We can then explicitly define in Th(C)

Pf (X) =df

∑
a∈A

XBa ,

for a type X. The interpretation in C of the right-hand side of the definition is
indeed Pf (X) , as defined in (3).

2.4 Basic Properties of Polynomial Functors

Proposition 3. The composition of two polynomial functors is polynomial.

Proof. See [2] for a proof using the internal language and [8] for a proof using
diagrammatic reasoning. Note that the proof uses crucially the axiom of choice.

We now assume that the lccc C has finite coproducts. As pullback functors
are left adjoints, finite coproducts are preserved under pullbacks and so in par-
ticular disjoint. Hence they can be represented in a familiar way in the internal
language Th(C) , which now has also the primitive forms of type 0 and A + B
called the empty and disjoint sum types, respectively.

The class of polynomial functors is closed under a further operation, that
will be very important in the following. Recall from Appendix A that for an
endofunctor P : C → C and an object X of C there is a functor PX : C → C
whose action on an object Y is defined as PX(Y) =df X + P (Y) .

Proposition 4. Let P : C → C be a functor and X be an object of C. If P is
polynomial then so is PX .

Proof. We give a proof using the internal language. Let f : B → A and consider
the polynomial functor Pf associated to f . For X and Y in C we then have the
following chain of equalities and isomorphisms:

X + Pf (Y) = X +
∑
a∈A

Y Ba ∼=
∑

z∈X+A

Y Bz

where (Bz | z ∈ X + A) is defined so that the judgements (Bι1(x) = 0 | x ∈ X)
and (Bι2(a) = Ba | a ∈ A) are derivable.

The notion of strength for a functor is recalled in Definition A.7 in Ap-
pendix A.

Proposition 5. Every polynomial functor has a strength.

5

Proof. Let us use the internal language to define the arrow

σX,Y : X × PfY → Pf (X × Y)

which gives us one of the components of the required strength σ for a polynomial
functor Pf . First, observe that the domain and the codomain of σX,Y can be
described in Th(C) as X×

∑
a∈A Y

Ba and
∑
a∈A(X×Y)Ba respectively. We can

then define σX,Y by letting

σX,Y (x, a, t) =df (a, (λb ∈ Ba)(x, t(b))

for (x, a, t) ∈ X ×
∑
a∈A Y

Ba .

3 Change of Base

In the following, we shall be interested in the effect that pullback functors have on
the algebras of polynomial endofunctors. More precisely, for an arrow u : I → J
in C , we will show that the algebras for the polynomial functor Pf on C/J
associated to an arrow f of C/J can be mapped functorially into algebras for
the polynomial endofunctor P∆u(f) on C/I associated to the arrow ∆u(f) of C/I .
This fact is a purely formal consequence of some general observations concerning
the 2-category of polynomial functors, that we define below. The treatment is
inspired by the formal theory of monads [10, 17].

Note that without loss of generality we can assume that J is the terminal ob-
ject of C and thus consider only the pullback functors ∆I : C → C/I determined
by arrows I : I → 1 .

3.1 The 2-category of Polynomial Functors

Let us define the 2-category Poly . An object of Poly is a pair (C,Pf) where C is a
lccc and Pf is the polynomial endofunctor on C associated to an arrow f : B → A
in C. A 1-cell with domain (C,Pf) and codomain (D,Pg) is given by a pair (F, φ)
where F : C → D is a functor and φ : Pg F ⇒ F Pf is a natural transformation.
If (F, φ) and (G,ψ) are 1-cells, then a 2-cell with source (F, φ) and target (G,ψ)
is a natural transformation σ : F ⇒ G together with a commuting diagram

Pg F
Pg σ //

φ

��

Pg G

ψ

��
F Pf

σ Pf // G Pf

For our purposes, it will be sufficient to recall the definition of the action
of the 2-functor Alg : Poly → Cat on objects and 1-cells. For an object (C,Pf)
of Poly we define

Alg(C,Pf) =df Pf -alg ,

6

where Pf -alg is the category of Pf -algebras, as defined in Appendix A. Given
a 1-cell (F, φ) : (C,Pf) → (D,Pg) in Poly, the functor Alg(F, φ) is defined by
mapping a Pf -algebra x : Pf X → X into the Pg-algebra

Pg F X
φX // F Pf X Fx // F X .

