Traced Premonoidal Categories

Nick Benton
Microsoft Research
Cambridge, UK

nick@microsoft.com

Abstract

Motivated by some examples from functional programming,
we propose a generalisation of the notion of trace to sym-
metric premonoidal categories and of Conway operators to
Freyd categories. We show that, in a Freyd category, these
notions are equivalent, generalising a well-known theorem of
Hasegawa and Hyland.

1 Introduction

Monads were introduced into computer science by Moggi
[18] as a structuring device in denotational semantics and
soon became a popular abstraction for writing actual pro-
grams, particularly for expressing and controlling side-
effects in ‘pure’ functional programming languages such as
Haskell [25, 17]. Power and Robinson subsequently intro-
duced premonoidal categories as a generalisation of Moggi’s
computational models [21], whilst Hughes developed arrows,
which are the equivalent programming abstraction [12].

Some uses of monads in functional programming seem
to call for a kind of recursion operator on computations for
which, informally, the recursion ‘only takes place over the
values’. For example, the Haskell Prelude defines the (inter-
nally implemented) ST and I0 monads for, respectively, po-
tentially state-manipulating and input/output-performing
computations. These come equipped with polymorphic
functions

fixST :: (a -> ST a) -> ST a
fixI0 :: (a -> I0 a) -> 10 a

which allow computations to be recursively defined in terms
of the values they produce. For example, the following pro-
gram uses £ixI0' to extend a cunning cyclic programming
trick due to Bird [1] to the case of side-effecting computa-
tions. replacemin computes a tree in which every leaf of
the argument has been replaced by the minimum of all the
leaves. It does this in a single pass over the input and prints
out each leaf as it encounters it:?

1We should note that £ixI0 does not actually satisfy the axioms
we will propose. However, the basic pattern would remain the same,
though the code would be a little longer, if we had performed side-
effects involving state instead.

2The tilde ~ on the last line specifies ‘lazy’ pattern matching for the
pair (m,r). Haskell’s tuples are actually lifted products and pattern
matching is, by default, strict. Without the tilde the function would
diverge.

Martin Hyland
University of Cambridge

Department of Pure Mathematics
and Mathematical Statistics
M.Hyland@dpmms.cam.ac.uk

data Tree a = Leaf a | Branch (Tree a) (Tree a)

f :: Tree Int -> Int -> I0 (Int,Tree Int)
f (Leaf n) m = do print n
return (n, Leaf m)
f (Branch t1 t2) m =
do (ml,r1) <- f t1m
(m2,r2) <- f t2 m
return (min m1 m2, Branch rl r2)

replacemin :: Tree Int -> I0 (Int, Tree Int)
-- m is argument to and part of the result of £
replacemin t = fixI0 (\ "(m,r) -> f t m)

As another (though still somewhat contrived) example,
consider modelling the heap of a fictitious pure Scheme-like
language at a fairly low level. One might interpret heap-
manipulating computations using a monad T which is an
instance of a type class something like this

class Monad T => HeapMonad T where

alloc :: (Int, Int) -> T Int
lookup :: Int -> T (Int,Int)
free :: Int > T QO

The intention is that alloc takes two integers and returns
a computation which finds a free cons cell in the heap, fills
it with those two integers and returns the (strictly positive)
address of the allocated cell. lookup takes an integer ad-
dress and returns the contents of that cons cell, whilst free
marks a particular address as available for future allocations.
Since the values in the car and cdr of cells can be used as
the addresses of other cells, we can intepret programs which
build data structures such as lists in the heap. What if
the language we are interpreting can create cyclic structures
(for example, closures for recursive functions)? At the ma-
chine level, cyclic structures are created by allocating cells
containing dummy values and then ‘tying the knot’ by over-
writing those dummy values with the addresses returned by
the allocator. Hence we could just provide destructive up-
date operations

Int => Int > T O
Int -> Int > T ()

setcar ::
setcdr ::

and use those to create cycles. However, if the interpreted
language itself does not include destructive assignment, but
only creates cycles using higher-level constructs, then adding
assignment operations to the monad breaks an abstraction
barrier. One solution is to add a recursion operation to the
monad

fixT :: (a->Ta) >T a

with a definition such that the following code creates a two-
element cyclic list (and returns the addresses of both cells):

onetwocycle :: T (int,int)
onetwocycle = fixT (\"(x,y)->
do { x’ <- alloc(l,y)
y’ <- alloc(2,x)
return (x’,y’)

b

Observe that although the computation is recursively de-
fined, it should only perform the two allocation side-effects
once.

