
Pseudo-commutative monads and pseudo-closed

2-categories⋆ ⋆⋆

Martin Hyland1 and John Power2

1 DPMMS, Centre for Mathematical Sciences, University of Cambridge, Wilberforce
Road, Cambridge CB3 0WB, England

email: M.Hyland@dpmms.cam.ac.uk Tel: +44 1223 337 986
2 Laboratory for the Foundations of Computer Science, University of Edinburgh,

King’s Buildings, Edinburgh EH9 3JZ, Scotland
email: ajp@dcs.ed.ac.uk Tel: +44 131 650 5159 Fax: +44 131 667 7209

Dedicated to Max Kelly on the occasion of his 70th birthday: a token of
affection and respect.

Abstract. Pseudo-commutative 2-monads and pseudo-closed 2-categories
are defined. The former give rise to the latter: if T is pseudo-commutative,
then the 2-category T -Alg, of strict T -algebras and pseudo-maps of
algebras, is pseudo-closed. In particular, the 2-category of symmetric
monoidal categories, is pseudo-closed. Subject to a biadjointness condi-
tion that is satisfied by T -Alg, pseudo-closed structure induces pseudo-
monoidal structure on the 2-category.

1 Introduction

The theory of monads on a category provides an abstract syntax-free approach to
universal algebra. Standard references are Mac Lane [15] and Barr and Wells [1]:
Street [17] gives an illuminating abstract treatment. The basic ideas of monad
theory have non-trivial analogues at the 2-categorical level. The theory of 2-
monads as developed in [3] provides an abstract setting in which to study alge-
braic structure on 2-categories generally and the 2-category Cat in particular.
The subject is unavoidably more subtle. One has not just strict algebras but also
pseudo-algebras though these will not concern us here; and even between strict
algebras one has both strict and pseudo-maps of algebras and the important
pseudo-maps give the subject its special edge.

In a similar fashion, the theory of commutative monads on a symmetric
monoidal closed category V gives an abstract approach to algebra with commut-
ing operations (generalised linear algebra). This theory is described in Kock [11],
[12] and [13]. (Between them [11] and [13] show that a commutative monad is a
symmetric monoidal monad: so the theory is covered by the abstract perspective
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of [17]. In the basic setting V is complete and cocomplete and T is bounded, so
that if T is commutative, the category T -Alg is itself symmetric monoidal closed.
In this paper we describe an analogue of this theory at the 2-dimensional level.

One analogue is obvious. For a strictly commutative 2-monad T , say on Cat,
not only is the category of strict T -algebras and strict maps symmetric monoidal
closed, but so also is the corresponding 2-category. As Kelly [10] explains, that is
just the enriched version of the theory given in Kock [12]. This result is unsatis-
factory for two reasons. In the first place while some 2-monads are commutative
(for example that for a category with terminal object), those of primary interest
to us, notably that for small symmetric monoidal categories, are not commuta-
tive as the relevant hexagon

TA× TB
t∗- T (TA×B)

T (t)- T 2(A×B)

T (A× TB)

t

?

T t∗
- T 2(A×B)

µA×B

- T (A×B)

µA×B

?

only commutes up to coherent isomorphism. Secondly for a genuinely higher
dimensional algebra it is the 2-category T -Alg of strict T -algebras and pseudo-
maps of T -algebras, as developed in [3], that is the focus of attention. Our goal is
a study of appropriate monoidal and closed structure on the 2-category T -Alg.
We are led to this by a desire to broaden the abstract setting for our study
of wiring diagrams [9]. In additon we see this as an important step towards a
general higher dimensional algebra.

Already in [10], Kelly adumbrated a theory of pseudo-commutativity for a
2-monad. His notion arose in the course of an investigation of a general notion
of a pseudo-distributive law between two 2-monads: so his definition was de-
signed so that a pseudo-commutativity for a 2-monad T on Cat gave rise to
pseudo-distributivity between T and the 2-monad for small symmetric monoidal
categories. Hence it allowed T to lift from Cat to the 2-category of small sym-
metric monoidal categories and strong monoidal functors. Thus his result was a
2-categorical analogue of the folklore observation that a commutative monad on
Sets lifts to a monad on the category of commutative monoids. Here, we also
present a notion of pseudo-commutativity for a 2-monad, but our main result is
different from Kelly’s, and we are led to a different formulation of the notion.
Our notion of symmetric pseudo-commutativity is equivalent to the one sketched
in [10], but we shall not prove that in detail here.

In mathematical experience, closed structure appears more canonical than
monoidal structure: we understand the vector space of linear maps more readily
than the tensor product of vector spaces. For commutative T , limits are used to
give the closed structure (already in Kock [12]) and colimits to give the monoidal
structure on T -Alg. Again limits in Sets seem easier than colimits; and more
substantially limits in categories of algebras are created by the forgetful functor



and so are easier than colimits. At the 2-dimensional level these intuitions become
a technical distinction. As shown in [3], T -Alg has most of the flexible limits in
the sense of [2] (all of them if T itself is flexible), while it only has bicolimits.
Thus it is reasonable to focus on closed structure which should be stricter than
monoidal structure.

We initially hoped that, if we had an isomorphism γ in the hexagon above
satisfying suitable axioms, then T -Alg would be closed in the sense of Eilenberg
and Kelly [7]; then we expected to use [3] to deduce that it was an example what
of we would call a pseudo-monoidal closed 2-category. That almost worked, but
one axiom for closedness from [7], namely that the map A −→ [I, A] be an iso-
morphism, cannot hold for non-trivial 2-monads: it implies that the categories
of strict and of pseudo maps from the free T -algebra F1 on 1 to an arbitrary T -
algebra A are isomorphic, whereas in fact they are just equivalent. So to include
serious examples we had to relax that axiom to the existence of an equivalence
with good properties. With this relaxation and some reformulation, we can in-
deed place axioms on γ that allow us to deduce that T -Alg is closed. So we call
this relaxed notion pseudo-closedness, and the main result of the paper is that
a pseudo-commutativity for a 2-monad T on Cat makes T -Alg into a pseudo-
closed 2-category. It follows that T -Alg is a pseudo-monoidal category, is closed
as such, and the left adjoint from Cat to T -Alg is a strong pseudo-monoidal 2-
functor, in that it sends finite products in Cat to the pseudo-monoidal structure
of T -Alg up to coherent equivalence.

In view of the length of this paper we present a brief outline. We start in
Section 2 by presenting a definition of pseudo-closed category based on [7]. The
notion we develop is not the most general one could reasonably imagine, and
that is deliberate. Just as closed categories arise from monoidal categories with
an ordinary right adjoint, the most general notion should be obtained by consid-
ering a pseudo-monoidal bicategory (one object tricategory) in which −⊗A has a
right biadjoint for each object A, and then axiomatising the resulting structure.
However the closed structures we are interested in satisfy stricter conditions: that
allows us to avoid cumbersome coherence concerns. Hence we define our notion
of pseudo-closedness so that we have equality rather than coherent isomorphism
wherever possible. One should regard this as a simple extension of the consid-
eration in [3] of flexible limits rather than bilimits where possible. The other
main ingredient of the paper is the notion of pseudo-commutativity. We give
our axioms in Section 3, and run through some general calculations stemming
from them, though our main interest is with symmetric pseudo-commutativities.
We explain briefly why the notion of symmetric pseudo-commutativity is equiv-
alent to the notion Kelly outlines in [10]. In Section 4 we present a little gen-
eral background on the 2-category T -Alg as developed in [3], and give some
elementary consequences for pseudo-commutative T . The pseudo-closed struc-
ture on T -Alg reflects features of multilinear algebra, so in Section 5 we describe
2-multicategorical structure on T -Alg. Finally in Section 6 we define the pseudo-
closed structure on T -Alg and show that it satisfies our axioms. We close with



some remarks on the pseudo-monoidal structure induced by the pseudo-closed
structure.

2 Pseudo-closed 2-categories

We present a notion of pseudo-closedness for a 2-category. Our notion is moti-
vated by our main result, but we support it with an embedding theorem which
generalises the situation for closed categories. Eventually we shall want an ana-
logue of the result of [7] which states (modulo details) that a closed category V
with left adjoints to [A,−] : V −→ V is monoidal. Here we only give the briefest
outline of a generalisation.

2.1 Pseudo-closedness: the definition

We give a definition of pseudo-closed 2-category following the spirit of Eilenberg
and Kelly’s definition of closed category [7].

Definition 1. A pseudo-closed 2-category consists of a 2-category K together
with a 2-functor

[−,−] : Kop ×K −→ K

and a 2-functor V : K −→ Cat, together with an object I of K and transforma-
tions j, e, k, with components

– jA : I −→ [A,A],
– eA : [I, A] −→ A natural in A,
– kA = kA,B,C : [B,C] −→ [[A,B], [A,C]] natural in A, B and C,

with V [−,−] = K(−,−) : Kop × K −→ Cat, and such that the following condi-
tions (numbered as in [7]) hold:

1.

I
jB - [B,B]

[[A,B], [A,B]]

kA

?

j
[A

,B
] -

2.

[A,C]
kA- [[A,A], [A,C]]

[A,C]

w

w

w

w

w

w

w

w

w

w

�
e[A,C]

[I, [A,C]]

[jA, [A,C]]

?



3.

[C,D]
kA- [[A,C], [A,D]]

k[A,B]- [[[A,B], [A,C]], [[A,B], [A,D]]]

[[B,C], [B,D]]

kB

?

[[B,C], kA]
- [[B,C], [[A,B], [A,D]]]

[kA, [[A,B], [A,D]]]

?

4.

[A,B]
kI- [[I, A], [I, B]]

[[I, A], B]

[[I, A], eB]

?

[e
A , B

] -

5. The map

K(I, [A,A]) = V [I, [A,A]] −→ V [A,A] = K(A,A)

induced by e[A,A] takes jA to the identity 1A.

In addition, we require that e be a well-behaved adjoint retract equivalence: we
require transformations with components iA : A −→ [I, A], and adjunctions
iA ⊣ eA such that

– the unit 1A −→ eA · iA is equal to the identity,
– the counit iA · eA −→ 1[I,A] is invertible, and
– the retraction V (iA · eA) takes p : I −→ A to the composite

I
jA- [A,A]

[p,A]- [I, A]
eA - A .

We compare this definition with that of closed category in [7]. Of course given
our aims, we ask now for 2-categories, 2-functors, and 2-natural transformations:
moreover, as K(−,−) is a 2-functor into Cat, the codomain for the forgetful V
should be Cat. Allowing for these changes, the definitions are parallel, in that our
five conditions correspond to Eilenberg and Kelly’s five axioms. The seemingly
insignificant difference that Eilenberg and Kelly expressed their data and axioms
in terms of an inverse of e rather than directly in terms of e is however substantial
as we ask that e be a retract equivalence rather than an isomorphism. (We have
no choice here if we are to include significant examples: the 2-category of small
symmetric monoidal categories does not have e invertible.) Note that as e is not
an isomorphism, we do not have the Eilenberg and Kelly versions of conditions 2
and 4 which are expressed in terms of i; and these conditions fail in our leading



examples. Furthermore we have made no explicit naturality assumptions on i and
j. It follows from the definition that they can be equipped to be pseudo-natural
and again that is all we get in leading examples. The final technical condition has
the consequence that the section V i[A,A] takes the identity 1A to jA as required
by Eilenberg and Kelly. However its true significance is that it ensures that a
pseudo-closed 2-category is a closed 2-multicategory. We do not elaborate on this
point of view here, but it indicates why the details of the equivalence matter,
and so why we are careful to work with adjoint retract equivalences. Finally we
observe that we are able to give our definition so that in T -Alg almost all the
structure maps are strict maps of T -algebras: in T -Alg, iA is not strict, but we
do not make substantial use of it in the axioms above.

While we develop a general theory in this paper we are mainly interested in
pseudo-closed categories which are symmetric in the following sense.