Observe that if C and D are lccc’s and F : C → D is a locally cartesian
closed functor, i.e. a functor preserving the locally cartesian closed structure up
to isomorphism, then there is an obvious 1-cell χF : (C,Pf) → (D,PFf). The
next lemma is a simple but very useful fact, whose proof follows by a direct
calculation.

Lemma 6. Let C and D be lccc’s, and let F : C → D be a locally cartesian closed
functor. For any arrow f : B → A in C the diagram

Pf -alg //

Alg(F,χF)

��

C

F

��
PFf -alg // D

where the horizontal arrows are the obvious forgetful functors, commutes.

3.2 Pullback of Algebras

Let C be a lccc and let I be an object of C . Recalling from [7] that the pullback
functor ∆I : C → C/I is locally cartesian closed, we can apply Lemma 6 and
obtain, for any arrow f : B → A in C , a commuting diagram of form

Pf -alg //

FI

��

C

∆I

��
Pg-alg // C/I

where g =df ∆I(f) and FI =df Alg(∆I , χ∆I) . Let us describe this diagram more
explicitly. First, observe that g fits into the pullback diagram

B × I //

g

��

B

f

��
A× I // A

and hence g = f ×1I . The action of the functor FI on objects can now be easily
described. A Pf -algebra in C

PfX x // X (4)

7

is mapped into the Pg-algebra in C/I given by the arrow in C/I

Pg ∆I X
φX // ∆I Pf X

∆I(x) // ∆I X , (5)

where φ is part of the isomorphism described in the next proposition.

Proposition 7. Let C be a lccc and let I be an object of C. For any arrow
f : B → A in C there is an isomorphism ∆I Pf ∼= Pg ∆I , where g =df ∆If .

Proof. Observe that we have the following chain of equalities and isomorphisms:

∆I Pf = ∆I ΣA Πf ∆B by definition of Pf ,
∼= Σ∆IA Π∆I(f) ∆∆IB ∆I since ∆I is cartesian closed,
= ΣA×I Πg ∆B×I ∆I by definition of ∆I and of g ,
= Pg ∆I by definition of Pg ,

which proves the claim.

We can also describe the action of FI in the internal language of C . First of
all observe that for ((a, i), t) ∈

∑
(a,i)∈A×I X

Ba we can define

φX((a, i), t) =df ((a, t), i) ∈
∑
a∈A

XBa × I .

An algebra as in (4) determines a judgement(
x(a, t) ∈ X | (a, t) ∈

∑
a∈A

XBa
)
.

and therefore, for ((a, i), t) ∈
∑

(a,i)∈A×I X
Ba , we can define

∆I(x)((a, t), i) =df (x(a, t), i) ∈ X × I .

It is now simple to observe that the derivable judgements(
φX((a, i), t) ∈

∑
a∈A

XBa × I | ((a, i), t) ∈
∑

(a,i)∈A×I

XBa
)

and (
∆I(x)((a, t), i) ∈ X × I | ((a, t), i) ∈

∑
a∈A

XBa × I
)
.

express the arrows in (5), as required.

8

4 Wellfounded Trees

Definition 8. We say that a lccc C has W-types if for every arrow f : B → A
in C there is a diagram Pf (Wf)→Wf which is an initial algebra for Pf : C → C .

Recall that, by a theorem of Lambek, the arrow Pf (Wf) → Wf is an iso-
morphism. Once the internal language of a lccc with W-types is set up, we will
therefore be allowed to write

W ∼=
∑
a∈A

WBa

where f : B → A and W =df Wf . The next subsection is devoted to justify the
use of the internal language in connection to W-types.