Many of the real uses of this kind of recursion have the
flavour of the previous example: they involve computations
which create cyclic structures for which the identity, order
of creation or multiplicity of creation of the objects in the
structure is significant. An interesting example arises in
work on using Haskell to model hardware. Early versions of
both Lava [2] and Hawk [16] specified circuits in a monadic
style, instantiating the monad differently for different ap-
plications (such simulating the circuit, generating a netlist
or interfacing with a theorem prover). Cyclic circuits (i.e.
those with feedback) were defined in essentially the style
used to define onetwocycle above. Lava has moved away
from that style, in part because it is syntactically awkward.?
Launchbury et al. [16] also noted that programming in a
monadic style with £ixT is awkward, and suggested extend-
ing Haskell’s do notation to allow recursive bindings. That
suggestion was followed up by Launchbury and Erkok, who
proposed an axiomatisation of operators like £ixT (which
they call mfix) and showed how the do notation can be
extended to allow recursive bindings in the case that the
underlying monad supports such an mfix operation [15].

Launchbury and Erkok’s axiomatisation of mfix is partly
in terms of equations and partly in terms of inequations, in-
tended to be interpreted in the ‘usual’ (slightly informal)
concrete domain theoretic model of Haskell. One striking
feature of [15] is that it does not appear to build on any
of the large body of existing work on axiomatic/categorical
treatments of recursion, even those (such as [7]) which con-
sider fixed points in terms of monads. The authors cite
some of this work but state, quite correctly, that the non-
standard kind of recursion in which they are interested is
different from that covered in the literature. Although the
presence of a fixpoint object [7], for example, allows an op-
erator with the same type as mfix to be defined, it is not of
the kind we want.

From a categorical perspective, we seem to want a no-
tion of recursion or feedback on the Kleisli category of a
CCC with a strong monad. There is a special case of this
situation in which earlier work does provide an answer. Al-
though none of Launchbury and Erkok’s examples are of
commutative monads, in that case the Kleisli category will
be symmetric monoidal and Joyal, Street and Verity’s notion
of trace seems to fit the bill [14].

In the general case of a non-commutative monad,
however, the Kleisli category will only be symmetric
premonoidal. The work described here grew firstly from the
natural mathematical question of what the right definition

3Lava now uses a modified version of Haskell with ‘observable shar-
ing’: allowing new name generation as an implicit side-effect of every
expression and hence changing the equational theory of the language
(6].

of traced premonoidal category might be, and secondly from
wondering whether an answer might provide a sensible cate-
gorical semantics for the kind of fixpoint operators described
in [15]. We give a natural, straightforward and well-behaved
answer to the first question, though it only accounts for a
rather special subset of the cases considered by Launchbury
and Erkok.

2 Background

2.1 Premonoidal Categories

For a careful definition of the notion of (symmetric) pre-
monoidal category and (symmetric) premonoidal functor,
see Power and Robinson’s paper [21]. Briefly, a premonoidal
category is a monoidal category except that the tensor prod-
uct ® need only be a functor in each of the two variables
separately. Thus if f : A — Band g : A’ — B’ in a
premonoidal category K then the two evident morphisms
AR A —-—B®B

; fOA 1 B®g

fxg = AA =5 BA =35 BB’
fxg = AoA 2L AgB °% po B

are not generally equal.