Definition 2. A symmetry on a pseudo-closed 2-category K consists of a 2-
natural transformation τ : [A, [B,C]] −→ [B, [A,C]] which is an involution (that
is, τ2 = id) and satisfying

Identity laws

[A, [I, C]]
τ - [I, [A,C]]

[A,C]
�

e [A
,C

]
[A
, e

C ] -

[A, [I, C]]
τ - [I, [A,C]]

[A,C]

[A
, iC

]

-
�

i
[A

,C
]

Yang-Baxter law

[A, [C, [B,D]]] - [C, [A, [B,D]]]

[A, [B, [C,D]]]

-

[C, [B, [A,D]]]

-

[B, [A, [C,D]]] -

-

[B, [C, [A,D]]]

-



As we have mentioned, this is not the most general possible notion of (sym-
metric) pseudo-closedness. At a relatively trivial level, even Eilenberg and Kelly
could have asked for an isomorphism between V [−,−] and K(−,−): by their
choice, a monoidal category subject to the usual adjointness condition need not
be closed. Here, it might be more natural to ask for a retract equivalence from
V [−,−] to K(−,−), with the section only pseudo-natural; but our examples
have equality, and the spirit of our approach is to be as strict as the examples
allow us. Also we asked for equalities in our conditions 1 to 5 where one might
expect invertible modifications and coherence conditions. But again our exam-
ples allow us to be strict and we have not analyzed the appropriate coherence
conditions.

2.2 An embedding theorem

It appears to be folklore that any closed category embeds in a monoidal closed
category preserving the closed structure. This fact shows that the axioms for a
closed category are exactly what is true of the closed structure in a monoidal
closed category. Presumably Eilenberg and Kelly were aware of this; but they do
not refer to it explicitly. The result in the symmetric case is effectively in Day
[6] using his convolution tensor product in presheaf categories ([4] and [5]). Day
certainly had the technology for the non-syymetric case which is in Laplaza [14].
Our approach is similar, but there are a number of additional twists. (We know,
from Peter Johnstone’s diary, that the embedding theorems were also explicitly
proved by Freyd in the early 1970s; but his treatment was never published.) To
enable us to state an analoguous theorem we first introduce a notion of closed
functor which parallels that of [7].

Definition 3. A closed functor F : K −→ L of pseudo-closed 2-categories con-
sists of a 2-functor F : K −→ L equipped with

– a 1-cell φ : I −→ FI, and

– a natural transformation φ : F [A,B] −→ [FA,FB],

satisfying the following conditions.

1.

I
j- [FA,FA]

FI

φ

?

Fj
- F [A,A]

φ

6



2.

F [I, A]
φ- [FI, FA]

FA

Fe

?
�

e
[I, FA]

[φ, FA]

?

3.

F [B,C]
FkA - F [[A,B], [A,C]]

φ - [F [A,B], F [A,C]]

[FB,FC]

φ

?

kFA

- [[FA,FB], [FA,FC]]
[φ, [FA,FC]]

- [F [A,B], [FA,FC]]

[F [A,B], φ]

?

If K and L are symmetric, F : K −→ L is a closed functor of symmetric pseudo-
closed 2-categories if in addition we have the following.

F [A, [B,C]]
φ- [FA,F [B,C]]

[FA, φ]- [FA, [FB,FC]]

F [B, [A,C]]

Fτ

? φ- [FB,F [A,C]]
[FB, φ]- [FB, [FA,FC]] .

τ

?

Theorem 1. Any small pseudo-closed 2-category K embeds via a closed functor
Φ : K −→ L in a monoidal closed 2-category L where

– Φ is full and faithful;
– Φ preserves the internal hom [−,−] up to coherent isomorphism in the sense

that φ : E[A,B] −→ [EA,EB] is an isomorphism.

If K is a symmetric pseudo-closed 2-category then L can be taken to be symmetric
monoidal closed 2-category and Φ is a closed functor between symmetric pseudo-
closed 2-categories.

Proof. We give just an outline in the non-symmetric case. Let E be the 2-category
of K-endofunctors of K, K-natural transformations and K-modifications: E is
a monoidal 2-category under composition. A Yoneda argument shows that K
embeds in Eop preserving the function spaces. Let L be the 2-category [E , Cat]
which is monoidal closed essentially by Day [4]. The Yoneda embedding preserves
the tensor product and such function spaces as exist. We let Φ be the composite
of the two embeddings, and we are done.



The result we have just given depends only on the closed 2-multicategory struc-
ture. We cannot really detect the section i which is only pseudo-functorial. Our
attempts to do so have not given an interesting result. Specifically we cannot
yet make good the line of argument at the end of the next section.

2.3 Pseudo-monoidal structure

Eilenberg and Kelly support their notion of closed category with a result (their
Theorem 5.3) to the effect that a closed category V with suitable left adjoints
to [A,−] : V −→ V is monoidal. We give a corresponding result for our no-
tion of pseudo-closedness. To present it, we need the notion of pseudo-monoidal
2-category. In the literature [8], this is called a monoidal 2-category, but we
generally call pseudo-notions pseudo.

Definition 4. A pseudo-monoidal 2-category is a 2-category K together with
an object I, a pseudo-functor ⊗ : K × K −→ K, pseudo-natural equivalences
with components a : (X ⊗ Y ) ⊗ Z −→ X ⊗ (Y ⊗ Z), l : I ⊗ X −→ X, and
r : X −→ X ⊗ I, and invertible modifications with components

((X ⊗ Y ) ⊗ Z) ⊗W
a⊗W- (X ⊗ (Y ⊗ Z)) ⊗W

a- X ⊗ ((Y ⊗ Z) ⊗W )

⇓ π

(X ⊗ Y ) ⊗ (Z ⊗W )

a

?

a
- X ⊗ (Y ⊗ (Z ⊗W ))

X ⊗ a

?

(I ⊗X) ⊗ Y
a- I ⊗ (X ⊗ Y ) X ⊗ Y

r- (X ⊗ Y ) ⊗ I

X ⊗ Y

l ⊗ Y λ ⇓

?�

l

(X ⊗ I) ⊗ Y
a- X ⊗ (I ⊗ Y ) X ⊗ (Y ⊗ I)

⇓ ρ a

?

X
⊗
r -

⇓ µ

X ⊗ Y

r ⊗ Y

?

id
- X ⊗ Y

X ⊗ l

?

satisfying three tricategory axioms concerning the equality of pastings. These are
as in [8]: so a pseudo-monoidal 2-category is a one object tricategory which is
locally a 2-category. To save space we omit the axioms here.

We now present an analogue of Theorem 5.3 of Eilenberg and Kelly [7].



Theorem 2. Suppose that K is a pseudo-closed 2-category such that for 0-cells
A, B we have the 2-functor [A, [B,−]] : K −→ K birepresentable in the following
internal sense. We have an object A⊗B and an equivalence

dC : [A⊗B,C] −→ [A, [B,C]]

2-natural in C such that the diagram

[C,D]
kB- [[B,C], [B,D]]

kA- [[A, [B,C]], [A, [B,D]]]

[[A⊗B,C], [A ⊗B,D]]

kA⊗B

?

[[A⊗B,C], dD]
- [[A⊗B,C], [A, [B,D]]]

[dC , [A, [B,D]]]

?

commutes. Then the 2-category K acquires the structure of a pseudo-monoidal
2-category pseudo-closed in the sense that −⊗B has a right biadjoint.

Proof. We give the barest outline of the construction of the data. To save space
we represent tensor by juxtaposition. Note that by assumption we have a choice
of unit A −→ [B,AB] strictly dinatural in B. We use it systematically to give
most of the data: that is, we give first an exponential form of the data, which
itself makes use of a chosen pseudo-natural inverse to d.
Definition of a: Consider the 2-natural

A
unit- [BC,A(BC)]

kC- [[C,BC], [C,A(BC)]]
[unit, [C, id]]- [B, [C,A(BC)]] .

Take a : (AB)C −→ A(BC) to be the pseudo-natural transformation corre-
sponding to that exponential form. Representability shows it is a pseudo-natural
equivalence.
Definition of l: Take l : IA −→ A to correspond to the exponential form
j : I −→ [A,A]. Again by representability this is a pseudo-natural equivalence.
Definition of r: Take r : A −→ AI to be the composite

A
unit- [I, AI]

e - AI .

The equivalence inverse is given by the transpose of i : A −→ [I, A].
Definition of λ: We have an isomorphism between

I
j- [AB,AB] and I

unit- [AB, I(AB)]
[1, l]- [AB,AB] .

So simple naturality considerations show that

I
j- [AB,AB]

k- [[B,AB], [B,AB]]
[unit, [B,AB]]- [A, [B,AB]]



is isomorphic to the transpose of l ·a : (IA)B −→ AB. But by pseudo-naturality
of j we get an isomorphism with

I
j- [A,A]

[a, unit]- [A, [B,AB]] ,

which is the transpose of lB : (IA)B −→ AB. Composing the isomorphisms and
taking a transpose gives λ.
Definition of µ: Consider the diagram

[IB,A(IB)]
[1, Al]- [IB,AB]

k- [[B, IB], [B,AB]]
[unit, 1]- [I, [B,AB]]

A

unit

6

unit
- [B,AB]

[e, 1]

6

k
- [[B,B], [B,AB]]

[[B, e], 1] ⇓

6

[j,
1]

-

[B,AB]

e

?

which commutes up to an isomorphic 2-cell where indicated. The top is the
transpose of

AB
rB- (AI)B

a- A(IB)
Al- AB ,

while the bottom is that of the identity. Passing to the transpose gives µ.
Definition of ρ: Consider the commuting diagram

A
unit- [BI,A(BI)]

k- [[I, BI], [I, A(BI)]]
[unit, 1]- [B, [I, A(BI)]]

[[I, BI], A(BI)]

[e, 1]

?

[unit, 1]
-

[e, 1] -

[B,A(BI)]

[e, 1]

?

One readily finds an isomorphism between the top composite and the transpose
of a · r : AB −→ A(BI) and an isomorphism between the bottom and the
transpose of Ar : AB −→ A(BI). Compose and pass to the transpose to get ρ.
Definition of π: To construct π, one first gives a diagram between the relevant
transposes which are 1-cells A −→ [B, [C, [D,A(B(CD))]]]: one fills in largely
with commuting diagrams, though one does need an isomorphic 2-cell. Then one
passes to the transpose. We omit the details.
Checking the axioms: In each case the strategy is to consider the two cells in
exponential form, confirm equality of these and deduce the result. We make no
attempt to transcribe our rough notes.

Naturally we are unhappy with the proof we have just outlined. Since the data
we start from is in no way symmetric we expect some messy difficulties: but
the calculations we do not give are very tiresome, and it would be only too



easy to have made a slip. Hence we would like a more conceptual proof. One
natural line was suggested by the referee: a suitable ‘embedding’ Ψ : K −→ L
in a monoidal closed 2-category will give a biequivalence between K and its
essential image M say. Then one should be able to transport pseudo-monoidal
structure from M to K along the biequivalence (Lemma 3.6 of [8]). This is
appealing as it requires less strict conditions than those we have given and it
would deal readily with the symmetric case. (According to current thinking a
symmetric pseudo-monoidal bicategory would correspond to a weak 6-category
with just one three cell; but whatever the details the structure must transport
along biequivalences.) Unfortunately we do not currently have Ψ : K −→ L with
I −→ Ψ(I) an equivalence, so we are not yet able to bring this off.

3 Pseudo-commutativity for a 2-monad

Throughout this section we work with a 2-category K with finite products. What
we do works as well in a monoidal 2-category; but with finite products we feel
justified in suppressing associativities. We start with the standard 2-categorical
notion of strength: the development mirrors that in Kock [11]. Then we present
our axioms for a pseudo-commutativity, derive some basic consequences, and
sketch the connection with Kelly’s formulation in [10]. Finally we reformulate
the axioms in a way which is convenient for our main construction.

3.1 Strength and enrichment

Suppose that T : K −→ K is a 2-endofunctor. A strength t for T consists of a
2-natural transformation with components

tA,B : A× TB −→ T (A×B)

subject to obvious identity and associativity laws.
A strength t corresponds, by symmetry of finite products in K, to a costrength

t∗, whose components we denote by

t∗A,B : TA×B −→ T (A×B)

In case K is a cartesian closed 2-category, a strength corresponds to an en-
richment

T : [A,B] −→ [TA, TB]

of T in K, satisfying the usual axioms on the nose. The enrichment T is related
to t in that the diagrams

A
in - [B,A×B] [A,B] × TA

t- T ([A,B] ×A)

[TB,A× TB]

in

?