4.1 Pullback of Wellfounded Trees

In [15] it is proved that if C has W-types then so do all its slices. A proof of
this fact can be obtained by defining explicitly initial algebras for polynomial
endofunctors on the slice categories. It is also observed there that the pullback
functors preserve W-types. Although in [15] it is suggested to prove this second
fact using the explicit definition ofW-types in slice categories, we now show that
it is possible to give a proof that does not involve any reference to the explicit
definition of W-types in slice categories.

Let C be a lccc and let I be an object in C. Recall from Proposition 7 that
for an arrow f : B → A there is a natural isomorphism ∆I Pf ∼= Pg ∆I ,
where g =df ∆I(f) . In Subsection 3.2 we used one part of this isomorphism,
namely the natural transformation φ : Pg ∆I ⇒ ∆I Pf , to define a functor
FI : Pf -alg → Pg-alg . We now use the other part of the isomorphism, namely
the natural transformation ψ : ∆I Pf ⇒ Pg ∆I that is inverse to φ , to define
a functor GI : Pg-alg → Pf -alg that is right adjoint to FI . First of all, observe
that ψ gives us a natural transformation ξ : Pf ΠI ⇒ ΠI Pg that is defined as
the composite

Pf ΠI
η +3 ΠI ∆I Pf ΠI

ΠI ψΠI +3 ΠI Pg ∆I ΠI
ΠI Pg ε +3 ΠI Pg

where η and ε are the unit and the counit of the adjunction ∆I a ΠI , respec-
tively. Hence we have that (ΠI , ξ) : (C/I,Pg) → (C,Pf) is a 1-cell in Poly and
thus we can simply define

GI =df Alg(ΠI , ξ) .

Like we did for the functor FI in Subsection 3.2, we can describe GI in the
internal language of C. Let us consider a Pg-algebra, i.e. an arrow z : PgZ → Z
in C/I . This arrow determines the judgement(

z(i, (a, s)) ∈ Zi | i ∈ I , (a, s) ∈
∑
a∈A

Zi
Ba
)

9

where (Zi | i ∈ I) is the judgement associated to the object Z → I of C/I . We
can then derive the judgement(

(λi ∈ I) z(i, (a, (λb ∈ Ba) t(b, i))) ∈
∏
i∈I

Zi | (a, t) ∈
∑
a∈A

∏
i∈I

Zi
Ba
)

which gives us a Pf -algebra PfΠIZ → ΠIZ . This is exactly the image under GI
of the Pf -algebra PgZ → Z . The following result is the key component to prove
the desired pullback stability property. A proof can be easily be obtained either
reasoning with diagrams or with the internal language.

Theorem 9. Let C be a lccc and let f : B → A be an arrow in C . For any
object I of C the adjunction ∆I a ΠI lifts to an adjunction FI a GI , i.e. in the
diagram

Pg-alg //

GI

��

C/I

ΠI

��
Pf -alg //

FI

OO

C

∆I

OO

where g =df ∆I(f) , the inner and outer squares commute.

Corollary 10. Let f : B → A be an arrow of C. For any object I there is an
isomorphisms W∆I

∼= ∆IWf .

Proof. The functor FI is a left adjoint and hence preserves initial objects.

4.2 Free Monads for Polynomial Functors

We begin exploring the consequences of the assumption that a lccc hasW-types.
The following theorem, which makes use of the notion of pointwise free monad
introduced in Definition A.1 will have a crucial role in the following. As we did in
the discussion leading to Proposition 4, we assume that our lccc has coproducts.

Theorem 11. If C has W-types then every polynomial endofunctor on C has a
pointwise free monad.

Proof. Let P : C → C be a polynomial functor. If we knew that for every
object X of C the functor PX : C → C had an initial algebra, then we could invoke
Proposition A.6 and conclude the desired claim. By Proposition 4, however, it is
actually the case that the functors PX : C → C, for X in C, are polynomial, and
therefore they have an initial algebra by the assumption that C has W-types.

From now on, we assume that C has W-types and refer to Wf as the W-type
for the arrow f . Theorem 11 ensures that free monads for polynomial functors
exist. We begin by deriving some information on these free monads.

Proposition 12. Free monads for polynomial functors are strong monads.