We generally write I for the unit of the tensor in a
(pre)monoidal category, o for the symmetry if there is one,
and A, p, « for the natural isomorphisms

A IA—-A
p ARI— A
a : (ARB)®C—-A®(B®C)

However, since we have coherence theorems for (symmet-
ric) (pre)monoidal categories [21], we will usually elide the
structural isomorphisms.

Definition 2.1. A morphism f: A — B in a premonoidal
category K is central if forall g : A” — B’ inK, fxg = fxg.
If at least one of f and g is central, then we may unambigu-
ously write f®g. The centre Z(K) of a premonoidal category
K is the monoidal subcategory of K with the same objects
but only the central morphisms.

The inclusion functor Z(K) — K is a strict, identity-
on-objects premonoidal functor (and symmetric if K is). In
more recent work Power in particular has stressed the impor-
tance from the algebraic point of view in having an explicit
choice of centre. That is, one is interested in the situation
where one has a functor J : M — K from a specified (sym-
metric) monoidal subcategory of a (symmetric) premonoidal
K; J factors through Z(K), so this amounts to specifying a
particular subcategory of central morphisms. (For many re-
sults J does not even need to be faithful, but we do not
consider that generality here.) We call a J : M — K as
above a centred premonoidal category, but since this is our
preferred notion we usually drop the ‘centred’. In this con-
text, by central morphisms we shall mean the morphisms of
M. One should think of M as a category of values and K as
a category of possibly-effectful computations. An important
special case is the following:

Definition 2.2. A Freyd category [22] is specified by a
cartesian category C, a symmetric premonoidal category
K and an identity-on-objects strict symmetric premonoidal
functor J : C — K.

Note that morphisms in the specified centre of a Freyd
category are ‘pure’ not merely in the sense of commut-
ing with arbitrary effectful computations, but also in being
copyable and discardable.

Example 2.1. If T is a strong monad on a symmetric
monoidal category M, then the Kleisli category My is sym-
metric premonoidal and the canonical functor from M to M
is strict symmetric premonoidal. Thus in the case that M is
cartesian, we have a Freyd category. If the monad is com-
mutative, then My is symmetric monoidal and J : Ml — M
is strict symmetric monoidal.

2.2 Traces and Fixpoints

The notion of traced monoidal category was introduced in
[14]. The use of traces to interpret recursion in programming
languages and the relationship between traces and fixpoints
have attracted much attention in recent years, beginning
with Hasegawa’s thesis [11]. Categorical axiomatisations of
fixpoint operators have been extensively studied, see [7, 19,
4] for example; a particularly crisp and up-to-date account
appears in [24].

Definition 2.3. A trace on a symmetric monoidal category
(M, ®, I, X, p,a,0) is a family of functions

trY g : M(A®U,B®U) — M(4, B)
satisfying the following conditions

e Naturality in A (Left Tightening).
Iff:A/®U—>B®U,g:A—>A'then

trh 5((g@U); f) = gitrar p(f) : A— B

e Naturality in B (Right Tightening).
Iff:AQU - B'®U, g: B'— B then

tr 5(f; (g®U)) =tr% p/(f);ig: A— B

e Dinaturality (Sliding).
Iff:AU - B®V,g:V — U then

s 5(f; (Bog) =trap(A®g); f): A= B
e Action (Vanishing). If f: A — B then
s fip) =f: A= B

andif f: A (U®V)— B® (U®YV) then

trX?BV(f) = trg,B(trX@)U,B@U(a; f; 04_1))

e Superposing. If f: A® U — B® U then

trg@A,C@B(a; C® f; Oé_l)
= CotrtYs(f) : C®¥A—-C®B

e Yanking. For all U, tr{j y(ov,w) =U: U — U.

Monoidal categories provide a formal basis for reasoning
about many of the graphical ‘boxes and wires’ notations
used in computer science. The trace axioms are presented
graphically in Figure 1, though we do not consider the formal
semantics of such diagrams here.