[TB, t]
- [TB, T (A×B)]

T

?
[TA, TB]× TA

T × TA

?

ev
- TB

Tev

?



commute. Equally in this setting the data of a strength also corresponds to a
lifting

t̄ : T [A,B] −→ [A, TB] ,

satisfying natural axioms. t̄ is related to t∗ in that the diagrams

TA
T in- T ([B,A×B]) T [A,B] ×A

t∗- T ([A,B] ×A)

[B, TA×B]

in

?

[B, t∗]
- [B, T (A×B)]

t̄

?
[A, TB] ×A

t̄

?

ev
- TB

Tev

?

commute.

Now suppose that (T, η, µ) is a 2-monad. Then as well as requiring a strength
(or enrichment) for T it is natural to require that η and µ be K-natural trans-
formations. We say then that (T, η, µ) is a strong 2-monad with strength t or
enrichment T . Observe that in case K only has products K-naturality of η and
µ can be expressed quite simply in terms of the basic strength t. If (T, η, µ) is a
strong 2-monad then T can be regarded as a monoidal 2-functor in two distinct
ways. The nullary component is in each case given by

I
ηI - TI

while the binary component is

TA× TB
t∗- T (A× TB)

T t- T 2(A×B)
µA×B- T (A×B)

on the one hand and symmetrically

TA× TB
t- T (TA×B)

T (t∗)- T 2(A× B)
µA×B- T (A×B)

on the other. Either way not only is T a monoidal 2-functor, but also η is a
monoidal 2-natural transformation. However µ is not generally a monoidal 2-
natural transformation, and the basic result is the following.

Theorem 3. Suppose (T, η, µ) is a strong 2-monad. Then (either of) the above
makes (T, η, µ) into a monoidal 2-monad if and only if (T, η, µ) is commutative
in the sense that the two monoidal structures on T coincide.

Thus far we have the enriched version of Kock’s theory, so the proof is as in
[11, 13]. Note that if (T, η, µ) is commutative, so monoidal, then with suitable
completeness and cocompleteness the 2-category of T-algebras and strict algebra
maps is a symmetric monoidal closed 2-category in the strict sense.



3.2 Pseudo-commutativity

As Kelly [10] already observed commutative 2-comonads on Cat are rare while
one can easily find 2-monads which are pseudo-commutative in a suitable sense:
we now give one such sense.

Definition 5. A pseudo-commutativity for a strong 2-monad (T, η, µ) is an
invertible modification

TA× TB
t∗- T (A× TB)

T (t)- T 2(A×B)

⇓ γA,B

T (TA×B)

t

?

T t∗
- T 2(A×B)

µA×B

- T (A×B)

µA×B

?

such that the following three strength axioms, two η axioms and two µ axioms
hold.

1. γA×B,C · (tA,B × TC) = tA,B×C · (A× γB,C)

2. γA,B×C · (TA× tB,C) = γA×B,C · (t∗A,B × TC)

3. γA,B×C · (TA× t∗B,C) = t∗A×B,C · (γA,B × C)

4. γA,B · (ηA × TB) is an identity modification

5. γA,B · (TA× ηB) is an identity modification

6. γA,B · (µA × TB) is equal to the pasting

T 2A× TB
t∗ - T (TA× TB)

T t∗- T 2(A× TB)
T 2t- T 3(A×B)

⇓ TγA,B

T (T 2A×B)

t

?
T 2(TA×B)

T t

?

T 2t∗
- T 3(A×B)

TµA×B

- T 2(A×B)

TµA×B

?

⇓ γTA,B

T 2(TA×B)

T t∗

?

µTA×B

- T (TA×B)

µTA×B

?

T t∗
- T 2(A×B)

µT (A×B)

?

µA×B

- T (A×B)

µA×B

?



7. γA,B · (TA× µB) is equal to the pasting

TA× T 2B
t∗ - T (A× T 2B)

T t - T 2(A× TB)

⇓ γA,TB

T (TA× TB)

t

?

T t∗
- T 2(A× TB)

µA×TB

- T (A× TB)

µ(A×TB)

?

T 2(TA×B)

T t

?
T 3(A×B)

T 2t

? µT (A×B)- T 2(A×B)

T t

?

⇓ TγA,B

T 3(A×B)

T 2t∗

?

TµA×B

- T 2(A×B)

TµA×B

?

µA×B

- T (A×B)

µA×B

?

There may appear to be some redundancy in the definition, and if our commu-
tativity is symmetric in the sense of section 3.6, that is indeed the case. However
without the symmetry condition the only apparent redundancy is given by the
following result.

Proposition 1. Any two of the strength axioms implies the third.

If the modification γ in our definition were an identity, T would be a commu-
tative 2-monad and the axioms would be redundant. But in our leading example,
γ is not an identity but rather is determined by a non-trivial symmetry. To aid
understanding we next present an outline of it.

3.3 The monad for symmetric strict monoidal categories

Our leading example is that of symmetric strict monoidal categories: it has spe-
cific applications in theoretical computer science. While the monad in question
is not a completely typical pseudo-commutative monad, it is simple, and one can
derive a feel for the behaviour of a general pseudo-commutativity from it. For
this section let T be the 2-monad for symmetric strict monoidal categories.

– Given a category A, the category TA has as objects sequences a1 . . . an of
objects of A (with maps generated by symmetries and the maps of A); the
tensor product is concatenation.

– Given two categories A and B, the category TA× TB has as objects pairs
((a1 . . . an), (b1 . . . bm)); and the two maps TA×TB −→ T (A×B) take such
pairs to the sequences of all (ai, bj) ordered according to the two possible
lexicographic orderings. In fact

TA× TB
t∗- T (TA×B)

T (t)- T 2(A×B)
µA×B- T (A×B)



gives the ordering (a1, b1), (a1, b2), . . . in which the first coordinate takes
precedence, while

TA× TB
t- T (TA×B)

T (t∗)- T 2(A× B)
µA×B- T (A×B)

gives the ordering (a1, b1), (a2, b1), . . . in which the second coordinate takes
precedence.

– The component γA,B of the modification is given by the unique symmetry
mediating between the two lexicographic orders.

Thus one should regard the pseudo-commutativity γ as a higher level symmetry.
It has properties analogous to those of a symmetry in a monoidal category; and
though we shall not here spell these out in detail, we shall signal the fact that
they are at issue by referring to γ as a mediating symmetry.

We now indicate the force of our various axioms.

– The strength axioms concern the various lexicographic orderings of the se-
quences (ai, bj, ck) where there is just one ai (or bj or ck). Various orderings
are identified and as a result there are prima facie two processes for medi-
ating between the orderings: these are equal. So the axioms reflect the fact
that there is a unique way to mediate between a pair of orderings.

– The η axioms are easy to understand: they express the fact that the two
lexicographic orderings of the (ai, bj) are equal if one of n or m is 1.

– The µ axioms take more explaining. Take a sequence a1, . . . , an of sequences
ai
1, . . . a

i
m(i). Concatenation gives a sequence ai

j where the order is deter-

mined by the precedence (i, j): that is, i takes precedence over j. Take this
concatenated sequence together with a sequence b1, . . . , bp: then the 2-cell
γA,B · (µA × TB) mediates between the order on the (ai

j , bk) with prece-
dence (i, j, k) and that with precedence (k, i, j). However we can also use
µ · TγA,B · t∗ to mediate between the orders determined by (i, j, k) and
(i, k, j); and µ · T t∗ · γTA,B to mediate between the orders determined by
(i, k, j) and (k, i, j). Composing these two gives the first. So again the issue
is the unique way to mediate between a pair of orderings.

These considerations point to coherence phenomena which we briefly discuss but
do not treat formally in 3.5.

3.4 Elementary consequences of the axioms

We need to understand some consequences of our axioms. We consider 2-cells
between 1 cells with domain TA× TB × TC and codomain T (A× B × C). In
writing these and further identities we generally leave off subscripts which can
be read off from other subscripts by type checking.

Proposition 2. The following identities hold between 2-cells of the above form.

(i)
µ · T (γA×B,C) · t∗ · T t× TC · t∗ × TC = µ · T t · T (A× γB,C) · t∗



µ · T (γA,B×C) · t · TA× T t∗ · TA× t = µ · T t∗ · T (γA,B × C) · t

(ii)

µ · T (γA×B,C) · t∗ · T t∗ × TC · t× TC = µ · T (γA,B×C) · t · TA× T t · TA× t∗

(iii)

µ · T t∗ · γT (A×B),C · T t× TC · t∗ × TC = µ · T t · γA,T (B×C) · TA× T t∗ · TA× t

(iv)

µ · T t∗ · γT (A×B),C · T t∗ × TC · t× TC = µ · T t∗ · t · TA× γB,C

µ · T t · γA,T (B×C) · TA× T t · TA× t∗ = µ · T t · t∗ · γA,B × TC

These identities exhibit different ways to construct some of the simplest me-
diating symmetries. We have saved space by omitting the diagrams which give
the proofs, but note that alternative expressions for these symmetries can be
read off from them. For example (iii) is also equal to

µ · T t∗ · T (t× C) · γA×TB,C · t∗ × TC

= µ · T t · T (A× t∗) · γA,TB×C · TA× t .

Using the µ axioms we immediately deduce some simple pasting identities.

Proposition 3. The following identities hold, for 2-cells of the above form.

γA,B×C · TA× µ · TA× T t∗ · TA× t =
(µ · T t∗ · t · γA,B × TC)(µ · T t∗ · T (t× C) · γA×TB,C · t∗ × TC) =
(µ · T t∗ · t · γA,B × TC)(µ · T t · T (A× t∗) · γA,TB×C · TA× t)

γA,B×C · TA× µ · TA× T t · TA× t∗ =
(µ · TγA×B,C · t∗ · T t∗ × TC · t× TC)(µ · T t · t∗ · γA,B × TC)

γA×B,C · µ× TC · T t∗ × TC · t× TC =
(µ · T t∗ · t · TA× γB,C)(µ · TγA,B×C · t · TA× T t · TA× t∗) =
(µ · T t∗ · t · TA× γB,C)(µ · TγA×B,C · t∗ · T t∗ × TC · t× TC)

γA×B,C · µ× TC · T t× TC · t∗ × TC =
(µ · T t · TA× T t∗ · γA,TB×C · TA× t)(µ · T t · t∗ · TA× γB,C) =
(µ · T t∗ · T (t× C) · γA×TB,C · t∗ × TC)(µ · T t · t∗ · TA× γB,C)

One can regard this as essentially providing the Mac Lane coherence hexagon
conditions for our mediating symmetry, but we do not make that precise here.

To indicate the force of our axioms we prove at once the following associa-
tivity equation.

Proposition 4. γA,B×C · (TA× γB,C) = γA×B,C · (γA,B × TC)



Proof. We can choose one of a number of manipulations. For example we can
write the left hand side as the pasting

(γA,B×C · (TA× µ) · (TA× t∗) · (TA× t))(µ · T t · t∗ · (TA× γB,C)) =
(µ · T t · TA× TγB,C · t∗)(µ · T t · T (A× t∗) · γA,TB×C · TA× t)

(µ · T t · t∗ · (TA× γB,C))

Similarly the right hand side is the pasting

(µ · T t∗ · t · γA,B × TC)(γA×B,C · µ× TC · T t× TC · t∗ × TC) =
(µ · T t∗ · t · γA,B × TC)(µ · T t∗ · T (t× C) · γA×TB,C · t∗ × TC)

(µ · T t · t∗ · (TA× γB,C))

These are equal by an equation above.

The ‘associativity equation’ is not great terminology: for a mediating symme-
try it corresponds to the standard Artin braid identities, and the proof above
parallels the derivation of the braid identities from the coherence hexagon. The
equation is an identity of 2-cells between 1-cells TA×TB×TC −→ T (A×B×C).
One can readily check that precomposing it with ηA, ηB and ηC give the three
strength conditions.

Proposition 5. The three strength axioms for a pseudo-commutativity are equiv-
alent in the presence of the η and µ axioms to the single associativity equation.

3.5 Coherence

The associativity equation is a manifestation of a coherence phenomenon which
we briefly describe. From a strong monad we can construct maps TA1 × · · · ×
TAn −→ T (A1 × · · · × An) in many different ways. First the strength gives a
unique map

ti : A1 × · · · ×Ai−1 × TAi ×Ai+1 × · · · ×An −→ T (A1 × · · · ×An) .