10

Proof. The claim is a consequence of Proposition 5 and Proposition A.9.

The next corollary allows us to observe the existence of structure on the
categories of algebras for polynomial functors.

Corollary 13. For every polynomial functor P on C, the category P -alg is iso-
morphic to the category T -Alg, where T is free monad on P .

Proof. The claim follows by Proposition A.2 and by Proposition A.4.

5 Dependent Polynomial Functors

We can now pick up the fruits of the work done in the last section and exploit
freely the internal language to prove further consequences of the assumption
of the existence of W-types in a lccc. Here we show how W-types can be used
to define initial algebras for a class of functors that is wider than the one of
polynomial functors. For categorical counterparts of the arguments sketched here
we invite the reader to consult [8].

5.1 Initial Algebras

Let f : B → A be an arrow in a lccc C with W-types, and define W =df Wf .
For an arrow g : C → B we define an endofunctor Dg : C/W → C/W , called
the dependent polynomial functor associated to g by letting

Dg
(
X(a,t) | (a, t) ∈W

)
=df

(∑
b∈Ba

XCb
t(b) | (a, t) ∈W

)
for (X(a,t) | (a, t) ∈ W) in C/W . Observe that every polynomial functor is a
dependent polynomial functor. The next theorem is our main result.

Theorem 14. Every dependent polynomial functor has an initial algebra.

Proof. We only illustrate the construction of the desired initial algebra, and leave
the verification of the appropriate properties to the reader. Let us continue to use
the notation adopted to introduce dependent polynomial functor and consider
an arrow g : C → B. First of all, define D and E as the objects fitting in the
pullback diagram

E

��

h // D
pW //

pB

��

W

pA

��
C

g // B
f // A

where pA : W → A is the arrow mapping (a, t) ∈W into a ∈ A . In the internal
logic of C we have D ∼=

∑
a∈ABa ×WBa . Define V =df Wh and observe

V ∼= {(a, b, t, v) | (a, b, t) ∈ D , v ∈ V Cb} .

11

since E(a,b,t)
∼= Cb for (a, b, t) ∈ D . We will define X as the object fitting in the

equaliser diagram

X
e // V

m //
n

//
∑
d∈DW

Ed

The object X → W of C/W that is an initial algebra for Dg will then be given
as the composite

X
e // V

pD // D
j // W ,

where pD : V → D maps (a, b, t, v) ∈ V into (a, b, t) ∈ D . It remains to define the
arrows m and n necessary to isolate X. For (a, t, b, v) ∈ V define m(a, b, t, v) =df

(a, b, t, j p v) and observe m has the correct target. For (a, b, t, v) ∈ V define
n(a, b, t, v) =df (a, b, t, (λ ∈ Cb)t(b)) and observe that, since t(b) ∈W for (a, t) ∈
W and b ∈ Ba , n(a, b, t, v) lies in the appropriate object.

5.2 Applications

Let us consider two arrows f : B → A and g : D → C in a lccc C with W-types.
We can then define a functor F : C × C → C whose action on an object (X,Y)
is defined as

F (X,Y) =df Pf (X)× Pg(Y) .

For a fixed object X of C , the functor FX : C → C that maps Y into F (X,Y)
can easily be seen to be polynomial. It therefore has an initial algebra, that we
denote as

FX
(
µY.F (X,Y)

)
// µY.F (X,Y)

The assignment of µY.F (X,Y) to X can then be extended to a functor C → C .
We refer to these functors as fixpoint functors.

Theorem 15. Fixpoint functors are polynomial.

Proof. We limit ourselves to sketch the main idea of the argument. Let us actu-
ally suppose that the fixpoint functor is polynomial, and let Q→ P be an arrow
in C such that

µY.F (X,Y) ∼=
∑
p∈P

XQp

Direct calculations imply that there must be isomorphisms

P ∼= A×
∑
c∈C

PDc

Qp ∼= Ba +
∑
d∈Dc

Qt(d)

12

for (a, c, t) ∈ A×
∑
c∈C P

Dc . The first isomorphism certainly holds if we define P
as the W-type of the arrow g × 1A : D × A → C × A and use Corollary 10.
Theorem 14 shows that it is also possible to satisfy the second isomorphism by
defining Q→ P as the initial algebra for an appropriate dependent polynomial
functor.