Definition 2.4. A parameterized fizpoint operator on a
cartesian category C is a family of functions

() C(AxU,U) — C(A,U)
satisfying
e Naturality. If f: BxU — U and g: A — B then

g ff=(gxU;NTA=TU
e Fixed point property. If f: A x U — U then
AfNf=rAa-U

The above definition is rather weak. Well-behaved fix-
point operators typically satisfy other interesting conditions.

Definition 2.5. A Conway operator is a parameterized fix-
point operator which additionally satisfies

e Parameterized Dinaturality. If f : A x V — U and
g:AxU —V then

(A, (1, 1)) f = (rsghs T A= U
e Diagonal Property. If f: A X U x U — U then

(AxA;H =M A-U

Parameterized dinaturality is easily seen to imply the
parameterized fixed point property and, in some concrete
categories of domains, is sufficient to characterize the least
fixed point operator uniquely [23]. Conway operators satisfy
various other useful identities, including the ‘Beki¢ prop-
erty’, which allows simultaneous fixed points to be reduced
to sequential ones.

There are also further ‘uniformity’ properties which a
fixpoint operator may have [24], but we shall not consider
those in the present paper.

An important theorem about traces and fixpoints is the
following, which is due (independently) to Hasegawa and to
Hyland, though its essential combinatorial content had been
observed earlier in a slightly different context [3, 5]:

Theorem 2.1 (Hasegawa, Hyland). To give a trace on a
cartesian category C is to give a Conway operator on C. [

3 Traces and Fixpoint Operators on Premonoidal
Categories

So, what is an appropriate generalisation of the notions of
trace and fixpoint operator to the premonoidal case? We
want definitions which make sense, have useful concrete in-
stances, give the monoidal versions as special cases and lead
to a generalisation of Theorem 2.1.

3.1 Symmetric Premonoidal Traces

We start by trying to generalise the definition of trace to a
centred symmetric premonoidal category J : M — K. Al-
though none of the conditions in Definition 2.3 are expressed
in terms of tensoring arbitrary morphisms (in which case
we’d certainly have to reexamine them), we cannot simply
leave the definition unchanged:

Figure 1: Trace Axioms

Proposition 3.0.1. A symmetric premonoidal category
with a trace as defined in Definition 2.8 is actually
monoidal. O

The key step in the proof of the previous Proposition uses
the Sliding axiom to commute the side-effects of two compu-
tations. This observation motivates the following definition:

Definition 3.1. A trace on a centred symmetric pre-
monoidal category J : M — K is is a family of functions

trh 5 K(A®U,BRU) — K(A, B)

satisfying the same conditions given in Definition 2.3 except
that the Sliding axiom is replaced by

e Premonoidal Sliding. If f : AQU — B®V and if
g:V — U is a central morphism then

tra5(f; (B®g) =trip(A®g);f): A— B

and we impose the further requirement

e Centre Preservation. If f: AQ U — B ® U is central
then so is trX,B f+A— B.

Clearly, if J : M — K has a premonoidal trace on K, the
restriction of that trace to M is a trace operator in the tra-
ditional sense of Definition 2.3. In particular, Definition 3.1
really is a generalisation of Definition 2.3.

Requiring the trace to preserve the distinguished centre
M is largely a matter of taste: we prefer to keep our equa-
tions algebraic. Even without the condition it is still easy
to see that the trace preserves Z(K):

Proposition 3.0.2. If f: AQU — B®U is in Z(K) and
g:C — D then g x try 5(f) = g x tr 5(f). O

It might also be remarked that the premonoidal sliding
condition appears somewhat asymmetric, since it requires
that g, rather than one of f and g, be central. However, a
little calculation shows that the symmetric case is a conse-
quence:

Proposition 3.0.3. Assume f: AQU — B®V is central
and g:V — U, thentry p((A®g); f) = tr4 p(f; B®g). O

3.2 Symmetric Premonoidal Fixpoints

We now turn to generalising the notion of fixpoint operator
to the premonoidal case. Since some of the axioms involve
duplication and discarding, we will assume that we are work-
ing in a Freyd category J : C — K. We also use A, 71, (-,),
etc. as shorthand notation for the lifting of the appropriate
operations from C to K (i.e. we elide uses of J). The nota-
tion (f, g) is ambiguous unless we specify the order in which
the components are computed, but we shall only use it in
the case one of the maps is central.