Then for ρ a permutation on {1, · · · , n}, we get a 1-cell

tρ : TA1 × · · · × TAn −→ T (A1 × · · · ×An)

where
tρ = (· · ·µ · µ · µ) · (· · ·T 2tρ(3) · T tρ(2) · tρ(1)) .

Generally the tρ are distinct for distinct ρ. Moreover it is easy to show that
any 1-cell TA1 × · · · × TAn −→ T (A1 × · · · × An) definable from the data for
a strong monad can be rewritten in the above form. Thus we can construct
exactly n! distinct 1-cells tρ; these correspond to the n! different variants on the
lexicographic ordering. We can associate with each of these a unique vertex in a
directed Cayley graph for a standard presentation of the symmetric group: we
direct edges so that the identity vertex is a source and the reverse list vertex
a sink. Then there is a coherence result which concerns 2-cells which can be
constructed by composing positive versions of γ. (That is, we do not use its
inverse, and also do not use the symmetry in K.)



Theorem 4. We can compose positive versions of γ to give a two cell between
tρ and tσ just when there is a directed path in the Cayley graph from ρ to σ. Any
two such composites give equal 2-cells.

We leave for a later occasion a precise statement and proof of this coherence
result: we do not need it in this paper. However we shall use and so prove a
special case of it. There are two generally distinct maps

µ · T tj · ti : A1 × · · · × TAi × · · · × TAj × · · · ×An −→ T (A1 × · ×An)

and

µ · T ti · tj : A1 × · · · × TAi × · · · × TAj × · · · ×An −→ T (A1 × · ×An)

with our customary codomain T (A1×· · ·×An). If as the notation suggests i < j

then we can use γ to give a 2-cell

µ · T tj · ti −→ µ · T ti · tj

A typical construction can be informally described as follows. We use the strength
and costrength to drive the occurences of T together, so that after a 1-cell we
have something of form

· · ·T (· · ·Ai · · · ) × T (· · ·Aj · · · ) · · ·

We then insert a 2-cell of form · · ·γ · · · with the above as domain of the 1-cells
and

· · ·T (· · ·Ai · · ·Aj · · · ) · · ·

as codomain. Then we use the strength and costrength again to move the T
to the outside. So we have a whiskering of an occurence of γ. The different
possibilities depend on where the two copies of T are brought together and how
much from the left of Ai and right of tj has been incorporated at the time γ
occurs. Now the strength axioms are exactly what one needs to give equality
between neighbouring points in this grid of possibilities.

Theorem 5. There is a unique 2-cell

γi,j : µ · T tj · ti −→ µ · T ti · tj

constructed using only positive versions of γ.

3.6 Symmetric pseudo-commutativities

There is a further property of a pseudo-commutativity which is an obvious fea-
ture in our leading example: the two possible lexicographic orderings of the
(ai, bj) are interchanged by the symmetry on Cat in a unique way.

Definition 6. A pseudo-commutativity γ is symmetric just when it satisfies the
following property:



– TcA,B · γA,B · cTB,TA is the inverse of γB,A.

The uniqueness of the interchange of lexicographic orderings leads one to expect
a further coherence phenomenon, now of a more traditional form using both γ

and its inverse.

Theorem 6. Suppose that γ is a symmetric pseudo-commutativity. Then we
can compose versions of γ and γ−1 to give two cells between any tρ. Any two
such composites give equal 2-cells.

When describing coherence for a general pseudo-commutativity, we excluded use
of the symmetry τ , but with symmetry we no longer need do so. Again we do
not give precise details here: however we give some sense of what is involved
with a result which is another analogue of a standard axiom for associativity.

Proposition 6. Let γ be a symmetric pseudo-commutativity. Then the 2-cell
γA×B,C · (µA×B · T t∗ · t) × TC equals the pasting of

µA×B×C · T t∗ · t · (TA× γB,C)

with

T (A× c) · µA×B×C · T t∗ · T (γA,C ×B) · t · TA× Tc · TA× t∗ .

Proof. By Proposition 3, it suffices to show that the second 2-cell is equal to

µ · TγA,B×C · t · TA× T t · TA× t∗

Naturalities and the symmetry axiom reduces this to Axiom 3 of Definition 5.

We take it that this is the hexagonal axiom relating γA×B,C to γA,C and γB,C

to which Kelly [10] refers. This result gives a taste of the connection between
our approach and Kelly’s. Using similar arguments we can establish a result of
the following form.

Theorem 7. To give a symmetric pseudo-commutativity on T as above is to
give T the structure of a symmetric pseudo-monoidal monad.

We leave the details of the definition of symmetric pseudo-monoidal monad for
another occasion, but note that it relates to the form of the definition sketched by
Kelly: he more or less defines γ to be a pseudo-commutativity just when it gives
rise to a pseudo-monoidal monad. Thus Theorem 7 shows that our axioms are
equivalent to the ones Kelly [10] intends. (We have reconstructed Kelly’s axioms,
and checked this directly.) Furthermore Kelly’s main result is a consequence of
Theorem 7.

Theorem 8. Let T be a 2-monad on Cat equipped with a symmetric pseudo-
commutativity γ. Then T lifts to a 2-monad on the 2-category SymMon.

In [10] Kelly said that he believed that his axioms reduced to a small number.
This is certainly the case in our formulation. If γ is symmetric then the three
conditions regarding strength are equivalent, the two η conditions are equivalent
and the two µ conditions are equivalent.



Proposition 7. To show that an invertible modification γ as above is a sym-
metric pseudo-commutativity it suffices to check the symmetry axiom together
with one strength axiom, one η axiom, and one µ axiom.

This renders entirely manageable the problem of showing that we have symmetric
pseudo-commutativities in the cases of interest to us. We give a list of examples
based on Kelly [10], but omitting cases where one has a strict commutativity.

1. Symmetric strict monoidal categories.

2. Symmetric monoidal categories.

3. Categories with strictly associative finite products (or dually coproducts).

4. Categories with finite products (or dually coproducts).

5. Categories with strictly associative finite biproducts.

6. Categories with finite biproducts.

7. Categories with an action of a symmetric strictly associative monoidal cat-
egory.

8. Symmetric strict monoidal categories with a strict monoidal endofunctor.

9. Symmetric monoidal categories with a strong monoidal endofunctor.

(Examples intermediate between 3 and 5 occur naturally when considering forms
of wiring diagrams [9].) In all the cases listed one can establish the pseudo-
commutativity directly without reference to the corresponding clubs.

A general pseudo-commutativity is a mediating symmetry satisfying braid
conditions. We believe that there is a non-symmetric pseudo-commutativity on
the 2-monad for braided monoidal categories. We do not investigate that here:
our current interest (see [9]) is in symmetric examples.

3.7 The exponential transpose

Given a modification γ as above we define a modification γ̄ using the closed
structure as follows. We let γ̄ be the composite

T [A,B] - [TA, T [A,B]× TA]
-

(⇓)- [TA, T ([A,B]×A)] - [TA, TB]

where (⇓) = [TA, γ[A,B],A]. Conversely we can recover γ from γ̄ as the composite

TA× TB - T [B,A×B] × TB
-
(⇓)- [TB, T (A×B)] × TB - T (A×B)

where (⇓) = γ̄B,A×B ×TB. So γ and γ̄ are exponential transposes of each other.
The following proposition follows from routine arguments involving the closed
structure, using the diagrams given in section 3.1 which connect t with T and
t∗ with t̄.



Proposition 8. To give a pseudo-commutativity γ in a cartesian closed 2-category
is, by exponentiation, to give an invertible modification

T [A,B]
T (T )- T [TA, TB]

t̄ - [TA, T 2B]

⇓ γ̄A,B

[A, TB]

t̄

?

T
- [TA, T 2B]

[TA, µB]
- [TA, TB]

[TA, µB]

?

such that the following conditions hold.

1. [TA, γ̄B,C ] · T is the exponential transpose of [γA,B, TC] · T , where γ is ob-
tained from γ̄ as above.

2. [A, γ̄B,C ] · t̄ is the exponential transpose of [t, TC] · γ̄A×B,C.

3. [TA, t̄] · γ̄A,[B,C] is the exponential transpose of [t∗, TC] · γ̄A×B,C.

4. γ̄A,B · η[A,B] is an identity modification

5. [ηA, TB] · γ̄A,B is an identity modification

6. γA,B · µ[A,B] is equal to the pasting

T 2[A,B]
T 2(T )- T 2[TA, TB]

T (t̄) - T [TA, T 2B]

⇓ T γ̄A,B

T [A, TB]

T (t̄)

?

T (T )
- T [TA, T 2B]

T [TA, µB]
- T [TA, TB]

T [TA, µB]

?

[A, T 2B]

t̄

?
[TA, T 3B]

t̄

?

[TA, Tµ]
- [TA, T 2B]

t̄

?

⇓ γ̄A,TB

[TA, T 3B]

T

?

[TA, µ]
- [TA, T 2B]

[TA, µ]

?

[TA, µ]
- [TA, TB]

[TA, µ]

?



7. [µA, TB] · γ̄A,B is equal to the pasting

T [A,B]
T (T )- T [TA, TB]

T (T )- T [T 2A, T 2B]
t̄ - [T 2A, T 3B]

⇓ γ̄TA,TB

[A, TB]

t̄

?
[TA, T 2B]

t̄

?
T- T [T 2A, T 3B]

[T 2A, µ]- [T 2A, T 2B]

[T 2A, µ]

?

⇓ γ̄A,B

[TA, T 2B]

T

?

[TA, µ]
- [TA, TB]

[TA, µ]

?

T
- [T 2A, T 2B]

[T 2A, Tµ]

?

[T 2A, µ]
- [T 2A, TB]

[T 2A, µ]

?

We have numbered the conditions on γ̄ so that they exactly correspond to the
conditions in Definition 5. Hence though it is not obvious in this form any two
strength axioms imply the third.

One can transpose the associativity equation to get a condition in terms of
both γ̄ and γ.

Proposition 9. In the presence of the η and µ axioms, the strength axioms
are equivalent to the statement that the composite [TA, γ̄B,C ] · γ̄A,[B,C] is the
exponential transpose of the composite [γA,B, TC] · γ̄A×B,C.

The formulation in this section relates to a notion of pseudo-closed monad.
(Note however that it is not simple to express the symmetry condition in terms
of the transpose γ̄.)

4 The 2-category of T -algebras

Our main object of study is the 2-category T -Alg of strict T -algebras and pseudo-
maps of algebras for a 2-monad T on Cat. We use the theory of T -Alg as devel-
oped in [3]. It is clear that we could work (as in [3]) with a more general base
2-category than Cat, but we do not make that added generality explicit. We
write A = (A, a) for a typical T -algebra: a : TA −→ A is the structure map. A
pseudo-map (f, f̄) : A −→ B is given by data

TA
Tf - TB

⇓ f̄

A

a

?

f
- B

b

?



where the invertible 2-cell f̄ satisfies η and µ conditions. (Note that what we
call pseudo-maps [3] call morphisms.) We write f = (f, f̄) : A −→ B for such a
pseudo-map, the 2-cell usually being understood.

We aim to give a pseudo-closed structure on the 2-category T -Alg when
T is equipped with a pseudo-commutativity. This section contains preliminary
material. We recall some of the structure of the 2-category T -Alg as developed
in [3]. We require details of the biadjunction between T -Alg and Cat, and we
need to observe that T -Alg has products, inserters, and equifiers, and therefore
also cotensors, and that these limits lift from Cat. Finally we develop a little
general theory concerning cotensors in the presence of a pseudo-commutativity.

Notation Generally we shall use square brackets to denote various kinds of
function space. Hence for categories X and Y we write Cat(X,Y ) = [X,Y ]
when we think of the category of functors from X to Y as the cartesian closed
structure in Cat; we write [X,A] for the cotensor of a T -algebra A over the
category X ; and we shall write [A,B] for the pseudo-closed structure on T -Alg
which we introduce much later. This should not cause confusion, but the reader
will need to distinguish the cotensor [A,B] from the function space [A,B].

4.1 Background from Blackwell-Kelly-Power

We briefly discuss some basic material from [3]. We write T -Algs for the usual
Eilenberg-Moore 2-category of algebras and strict maps, and J : T -Algs −→ T -
Alg for the locally fully faithful inclusion. We have the standard adjunction

Fs ⊣ Us : T -Algs −→ Cat .