Theorem 16. The free monad on a polynomial functor is polynomial.

Proof. The reasoning used to prove the claim is completely analogous to the one
used to prove Proposition 15.

A Algebras and Monads

In this appendix we review some facts concerning endofunctors and monads, and
some results concerning free monads. For more details the reader is invited to
refer to [4, 5, 11]. Let P : C → C be an endofunctor on a category C . An algebra
for P , or a P -algebra, is a diagram of the form a : PA → A in C. An arrow of
P -algebras from a : PA→ A to b : PB → B is given by a commuting diagram

PA
Pf //

a

��

PB

b

��
A

f // B

There is then a manifest category P -alg of P -algebras and P -algebra arrows. We
write U : P -alg→ C . for the obvious forgetful functor.

Definition A.1. Let P be an endofunctor on C . We say that P has a pointwise
free monad if the forgetful functor U : P -alg→ C has a left adjoint.

The next proposition shows that the existence of a pointwise free monad for
an endofunctor is a necessary and sufficient condition for the category of algebras
for the endofunctor to be isomorphic to a category of algebras for a monad.

Proposition A.2. The forgetful functor U : P -alg→ C has a left adjoint if and
only if it is monadic over C.

Proof. The proof is an application of Beck’s theorem [12] characterising monadic
adjunctions. One should observe that the functor U satisfies all the hypothesis
of Beck’s theorem except for the existence of a left adjoint.

When (T, η, µ) is a monad on a category C we write T -Alg for the usual
category of T -algebras. Note that we follow a suggestion of Peter Freyd in using
P -alg for the algebras of an endofunctor P and T -Alg for the algebras for a
monad T . Again, we write U : T -Alg → C for the obvious forgetful functor. We
can then restate Proposition A.2 as follows.

13

Proposition A.3. (T, η, µ) is a pointwise free monad for P if and only if there
is an equivalence T -Alg→ P -alg such that the following diagram commutes

T -Alg //

U
""DDDDDDDDD P -alg

U
}}zzzzzzzz

C

We wish to give a more concrete description of the pointwise free monad for
an endofunctor on a locally cartesian closed category with coproducts. We now
introduce a family of functors PX : C → C , for X in C , necessary to state the
next proposition. First of all, observe that the function mapping a pair (X,Y)
of objects of C into X + PY extends easily to a functor from C × C to C . This
determines a functor C → End(C) mapping an object X of C into an endofunctor
PX on C. More explicitly, the action of PX on an object Y of C is such that
PX(Y) = X + PY .

Proposition A.4. Let P be an endofunctor on C. The following are equivalent:

(i) The endofunctor P has a pointwise free monad,
(ii) The comma category X ↓ U has an initial object, for all X in C .
(iii) The endofunctor PX has an initial algebra, for all X in C .

Proof. The equivalence (i)⇔ (ii) follows by Definition A.1 and by the possibility
of determining a left adjoint via initial objects in comma categories [12]. The
equivalence (ii)⇔ (iii) follows from the existence of an isomorphism of categories
X ↓ C ∼= PX-alg .

Recall from [5, 17] that the category of monads on C, Mnd(C), has monads as
objects and monad natural transformations as arrows. In the following definition
we make use of the forgetful functor U : Mnd(C)→ End(C) mapping a monad to
its functor part.

Definition A.5. Let P : C → C. By a uniform free monad on P we shall mean
an initial object of the comma category P ↓ U .

Let us make this definition more explicit. A uniform free monad for an end-
ofunctor P : C → C is determined by a monad (T, η, µ) on C and by a natu-
ral transformation α : P ⇒ T with the following universal property: for any
monad (T ′, η′, µ′) and any natural transformation α′ : P ⇒ T ′ there exists a
unique monad transformation λ : T ⇒ T ′ such that λ α = α′ . The next propo-
sition connects the notions of pointwise and free monad. It can be proved using
either Proposition A.3 or Proposition A.4. Details are contained in [8].