Then we write
U : T -Alg −→ Cat

for the forgetful functor on T -Alg, and

F = J · Fs : Cat −→ T -Alg

for the free functor into T -Alg.
In the case when T has rank, flexibility considerations from [3] show that for

any category X and T -algebra A we have a retract equivalence

[X,A] = Cat(X,A)∼=T -Algs(FX,A)
-
⊤� T -Algs((FX)′,A)∼=T -Alg(FX,A)

in Cat. Even without the assumption of rank one can describe the adjoint func-
tors in the equivalence T -Alg(FX,A) ≃ Cat(X,UA) directly. We take

ēX,A = (T -Alg(FX,A)
U- Cat(TX,A)

Cat(η,A)- Cat(X,A) ) ;

and

īX,A = (Cat(X,A)
∼=

Fs ⊣ Us

- T -Algs(FsX,A)
J- T -Alg(FX,A) ) .

(The notation may seem rather eccentric, but we are going to lift these maps to
T -Alg.) One easily sees that there are adjunctions īX,A ⊣ ēX,A with



– unit 1Cat(X,A) −→ ēX,A · īX,A equal to the identity, and
– counit 1T -Alg(FX,A) −→ īX,A · ēX,A invertible,

so that each īX,A ⊣ ēX,A is an adjoint retract and in particular we have

ēX,A · īX,A = id and īX,A · ēX,A
∼= id .

It is also easy to check that ē and ī are natural in X , that ē is natural in A and
that ī is pseudo-natural in A.

The 2-categorical limits of importance to us are the PIE limits characterised
by Power and Robinson [16]. It is crucial that (under the usual conditions) T -Alg
has all such limits. We give a brief review of these based on the treatment in
[3]. Suppose that K is an arbitrary 2-category. We assume that it is clear what
is meant by saying that K has products, but give the definitions of iso-inserter
and equifier.

Definition 7. Given parallel 1-cells f, g : A −→ B in K, an (iso-)inserter is a
1-cell p : E −→ A together with an (invertible) 2-cell α : fp ⇒ gp such that
for any F , composition with k induces an isomorphism between K(F,E) and the
category of cones as above with vertex F .

Concretely the universality condition means that for any 1-cell h : F −→ A and
isomorphic 2-cell β : fh⇒ gh, there exists a unique 1-cell j : F −→ E such that
pj = h and α · j = β. We further demand that a corresponding two-dimensional
condition holds.

Definition 8. Given parallel 2-cells α, β : f ⇒ g : A −→ B, an equifier of α
and β is a 1-cell p : E −→ A such that α · p = β · p and such that for any F ,
composition with p induces an isomorphism between K(F,E) and the category of
cones as above with vertex F .

The universality condition on k means that for any h : F −→ A such that
α ·h = β ·h, there exists a unique 1-cell j : F −→ E such that pj = h. Again we
further demand that a corresponding two-dimensional condition holds.

From [3] we have the following results on the existence of PIE limits.

Proposition 10. (i) T -Alg has products and these are preserved by the forgetful
2-functor U : T -Alg −→ Cat. Furthermore the product projections are strict
maps, and collectively postcomposition with them reflects strictness.
(ii) T -Alg has (iso-)inserters and these are preserved by U : T -Alg −→ Cat.
The structural 1-cell k is a strict map of algebras and postcomposition with k

reflects strictness of algebra maps.
(iii) T -Alg has equifiers, and these are preserved by U : T -Alg −→ Cat. The
structural 1-cell k is a strict map of algebras and postcomposition with k reflects
strictness of algebra maps.

We also need to understand cotensors.



Definition 9. Suppose that X ∈ Cat and A ∈ K. A cotensor of A over X is
an object [X,A] ∈ K together with a 1-cell X −→ K([X,A], A) in Cat universal
amongst such in the sense that for any B in K it gives

X ×K(B, [X,A]) −→ K([X,A], A) × K(B, [X,A]) −→ K(B,A)

inducing an isomorphism

K(B, [X,A]) −→ Cat(X,K(B,A))

By [3] it follows from Proposition 10 that the 2-category T -Alg has cotensors,
but we need to flesh that out with some details.

Proposition 11. T -Alg has cotensors, and they are preserved by the forgetful
2-functor to Cat. Specifically we have the following.
(i) For any T -algebra B = (B, b) and for any small category X, the category
[X,B] possesses a T -algebra structure, with algebra map given by

T [X,B]
t̄- [X,TB]

[X, b]- [X,B] .

This is the cotensor of B by X and we write it as [X,B].
(ii) Composition with any functor f : Y −→ X induces a strict map

[f,B] : [X,B] −→ [Y,B]

of T -algebras.
(iii) Composition with any pseudo-map f = (f, f̄) : B −→ C of T -algebras
induces a pseudo-map of T -algebras

[X, f ] : [X,B] −→ [X, C] ;

and this map is strict whenever f is strict.

4.2 The canonical section

Given a small categoryX and T -algebra B, composition with ηX induces a strict
map of T -algebras [TX,B] −→ [X,B]. If T is pseudo-commutative this map has
a section.

Proposition 12. Given a T -algebra B = (B, b) and a small category X, the
composite

[X,B]
T- [TX, TB]

[TX, b]- [TX,B]



together with the 2-cell

T [X,B]
T (T ) - T [TX, TB]

T [TX, b]- T [TX,B]

⇓ γ̄ [TX, T 2B]

t̄

?
[TX, T b]- [TX, TB]

t̄

?

[X,TB]

t̄

?

T
- [TX, T 2B]

[TX, µB]
- [TX, TB]

[TX, µB]

?

[X,B]

[X, b]

?

T
- [TX, TB]

[TX, T b]

?

[TX, b]
- [TX,B]

[TX, b]

?

[TX
, b] -

is a pseudo-map of algebras from [X,B] to [TX,B].

Proof. There are two coherence conditions for the two cell. That involving η

follows directly from condition 4 of Proposition 8; that involving µ transforms
by naturality to a consequence of condition 6 of Proposition 8.

We write σX,B = (σX,B, σ̄X,B) : [X,B] −→ [TX,B] for the pseudo-map we have
just constructed. We record some basic properties.

Proposition 13. The following equalities hold in T -Alg.
(i) [ηX ,B] · σX,B = id[X,B];
(ii) σTX,B · σX,B = [µX ,B] · σX,B.

Proof. The first follows directly from condition 5 of Proposition 8. The second
transforms by naturality to a consequence of condition 7 of Proposition 8.

We now consider the naturality properties of σX,B . The first point is clear.

Proposition 14. σX,B is natural in X; that is, if f : X −→ Y in Cat, then
σX,B · [f,B] = [Tf,B] · σY,B.

Equally clearly σX,B is natural in B for strict maps of algebras, but it would be
too much to expect naturality for pseudo-maps. Instead we get pseudo-naturality.



Proposition 15. Suppose that h : B −→ C is a pseudo-map of algebras. Then
the 2-cell σX,h defined by

[X,B]
T- [TX, TB]

[TX, b]- [TX,B]

[TX, h̄]
⇒

[X,C]

[X,h]

?

T
- [TX, TC]

[TX, Th]

?

[TX, c]
- [TX,C]

[TX, h]

?

is an invertible 2-cell in T -Alg, σX,h : σX,C · [X,h] −→ [TX, h] · σTX,B . Further
more the data σX,h makes σX,B pseudo-natural in B

Finally we give an indication of how our strength axioms for γ are reflected
in properties of σ. Two of these are straightforward.

Proposition 16. We have the following correspondences.
(i) The 1-cell σX,[Y,B] : [X, [Y,B]] −→ [TX, [Y,B]] is the exponential transpose
of the 1-cell [t∗,B] · σX×Y,B : [X × Y,B] −→ [TX × Y,B].
(ii) The 1-cell [X,σY,B] : [X, [Y,B]] −→ [X, [TY,B]] is the exponential transpose
of the 1-cell [t,B] · σX×Y,B : [X × Y,B] −→ [X × TY,B].

Here (i) corresponds to condition 2 of Proposition 8 and (ii) corresponds to
condition 3. As for condition 1, it is reflected in the following.

Proposition 17. Pseudo-naturality of σ in B provides a canonical 2-cell

[X, [Y,B]]
σX,[Y,B]- [TX, [Y,B]]

⇒

[X, [TY,B]]

[X,σY,B]

?

σX,[TY,B]

- [TX, [TY,B]] .

[TX, σY,B]

?

This is the exponential transpose of the 2-cell [TX × TY, b] · [γX,Y , TB] · T .

5 2-dimensional multilinear algebra

For pseudo-commutative T we wish to give data for T -Alg as a pseudo-closed
2-category, so we shall define for T -algebras B and C a function space T -algebra
[B, C] and shall need to be able to characterise both pseudo- and strict maps of T -
algebras from an arbitrary T -algebra A to it. These will correspond to what it is
natural to call bilinear maps. At times we shall need to iterate this process: the T -
algebra C will sometimes itself be of the form [D, E ], and so on. So it is convenient
to define a general notion of multilinear map, and to prove appropriate results



connecting that with the various levels of iteration of the proposed pseudo-closed
structure of T -Alg. (Though we are not considering enrichment in any kind of
linear category, we maintain the terminology ‘multilinear map’ to signal that our
subject is essentially a generalised linear algebra.)

The setting in which we describe our results on multilinear maps is that of
2-multicategories. The notions of multicategory and of symmetric multicategory
make sense in very general contexts: in particular they make sense in the usual
setting of enriched category theory. Thus we have a ready notion of (symmetric)
2-multicategory, and we shall describe such a structure on T -Alg.

5.1 The 2-multicategory of T -algebras

Before defining multilinear maps we treat a subsidiary topic. Suppose that X
is a category and A = (A, a) and B = (B, b) are T -algebras. A pseudo-map
A −→ B parametrised by X (or X-indexed pseudo-map A −→ B) is given by a
1-cell f : A×X −→ B and 2-cell f̄ of shape

TA×X
t∗- T (A×X)

Tf - TB

⇓ f̄

A×X

Ta×X

?

f
- B

b

?

satisfying easy extensions of the pseudo-map conditions. There is an obvious
corresponding notion of 2-cell between parametrised pseudo-maps. We shall write
T -Alg(A, X ;B) for the category of X-indexed pseudo-maps. We have obvious
compositions

T -Alg(B, Y ; C) × T -Alg(A, X ;B) −→ T -Alg(A, X × Y ; C)

and actions

T -Alg(A, X ;B)× Cat(Z,X) −→ T -Alg(A, Z;B)

which taken all together form a natural structure. We do not spell this out.
Note however that it makes sense to allow A as well as X to be absent in
T -Alg(A, X ;B), we have the vacuous case T -Alg(X ;B) = Cat(X,B). There is
a clear connection between parametrised pseudo-maps and cotensors. We have

T -Alg(A, X ;B) ∼= T -Alg(A : [X,B]) .

By the symmetry in Cat we can just as easily parametrise maps on the
right, or on both the left and right. So we have categories T -Alg(X,A;B) and
T -Alg(X,A, Y ;B) and we have well-behaved compositions also in these cases.
Of course one is not gaining much: we have natural isomorphisms

T -Alg(X,A, Y ;B) ∼= T -Alg(X × Y,A;B) ∼= T -Alg(X,A; [Y,B])
∼= T -Alg(A, Y ; [X,B]) ∼= T -Alg(Y ×X,A;B) .



We draw attention to some natural examples of parametrised maps.

1. Evaluation Let X be a category and A a T -algebra. Then there is an
obvious evaluation map

• : [X,A] ×X −→ A .

This is a parametrised map of T -algebras. Under the natural isomorphism

T -Alg([X,A], X ;A) ∼= T -Alg([X,A], [X,A])

it of course corresponds to the identity on [X,A].
2. Application Let A and B be T -algebras. Then there is an obvious action

• : T -Alg(A,B) ×A −→ B

of the category of pseudo-maps: this is a parametrised map of T -algebras.
3. The unit In T -Alg(X,FX) = Cat(X,TX) we have ηX : X −→ TX which

thus can be regarded as a (vacuous) parametrised map. Composing with it
in the sense explained above gives a map

T -Alg(FX,A) −→ T -Alg(X ;A) = Cat(X,A)

which we easily identify with the association ēX,A from the biadjunction
which we gave in Section 4.

In 3.5 we observed that the strength gives a unique map

ti : A1 × · · · ×Ai−1 × TAi ×Ai+1 × · · · ×An −→ T (A1 × · · · ×An) ;

we use these in our definition of multilinear map.

Definition 10. A multilinear map of T -algebras from (A1, a1), · · · , (An, an) to
(B, b) consists of

– a 1-cell h : A1 × · · · ×An −→ B
– for each i, a 2-cell

A1 × · · · × Ai−1 × TAi ×Ai+1 × · · · ×An

ti- T (A1 × · · · ×An)
Th- TB

⇓ h̄i

A1 × · · ·An

A1 × · · · ×Ai−1 × ai ×Ai+1 × · · · ×An

?

h
- B

b

?

such that, for each i, (h, h̄i) is a parametrised map of T -algebras (in the sense
sketched above), and if i is less than j, the evident two pastings from

A1 × · · · ×Ai−1 × TAi ×Ai+1 × · · · ×Aj−1 × TAj ×Aj+1 × · · · ×An

to B, expressing the idea that h̄i and h̄j commute with each other in a two-
dimensional sense, are equal. We say that the multilinear map h = (h, h̄i) is
strict in i just when the 2-cell h̄i is the identity.



We should be precise about the commutativity axiom. In order to avoid clutter,
we shall write the axiom explicitly for the case of a bilinear map; and then we
shall explain the routine extension to the multilinear case. One requires that the
diagram

TA× TB
t∗- T (A× TB)

T- T 2(A×B)
µ- T (A×B)

⇓ T h̄A T 2C

T 2h

?

µ
- TC

Th

?

TA×B

TA× b

? t∗- T (A×B)

T (A× b)

?

Th
- TC

Tc

?

⇓ h̄B

A×B

a×B

?

h
- C

c

?

c

-

is the result of pasting γA,B on top of the diagram

TA× TB
t- T (TA×B)

T t∗- T 2(A×B)
µ- T (A×B)

⇓ T h̄B T 2C

T 2h

?

µ
- TC

Th

?

A× TB

a× TB

? t- T (A×B)

T (a×B)

?

Th
- TC

Tc

?

⇓ h̄A

A×B

A× b

?

h
- C

c

?

c

-



One should think that the two diagrams are equal modulo γ. In the general case,
we have diagrams with top edges equal to the boundary of

(· · ·TAi × · · · × TAj · · · )
ti- T (A1 × · · ·TAj · · · ×An)

T tj- T 2(A1 × · · · ×An)

T (A1 × · · ·TAi · · · ×An)

tj

?

T ti
- T 2(A1 × · · · ×An)

µ
- T (A1 × · · · ×An)

µ

?

By Proposition 5 there is a unique 2-cell γi,j constructed from positive versions
of γ which fills the hole. We require that our two pastings of h̄i and h̄j are equal
modulo γi,j .

The notion of a 2-cell between pseudo-maps of T -algebras extends easily to
a notion of 2-cell between multilinear maps. A 2-cell from (h, h̄i) to (k, k̄i) is a
2-cell ρ : h⇒ k which satisfies

k̄i.(Tρ.ti) = ρ.h̄i ,

for all i. We write T -Alg(A1, · · · ,An;B) for the category of multilinear maps
from A1, · · · ,An to B.

It is clear how to compose multilinear maps. Given

(f, f̄i) : A1 × · · · × An −→ Br

and
(g, ḡj) : B1 × · · · × Bm −→ C ,

we compose f and g at r to get

(h, h̄Ai
, h̄Bj

)) : B1 × · · ·A1 × · · · × An · · · × Bm −→ Br

where we set h = g ·(· · ·Br−1×f×Br+1 · · · ), h̄Ai
= ḡr ·(· · ·Br−1× f̄i×Br+1 · · · )

and h̄Bj
= ḡj · (· · ·Br−1 × f ×Br+1 · · · ). Checking that this composite is indeed

a multilinear map is essentially routine, though it is of course reliant on the
uniqueness of the 2-cells γi,j from Proposition 5. The definition of composition
clearly extends to 2-cells between multilinear maps, and we have the following.

Proposition 18. Suppose that T is a pseudo-commutative 2-monad. The struc-
ture T -Alg consisting of T -algebras, multilinear maps of T -algebras and 2 cells
between multilinear maps, together with the evident identities and compositions
forms a 2-multicategory. If the pseudo-commutativity γ is symmetric, then T -Alg
is a symmetric 2-multicategory.

Proof. This involves routine checking. Again we rely on Proposition 5 in checking
the associativity of composition. We use the symmetry of the commutativity γ
to show that the condition that the h̄i commute with each other is preserved
under the action of the symmetric groups.



Note that the 2-multicategory T -Alg extends the 2-category T -Alg in the obvious
sense. For n = 1 an n-multimap is just a pseudo-map of T -algebras; and it is
strict as a multimap just if it is a strict map.

We started this section with a notion of parametrised pseudo-map. We can
rerun the idea to give parametrisation of multilinear maps. We get categories
T -Alg(X,A1, · · · ,An;B), T -Alg(A1, X, · · · ,An;B), ... , T -Alg(A1, · · · ,An, X ;B)
of multimaps from A1, · · · ,An to B parametrised by X . (They are isomorphic:
it does not matter where the X appears.) Again there are obvious compositions
and actions which form a natural structure which we do not discuss here.

5.2 Forgetful and free functors

Note that Cat is a 2-multicategory since it is a 2-category with products. Then
the forgetful functor U : T -Alg −→ Cat is in the obvious sense a map of 2-
multicategories. Generally we have

T -Alg(A1, . . . ,An;B)
U- Cat(A1 × · · · ×An, B) .

In case n = 1 this agrees with the ordinary 2-categorical U , while in case n = 0
we get the identity

T -Alg(();B) = Cat(1, B)
U- Cat(1, B) .

Now in the context of 2-multicategories we can also consider the partial effect
of the forgetful functor. For example we have

U1 : T -Alg(A1, . . . ,An;B) −→ T -Alg(A1,A2 . . . ,An;B)

forgetting just the algebra structure on A1 and the data related to it. Similarly
we have, for all appropriate i, functors Ui taking categories of multilinear maps
to categories of parametrised multilinear maps in the obvious extension of the
notion. The Ui respect composition in the sense that, for example,

T -Alg(A1, . . . ,An;B) × T -Alg(B,B1, . . . ,Bm; C)
comp- T -Alg(A1, . . . ,Bm; C)

T -Alg(A1, . . . ,An;B) × T -Alg(B,B1, . . . ,Bm; C)

U1 × id

? comp- T -Alg(A1, . . . ,Bm; C)

U1

?

commutes. Furthermore we can use the free functor F to go back from parametrised
multilinear maps to multilinear maps. For example we have a functor

F1 : T -Alg(X,A2 . . . ,An;B) −→ T -Alg(FX,A2 . . . ,An;B)

taking an X-parametrised map to a multilinear map strict in FX . The Fi sim-
ilarly respect composition. The biadjunction F ⊣ U is reflected in the fact that
the composite

T -Alg(A1, . . . ,An;B) −→ T -Alg(A1, . . . ,An;B) −→ T -Alg(FA1, . . . ,An;B)



is induced by the counit ε, while the composite

T -Alg(X, . . . ,An;B) −→ T -Alg(FX, . . . ,An;B) −→ T -Alg(TX, . . . ,An;B)

admits a retract induced by η.

5.3 Multilinear universality

We need to use a notion of limit in a 2-multicategory which is a trivial general-
ization of the notion of weighted limit. Suppose that D is a (small) 2-category
and F : D −→ Cat a 2-functor. If K is a 2-category, then an F -weighted cone
over G : D −→ K with vertex A is an object of the category

[D, Cat](F,K(A,G(−)) ;

and an F -weighted limit is a representing object lim(F,G), that is an isomor-
phism of categories

K(A, lim(F,G)) ∼= [D, Cat](F,K(A,G(−)) ,

natural in A. Now suppose that K is a 2-multicategory. We extend the notion of
weighted cone and limit as follows. An F -weighted cone with vertices A1, . . . , An

is an object of
[D, Cat](F,K(A1 , . . . , An;G(−)) ;

and an F -weighted limit is a representing object lim(F,G), that is an isomor-
phism of categories

K(A1, . . . , An; lim(F,G)) ∼= [D, Cat](F,K(A1, . . . , An;G(−)) ,

natural in the obvious multicategorical sense in A1, . . . , An.
As we explained for T pseudo-commutative, T -Alg is not just a 2-category

but a 2-multicategory. The arguments of [3] extend readily to this situation and
we have the following.

Proposition 19. T -Alg has PIE limits as a 2-multicategory

6 Pseudo-closed and pseudo-monoidal structure

In this section we take a pseudo-commutative 2-monad T on Cat and exhibit a
pseudo-closed structure on the 2-category T -Alg. When our pseudo-commutativity
is symmetric we find that we have a symmetric pseudo-closed structure. We first
show that for any T -algebras A and B the category T -Alg(A,B) has a T -algebra
structure defined pointwise; that is, it inherits a T -algebra structure from the
cotensor [A,B]. This exponential or function space has properties one expects
with respect to the multilinear maps in T -Alg, and we use this first to define the
data for a closed structure on the 2-category and then to verify the axioms. We
close by explaining how it then follows that we have a pseudo-monoidal structure
on T -Alg, which is thus pseudo-monoidal closed.



6.1 The T -algebra of pseudo-maps

In order to provide a pseudo-closed structure on T -Alg, we emulate the proof
that for an ordinary commutative monad on Set, the category of algebras is
closed. For an ordinary commutative monad T , the closed structure is given by
internalizing the notion of the collection of structure preserving maps between
algebras. Over Set it is clear that commutativity of T gives this collection the
structure of a T-algebra defined pointwise. In the general abstract setting of a
strong monad on a commutative monoidal category, one expresses the closed
structure using an equaliser: simple categorical arguments show that for T com-
mutative, the equalizer inherits the pointwise T -algebra structure (Kock [12]).
By analogy we wish to internalize the notion of the category of structure pre-
serving maps in the pseudo sense. Over Cat we can just take the category of
pseudo-maps of algebras, but it is tiresome to show with bare hands that this
has a T -algebra structure defined pointwise. It is more elegant to express the
category T -Alg(A,B) of pseudo-maps from A to B as a limit built from an iso-
inserter and two equifiers in Cat; the limit diagrams are diagrams in T -Alg, and
so the limit lifts to T -Alg. In view of [3], we might as well work in T -Alg straight
away.

Definition 11. Given T -algebras A = (A, a) and B = (B, b), we construct a
new T -algebra in three steps.

1. Take the iso-inserter (i : In −→ [A,B], α′) of

[A,B]

σA,B-

[a,B]
- [TA,B]

So we get a universal 2-cell α′ : σA,B · i −→ [a,B] · i. Note that we use
conditions from Proposition 8 in showing that the above is a diagram in
T -Alg.

2. Take the equifier e′ : Eq′ −→ In of [ηA,B] · α′ with the identity. Note that
by (i) of Proposition 13 this makes sense.

3. Take the equifier e : Eq −→ Eq′ of [µA, B] ·α′ · e′ with the following pasting:

[A,B]
σ- [TA,B]

⇓ α′

Eq′
e′ - In

i -

i

-

[A,B]

[a
,B

]

-

[T 2A,B]

σ

-

⇓ α′

[A,B]
[a,B]

-

i
-

[TA,B]

[T
a,
B
]

-
σ

-



Here the final square commutes by the easy naturality of σ, and the domains
of the 2-cells match easily; for the codomains we use (ii) of Proposition 13.

We write the resulting T -algebra [A,B] and call it, equipped with the composite

p = i · e′ · e : [A,B] −→ [A,B]

and the isomorphic 2-cell

α = α′ · e′ · e : σA,B · p −→ [a,B] · p

the function space A to B.

If in Cat we take the canonical notions of iso-inserter and equifier we shall find
that our final Eq is exactly the category of pseudo-maps from A to B. So the
forgetful 2-functor takes [A,B] to T -Alg(A,B). Moreover the following universal
property follows directly from the construction.