Proposition A.6. A pointwise free monad determines a uniform free monad.

We conclude this appendix by recalling the notions of strong functor and
strong monad and a simple fact about them. Let (C,⊗, I, a, l, r) be a monoidal
category, where I is the unit object and a, l, r are the isomorphisms expressing
the associativity, left and right unit laws. For diagrammatic counterparts of the
conditions expressed in the next definitions, we invite the reader to refer to [8].

14

Definition A.7. Let P : C → C be a functor. By a strength for P we mean
a dinatural transformation σ with components σX,Y : X ⊗ PY → P (X ⊗ Y),
for X and Y in C, such that the following equations hold:

P (l) ◦ σX,I = l , P (r) ◦ σI,Y = r ,

σX,Y⊗Z ◦ 1X ⊗ σY,Z = σX×Y,Z ,

for all X,Y, Z in C .
Definition A.8. Let (T, η, µ) be a monad on C. By a strength for (T, η, µ) we
mean a strength σ for the functor T such that the following equations hold:

σX,Y ◦ 1A ⊗ ηY = ηX⊗Y

µX⊗Y ◦ T (σX,Y) ◦ σX,TY = σX,Y ◦ 1X ⊗ µY
We shall now consider a cartesian closed category C and refer to the closed

monoidal structure associated to it. The following result is proved in [8].

Proposition A.9. Let P be an endofunctor on C and (T, η, µ) be the free monad
on P . A strength for the functor P determines a strength for the monad (T, η, µ).

References

1. Abbott, M.: Categories of Containers. Ph.D. thesis, University of Leicester (2003).
2. Abbott, M., Altenkirch, T., Ghani, N.: Categories of Containers. in Foundations of

Software Science and Computation Structures LNCS 2620, Springer (2003) 23 – 38.
3. Aczel, P.: The Type Theoretic Interpretation of Constructive Set Theory: Inductive

Definitions, in: R.B. Barcan Marcus et al. (eds.) Logic, Methodology and Philosophy
of Science, VII, North-Holland (1986).

4. Barr, M.: Coequalizers and free triples. Math. Z. 116 (1970) 307 – 322.
5. Barr, M., Wells, C.: Toposes, triples and theories. Springer-Verlag (1985).
6. Ehrhard, T., Regnier, L.: The differential lambda-calculus. Theoretical Computer

Science. To appear.
7. Freyd, P.: Aspects of topoi. Bull. Austral. Math. Soc. 7 (1972) 1 – 76.
8. Gambino, N., Hyland M.: Wellfounded trees and free monads. In preparation (2003).
9. Griffor, E., Rathjen, M.: The Strength of Some Martin-Löf’s Type Theories, Archiv

for Mathematical Logic 33 (1994) 347 – 385.
10. Kelly, G.M., Street, R.: Review of the elements of 2-categories. Proc. Sydney Cat-

egory Theory Seminar 1972/73 LNM 420, Springer (1974) 75 – 103.
11. Kelly, G.M.: A unified treatment of transfinite constructions for free algebras, free

monoids, colimit, associated sheaves and so on. Bull. Austral. Math. Soc. 22 (1980)
1 – 83.

12. Mac Lane, S.: Categories for the working mathematician. Springer-Verlag (1998).
13. Maietti, M.E.: The type theory of categorical universes. Ph.D. thesis, Università di

Padova (1998).
14. Martin-Löf, P. Intuitionistic Type Theory. Bibliopolis (1984).
15. Moerdijk, I., Palmgren, E.: Wellfounded trees in categories. Annals of Pure and

Applied Logic 104 (2000) 189 – 218.
16. Seely, R.A.G.: Locally cartesian closed categories and type theory. Math. Proc.

Camb. Phil. Soc. 95 (1984) 33 – 48.
17. Street, R.: The formal theory of monads. J. of Pure and Appl. Algebra 2 (1972)

149 – 168.

15