Proposition 20. Suppose given a pair of T -algebras A = (A, a) and B = (B, b).
(i) The T -algebra [A,B] equipped with

p : [A,B] −→ [A,B] and an isomorphic 2-cell α : σA,B · p −→ [a,B] · p

satisfies the universal property: for each D, composition with p induces an iso-
morphism between T -Alg(D, [A,B]) and the category of cones given by data

f : D −→ [A,B] and an isomorphic 2-cell β : σA,B · f −→ [a,B] · f

satisfying the two equification conditions:

[A,B]

D

f

-

⇓ β [TA,B]
η-

σ

-

[A,B] = idf

[A,B]

[a
,B

]

-

f

-



[A,B]

D

f

-

⇓ β [TA,B]
µ-

σ

-

[T 2A,B] =

[A,B]
σ- [TA,B]

[A,B]

[a
,B

]

-

f

-

⇓ β

D
f-

f

-

[A,B]

[a
,B

]

-

[T 2A,B]

σ

-

⇓ β

[A,B]
[a,B]

-

f

-

[TA,B]

[T
a,
B
]

-
σ

-

By 5.3 we can take this in the sense of 2-multicategories: composition with k gives
an isomorphism between the category T -Alg(C1, . . . , Cn; [A,B]) and the category
of cones with vertices C1, . . . , Cn.
(ii) k is a strict map of T -algebras and postcomposition with k reflects strictness.
(iii) The forgetful functor T -Alg −→ Cat takes

[A,B] with k : [A,B] −→ [A,B] and α : σA,B · k −→ [a,B] · k

to corresponding limit data

T -Alg(A,B) with k : T -Alg(A,B) −→ [A,B] and α : σA,B · k −→ [a,B] · k .

We deduce by a routine use of the universal property of [A,B] the following.

Theorem 9. [−,−] extends to a 2-functor from T -Algop × T -Alg to T -Alg.

Finally, we recall the adjoint retract equivalence īX,A ⊣ ēX,A from 4.1. By
Proposition 20 the retraction

ē = ēX,A = T -Alg(FX,A)
U- Cat(TX,A)

Cat(η,A)- Cat(X,A)

lifts to a strict map

e = eX,A = [FX,A]
p- [TX,A]

[η,A]- [X,A]

in T -Alg; we have U(eX,A) = ēX,A. Now the forgetful U : T -Alg −→ Cat reflects
equivalences, and more specifically adjoint retract equivalences. The naturality
properties also lift so we have the following.

Theorem 10. The (retract) equivalence īX,A ⊣ ēX,A lifts to an equivalence
iX,A ⊣ eX,A.
eX,A is natural in X and A; iX,A is natural in X and pseudo-natural in A.



6.2 Multilinear properties of the exponential

Theorem 11. Let A1, . . . ,An, B and C be T -algebras. Exponentiation induces
a natural isomorphism

T -Alg(A1, . . . ,An,B; C) ∼= T -Alg(A1, . . . ,An; [B, C])

between the indicated categories of multilinear maps. Moreover, the map into
[B, C] is strict in i if and only if the corresponding map to C is strict in i; and
it factors through the category of strict maps of T -algebras if and only if the
corresponding map is strict in B.

Proof. The proof of this is largely routine, and given the rest, the points about
strictness are obvious. To keep things simple we first do the simplest case: we
show

T -Alg(A,B; C) ∼= T -Alg(A, [B, C]) .

An object of the left hand side is given by data (f, f̄A, f̄B) where

f : A×B −→ C ,

f̄A : c · Tf · t∗ −→ f · (a×B) ,
f̄B : c · Tf · t −→ f · (A× b)

satisfy two pseudo-map conditions and a commutativity condition.
The exponential transpose of f is a 1-cell g : A −→ [B,C], and the pseudo-map
condition for f̄A says exactly that the transpose of f̄A gives a pseudo-map of
algebras (g, ḡ) : A −→ [B, C]. Transposing f̄B gives an invertible 2-cell

A

σ · g-
⇓ α

[b, C] · g
- [TB,C]

in Cat. The commutativity condition says exactly that this lifts to a 2-cell

A

σ · g-
⇓ α

[b, C] · g
- [TB, C]

in T -Alg. Finally the pseudo-map condition for f̄B gives exactly the equify-
ing conditions. Hence by universality the data above corresponds exactly to a
pseudo-map from A to [B, C], i.e. to an object of the right hand side. All these
correspondences are natural so we obtain not just a bijection on objects but an
isomorphism of categories natural in the data. We now illustrate how to extend
this to arbitrary multimaps. Suppose we wish to show

T -Alg(A,B, C;D) ∼= T -Alg(A,B; [C,D]) .

An object of the left hand side is now given by data h, h̄A, h̄B and h̄C , satisfying
three pseudo-map conditions and three commutativity conditions. Transposing



h gives a 1-cell A×B −→ [C,D]; and the transposes of h̄A and h̄B give the data
for a multilinear map A × B −→ [C,D]; that it is such uses one commutativity
condition. The 2-cell h̄C transposes to give an invertible 2-cell

A×B
-
⇓- [TC,D]

in Cat, and the two further commutativity conditions involving h̄C say exactly
that this lifts to

A× B
-
⇓- [TC,D]

in T -Alg. Finally the pseudo-map condition for h̄C gives the equifying conditions
of the limit. So by multilinear universality the data corresponds exactly to an
object of the right hand side. This is all routine, but one should note the tacit
uses of Proposition 5.

We have occasional need of some simple extensions of Theorem 11. Clearly the
argument extends to categories of parametrised maps of the kind introduced
in Section 5. Moreover the partial actions of U and F described there respect
exponential transpose. We restrict the formulation to avoid notational fuss.

Proposition 21. Exponentiation induces natural isomorphisms as indicated in
the following commutative diagrams.

T -Alg(A1, . . . ,An,B; C)
∼=- T -Alg(A1, . . . ,An; [B, C])

T -Alg(A1, . . . ,An,B; C)

U1

? ∼=- T -Alg(A1, . . . ,An; [B, C])

U1

?

T -Alg(X, . . . ,An,B; C)
∼=- T -Alg(X, . . . ,An; [B, C])

T -Alg(FX, . . . ,An,B; C)

F1

? ∼=- T -Alg(FX, . . . ,An; [B, C])

F1

?

6.3 Exponential transpose

We now give some examples of maps arising by exponential transpose.

1. Evaluation We need notation for the canonical evaluation map. We write

ev = (ev, ēv) : [A,B]×A −→ B

for the map corresponding to the identity [A,B] −→ [A,B]. This is strict in
[A,B] and the 2-cell ēv is the transpose of the 2-cell α arising in the definition
of [A,B].



2. Composition We also make use of an internalisation of composition. We
can compose two evaluations

[A,B] ×A −→ B and [B, C]× B −→ C

to give a multilinear map which we write with evident notation

ev · (1 × ev) : [B, C] × [A,B]×A −→ [B, C]×B −→ C ;

we define the exponential transpose of this to be

comp : [B, C]× [A,B] −→ [A, C] .

We make precise a sense in which comp internalises composition. First con-
sider U1(ev · (1 × ev)). Since U1 respects composition, this is the composite

U1(ev · (1 × ev)) : T -Alg(B, C) × [A,B] ×A −→ T -Alg(B, C)×B −→ C ;

By naturality of ev we can rewrite that as

U1(ev · (1 × ev)) : T -Alg(B, C)× [A,B] ×A −→ [A, C] ×A −→ C .

Now since U1 respects exponential transpose we get that

U1(comp) : T -Alg(B, C)× [A,B] −→ [A, C]

is just the functoriality action.
3. Functoriality Recall from Section 5 the action • : T -Alg(A,B) ×A −→ B.

We consider its exponential transpose. Under the natural isomorphism

T -Alg(T -Alg(A,B),A;B) ∼= T -Alg(T -Alg(A,B); [A,B])
= Cat(T -Alg(A,B), T -Alg(A,B))

it of course corresponds to the identity on T -Alg(A,B). We note that we can
now give further paramtrised maps. For example as [A,B] is functorial in A,
we have a map T -Alg(B, C) −→ T -Alg([A,B], [A, C]). Composing that with
a version of the • we just considered gives a parametrised map

• : T -Alg(B, C) × [A,B] −→ [A, C]

which is again the functoriality action.
4. The section iX,A We already obtained iX,A : [X,A] −→ [FX,A] by lifting

the retract equivalence īX,A ⊣ ēX,A. Following through the proof of Theorem
11 enables us to identify the exponential transpose

[X,A] × FX −→ A .

It is given precisely by the action of

F2 : T -Alg([X,A], X ;A) −→ T -Alg([X,A], FX ;A)

on the canonical evaluation

• : [X,A] ×X −→ A .



5. The retraction eX,A We constructed maps eX,C : [FX, C] −→ [X, C] lifting
the ēX,C . These induce functors

T -Alg(A, [FX, C]) −→ T -Alg(A, [X, C])

and hence functors

T -Alg(A, FX ; C) −→ T -Alg(A, X ; C)

which can be regarded as parametrised versions of ē. We read off a description
from the proof of Theorem 11 and deduce that these functors are induced
by composition with the vacuous parametrised map X −→ FX .

6.4 Pseudo-closed structure on T -Alg

We are now in a position to present the data to exhibit T -Alg as a pseudo-closed
2-category and prove that the data satisfies the axioms of section 2.1.

The data T -Alg is a 2-category and we take V : T -Alg −→ Cat to be the
forgetful functor U : T -Alg −→ Cat. (We shall stick with U in what fol-
lows.) We saw from its universal construction that the internal hom [−,−] :
T -Algop×T -Alg −→ Cat is 2-functorial. To describe the rest of the structure we
make use of the 2-multicategorical structure of T -Alg together with the canoni-
cal correspondences ē and ī of the biadjunction F ⊣ U and their lifts e and i.

The unit. We take as unit, F1, the free T -algebra on 1. (Note that strict maps
F1 −→ A in T -Alg correspond to objects of the underlying category A.)

Identity The 1-cell j : F1 −→ [A,A] is defined to be the strict map corre-
sponding under the adjunction to the functor 1 −→ T -Alg(A,A) picking
out the identity on A. Write ĵA : 1 −→ T -Alg(A,A) for this 1-cell in
Cat. Then in terms of the retract equivalence ī ⊣ ē we have effectively
defined jA = ī1,[A,A](ĵA) or equivalently as the unique strict map with

ē1,[A,A](jA) = ĵA.
(We note in passing that we can describe j as the transpose of a bilinear
map with underlying 1-cell

T 1 ×A
t∗- T (1 ×A)

T l - TA
a - A

which is strict in T 1 and with an A-component 2-cell which we omit.)
Unit laws eA : [F1,A] −→ A is the composite of e1,A : [F1,A] −→ [1,A] and

the isomorphism [1,A] −→ A; and iA : A −→ [F1,A] is the composite of
the isomorphism A −→ [1,A] and i1,A : [1,A] −→ [F1,A].
The 1-cell eA : [F1,A] −→ A is strict. It is determined as such by UeA being
the composite T -Alg(F1,A) −→ Cat(T 1, A) −→ Cat(1, A) ∼= A.
The 1-cell iA : A −→ [F1,A] is not strict, but rather factors through strict
maps.



(We note in passing that we can describe i as the transpose of a bilinear map
with underlying 1-cell

A× T 1
t- T (A× 1)

Tr - TA
a - A

which is strict in T 1 and with an A-component 2-cell which we omit.)
Note that we get eA natural (and iA pseudo-natural) in A by the corre-
sponding properties of eX,A and iX,A. Similarly we see that eA is a retract
equivalence with section iA.

Composition law Recall the multilinear map comp : [B, C]× [A,B] −→ [A, C]
which internalises composition. Clearly comp is strict in [B, C]. It transposes
to k : [B, C] −→ [[A,B], [A, C]] which is a strict pseudo-map of T -algebras.
The naturality of k in A, B and C, follow from the corresponding properties
for comp.

The axioms We dealt with some of the axioms when constructing the data.
So we already have the naturality of e and k and the retract equivalence i ⊣ e.
The final technical condition is clear as both V (iA · eA)(p) and eA · [p,A] · jA
are the strict map F1 −→ A corresponding to Up · η : 1 −→ A. Thus we are
left with the numbered axioms. The proof of these can be understood as follows.
All the relevant structure maps are strict, so we need to prove equality between
various parallel pairs of strict maps of T -algebras: but equality between strict
maps amounts to equality of the underlying functors. Now we know that the
underlying category of of [A,B] is T -Alg(A,B), the category of pseudo-maps of
algebras, and we have concrete descriptions of our structure maps. So we can
just check that the axioms hold at the Cat level.

1. By definition jB : F1 −→ [B,B] is the strict map corresponding under ad-
junction to the map ĵB : 1 −→ T -Alg(B,B) picking out the identity. Hence
the composite k · jB : F1 −→ [[A,B], [A,B]] is strict and so uniquely deter-
mined by ē(k · jB) = Uk · ē(jB). But

ē(jB) = ĵB : 1 −→ T -Alg(B,B)

picks the identity and

Uk : T -Alg(B,B) −→ T -Alg([A,B], [A,B])

is functoriality data for [A,−]. So Uk·ĵB = ĵ[A,B] by functoriality. We deduce
that k · jB = j[A,B].

2. We have a composite

[A, C] - [[A,A], [A, C]] - [F1, [A, C]] - [A, C]

of strict maps, which will be the identity just when it is the identity at the
level of Cat. Applying U and factorizing the middle map gives us

T -Alg(A, C)
Uk- T -Alg([A,A], [A, C])

[ε, 1] - T -Alg(FU [A,A], [A, C])

[F ĵ, 1]- T -Alg(F1, [A, C])
ē- Cat(1, U [A, C]) ∼= T -Alg(A, C)



By a series of naturalities we can chase this round to give the composite

Cat(1, U [A, C])
F- T -AlgF1, FU [A, C])

ē- Cat(1, UFU [A, C])
Cat(1, ε)- Cat(1, [A, C])

which is the identity by consideration of Fs ⊣ Us. So we are done.
3. All maps involved are strict, so we could reduce to the Cat level; but even

there we have to prove something stronger than the plain 2-functoriality of
[A,−]. It is simpler to exploit multilinearity directly. The short composite
in the diagram corresponds (transposing twice) to

[C,D] · [B, C] · [A,B]
comp · [A,B]- [B,D] · [A,B]

comp- [A,D] ,

where we temporarily write · for × to save space. On the other hand the
long composite corresponds (again transposing twice) to

[C,D] · [B, C] · [A,B]
1 · k · 1- [C,D] · [[A,B], [A, C]]× [A,B]

1 · ev - [C,D] · [A, C]
comp - [A,D] .

But by naturality that is equal to

[C,D] · [B, C] · [A,B]
[C,D] × comp- [C,D] · [A, C]

comp- [A,D] .

Thus the two sides of the diagram correspond to the two ways of associating
composition to give a multilinear map [C,D] × [B, C] × [A,B] −→ [A,D].
The corresponding multilinear maps [C,D] × [B, C] × [A,B] × A −→ D are
constructed by composing three evaluations in two different orders. Since
multilinear composition is associative, we are done.

4. The maps are strict so it suffices to check what happens in Cat. Applying
U , we get on the one hand

T -Alg(A,B)
Uk- T -Alg([I,A], [I,B])

T -Alg(1, e)- T -Alg([I,A],B)

and on the other

T -Alg(A,B)
T -Alg(e, 1)- T -Alg([I,A],B) .

The equality of these just expresses naturality of e, so we are done.
5. Trivial as we defined jA so that Ue[A,A](jA) = idA.

This gives us the main result at which we have been aiming.

Proposition 22. If T is a pseudo-commutative 2-monad on Cat, then T -Alg
is a pseudo-closed 2-category.



We can say something more about the biadjunction F ⊣ U . Recall the notion of
closed functor which we introduced in Section 2. For U we have obvious data

ψ : 1
η1- UF1 , ψ : U [A,B] = T -Alg(A,B)

U- Cat(A,B) = [UA, UB] ;

and it is easy to check that this makes U a closed functor. For F we have data

φ : F1
id - F1 , φ : F [X,Y ] - [FX,FY ] ,

where the latter is the strict map of T -algebras corresponding to the action
F : [X,Y ] −→ T -Alg(FX,FY ) = U [FX,FY ]. (Equally it is the transpose of F
applied to evaluation in Cat.) Again it is easy to check that this data makes U
a closed functor. Finally one can extend the definition of Eilenberg and Kelly [7]
to define the notion of a closed pseudo-natural transformation between closed
functors. (We omit the details.) We then observe that η : 1Cat −→ UF is a
closed natural transformation, while ε : FU −→ 1T -Alg is a closed pseudo-

natural transformation. Thus we state our main theorem as follows.

Theorem 12. If T is a pseudo-commutative 2-monad on Cat, then
(i) T -Alg is a pseudo-closed 2-category,
(ii) U and F are closed 2-functors, and
(iii) F ⊣ U is a closed biadjunction.

6.5 Symmetric structure

Everything we did in the previous section went through for a general pseudo-
commutativity γ on T . Now let us assume that γ is symmetric so that T -Alg
is a symmetric 2-multicategory. Then we can define a symmetry for T -Alg as a
pseudo-closed 2-category.

Symmetry We have an isomorphism τ̃ say, given by the following composite

T -Alg([A, [B, C]], [A, [B, C]]) ∼= T -Alg([A, [B, C]] ×A× B; C)
∼= T -Alg([A, [B, C]] × B ×A; C)
∼= T -Alg([A, [B, C]], [B, [A, C]]) .

Then we set τ = Uτ̃(id). Equivalently

Uτ : T -Alg(A, [B, C]) −→ T -Alg(B, [A, C])

corresponds under exponential transpose to the symmetry

T -Alg(A,B; C) −→ T -Alg(B,A; C) .

Equivalently composition with τ : [A, [B, C]] −→ [B, [A, C]] induces maps

T -Alg(D, [A, [B, C]]) −→ T -Alg(D, [B, [A, C]])

which correspond under exponential transpose to the symmetry

T -Alg(D,A,B; C) −→ T -Alg(D,B,A; C) .

Now we check the axioms we have given for a symmetry.



– Identity law for e. Since e and c are strict we can sheck this at the Cat
level. We recall that ēX,D : T -Alg(FX,D) −→ T -Alg(X,D) = Cat(X,D)
is induced by composition with the trivial parametrised map X −→ FX .
Applying this in case D = [A, C], we find that Ue[A,C] corresponds to

T -Alg(F1,A; C) −→ T -Alg(1,A; C) ∼= T -Alg(A, C)

induced by composition with 1 −→ F1. Since Uτ corresponds to the sym-
metry T -Alg(A, F1; C) −→ T -Alg(F1,A; C), the composite Ue[A,C] ·Uc cor-
responds to

T -Alg(A, F1; C) −→ T -Alg(A, 1; C) ∼= T -Alg(A, C)

induced by composition with 1 −→ F1. But, as we saw in 6.3, that is exactly
what U [A, eC] corresponds to.

– Identity law for i. Recall that iX,B : [X,B] −→ [FX,B] corresponds to
the multilinear map [X,B] × FX −→ B strict in FX which corresponds to
the canonical parametrised map [X,B]×X −→ B. Hence i[A,C] corresponds
to the trivially parametrised identity [A, C]× 1 −→ [A, C], so to the trivially
parametrised evaluation [A, C] × 1 ×A −→ C. Thus the composite τ · i[A,C]

corresponds to the trivially parametrised evaluation [A, C] × A × 1 −→ C.
But since the partial forgetful operations respect composition, that is exactly
what [A, iC ] corresponds to.

– Yang-Baxter Law. By naturality considerations this is immediate from
the symmetry of the 2-multicategory T -Alg.

We deduce a result which applies to the cases of greatest interest to us.

Theorem 13. If T is a symmetric pseudo-commutative 2-monad on Cat, then
(i) T -Alg is a symmetric pseudo-closed 2-category,
(ii) U and F are closed 2-functors, and
(iii) F ⊣ U is a closed biadjunction.

6.6 Pseudo-monoidal structure

Now for simplicity of exposition suppose that our 2-monad T on Cat is finitary.
(We recall in passing that a finitary monad on Cat has at most one enrichment
in Cat, so that the enrichment T corresponding to the strength t is determined.)
We wish to check that under these circumstances we have for each A a biadjoint
to [A,−] : T -Alg −→ T -Alg. In view of Theorem 2 this will allow us to deduce
that T -Alg is a pseudo-monoidal pseudo-closed 2-category. The existence of a
biadjoint follows from [3] together with some observations which we sketch here.

First observe that for every T -algebra A, the 2-functor

T -Algs

J- T −Alg
T -Alg(A,−)- Cat

preserves limits, as J has a left 2-adjoint and because representables always
preserve limits. As T is finitary, the 2-category T -Algs is locally finitely pre-
sentable, so the 2-functor T -Alg(A,−) · J has a left 2-adjoint. We want more.



T -Alg(A,−) · J is equal to the composite of [A,−] : T -Algs −→ T -Algs with
the forgetful Us : T -Algs −→ Cat. Since Us creates limits, it follows that in fact
[A,−] : T -Algs −→ T -Algs preserves limits. So it also has a left adjoint −⊘A.

We can describe the left adjoint concretely as follows. We have

T -Algs(A⊘ B, C) ∼= T -Algs(A, [B, C]) .

Now the right hand side is isomorphic to the full subcategory of the category
T -Alg(A,B; C) on those multilinear maps which are strict in A. So we seek a
representation of the 2-functor T -Algs −→ Cat. Since T -Algs is complete, we
can construct this as a colimit: we take a 1-cell p : F (A×B) −→ A⊘B together
with a 2-cell

F (T (A× B))
µ - F (A×B)

⇓ α

F (A× TB)

Ft

6

F (A× b)
- F (A×B)

p
- A⊘ B .

p

-

(Here we write µ also for the standard strict map between free T -algebras given
by µ.) This data should be universal in T -Algs with the following properties.

1. The diagram

F (T (A× B))
µ - F (A×B)

F (TA× B)

Ft∗
6

F (A× b)
- F (A×B)

p
- A⊘ B

p

-

(dual to that for the 2-cell α) commutes.
2. α · F (A× η) is an identity 2-cell.
3. α · F (A× µ) is equal to the pasting

FT 2(A×B)
Fµ - FT (A×B)

FUp- FU(A⊘ B)

⇓ FUα

FT (A× TB)

FT t

6

FT (A× b)
- FT (A×B)

µ -

FU
p

-

F (A×B)
p- A⊘ B

-

⇓ α

F (A × T 2B)

Ft

6

F (A× Tb
- F (A× TB)

Ft

6

F (A× b)
- F (A×B)

p

-



(Here the unlabelled arrow is given by the structure map for the T -algebraA⊘B.)
We can construct this universal object using a coequalizer, an iso-coinserter and
two coequifiers in T -Algs.

With the operation ⊘ in place we state our final result.

Theorem 14. Let T be a finitary pseudo-commutative 2-monad on Cat. Then
the 2-category T -Alg has a pseudo-monoidal pseudo-closed structure induced by
its pseudo-closed structure. Furthermore U is a pseudo-monoidal functor and the
left biadjoint F a strong pseudo-monoidal functor.

Proof. We have a natural isomorphism

T -Algs(A⊘ B, C) ∼= T -Algs(A, [B, C]) .

in T -Algs. The adjunction (−)′ ⊣ J from [3] gives retract equivalences in T -Alg
so in that 2-category we get a diagram natural in C

dC = [A⊘ B, C]
kB- [[B,A⊘ B], [B, C]]

[unit, [B, C]]- [A, [B, C]]

using the unit from the natural isomorphism. The diagram of Theorem 2 then
commutes because it does so in Cat and the maps concerned are strict. Now we
know, by a general result in [3], that Ud presents (−⊘ C) : T -Alg −→ T -Alg as
a left biadjoint to [B,−] : T -Alg −→ T -Alg; it follows that d is an equivalence.
So by Theorem 2 we get the pseudo-monoidal structure. The claims concerning
U and F follow from corresponding properties of U and F as closed functors.

As it stands our result relies on calculations which we have indicated but have
not given in Section 2. As an alternative one could use the concrete description
of A ⊘ B above to establish the pseudo-monoidal structure directly. Even then
there is much to check.
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