Definition 3.2. A parameterized fixpoint operator on a
Freyd category J : C — K is a family of functions

()" K(A® U,U) — K(4,U)
which satisfies

e Centre Preservation. If f: A® U — U is central then
sois f*: A—U.

e Naturality. If f: BQU — U and g: A — B then
g f =g®U)f) :A=U

e Central Fixed Point Property. If f: AQ U — U is
central, then

(A fyf=f:A->U

Just as in the cartesian case, this is the bare minimum
one might require of a fixpoint operator. We are interested in
rather stronger conditions, and propose the following as an
appropriate generalisation of Conway operators on cartesian
categories:

Definition 3.3. A parameterized fixpoint operator (-)* on
a Freyd category is a Conway operator if it satisfies the
following conditions:

1. Parallel Property. If f: AQU — U andg: BQV — V
with one of f and g central then
AoV fRg) ' =f"®g¢ : AQB—-UQ®V

2. Withering Property. If f : AQU — B®U and g : B —
C then

(w1, m3); f;9QU)" = ((m1,m3); f)"; 90U : A — CQU

3. Diagonal Property. If f: AQ U @ U — U then
(A®A)) =(f)A=U

The axioms of a premonoidal Conway operator are shown
graphically in Figure 3.2, where we follow Jeffrey [13] in
using a heavy line to indicate the sequencing of effects in K
(and that line runs outside those boxes intended to represent
central morphisms). The diagonal property is essentially the
same as in the cartesian case, but the parallel and withering
properties are more unusual.

There is a natural generalization of the dinaturality con-
dition to Freyd categories:

Definition 3.4. A parameterized fixpoint operator (-)* on
a Freyd category satisfies parameterized central dinaturality
if, given f: AQU — V and g: A® V — U with g central

(1, £);9)" = (A, ((m1,9); F)); g

As in the cartesian case, parameterized central dinatu-
rality clearly implies the central fixed point property. But
in the case of Freyd categories, the dinaturality condition
does not seem sufficient (along with the diagonal property)
to establish the equivalence between traces and Conway op-
erators, which is what motivated our parallel and withering
axioms. These do imply dinaturality, however:

Proposition 3.0.4. A Conway operator on a Freyd cate-
gory satisfies parameterized central dinaturality. O

Furthermore, our definition of a Conway operator on a
Freyd category does generalise the standard one:

Proposition 3.0.5. Definition 3.3 is equivalent to Defini-
tion 2.5 in the case that the category is cartesian. O

3.3 Relating Fixpoints and Traces in Freyd Cate-
gories

We now show our main result: in a Freyd category, to give
a premonoidal trace is equivalent to giving a premonoidal
Conway operator.

Theorem 3.1. Let J : C — K be a Freyd category such that
K is traced, as in Definition 3.1. Then the operation

defined by, for f: AU — U:

* U
[T =trau(f;4)
is a Conway operator in the sense of Definition 3.3. O

Remark 3.1. Hasegawa has also given a construction for
a fixpoint operator from a trace in the special case of the
Kleisli category of a commutative strong monad on a carte-
sian category (a case in which the premonoidal structure
is monoidal) [11, Theorem 7.2.1]. However, restricting our
construction to this special case does not generally give the
same fixpoint operator. Hasegawa’s construction uses the
adjunction in an essential way and repeats side-effects.

Theorem 3.2. Let J : C — K be a Freyd category where
K has a Conway operator (-)* as defined in Definition 3.3.
Then the operation
trh 5() : K(A® U, B U) — K(A, B)
defined by, for f: AQU — BQU
tri 5 (f) = (w1, m3);)5 m

is a premonoidal trace in the sense of Definition 3.1. O

: A— B

Proposition 3.2.1. The constructions of trace from Con-
way operator and of Conway operator from trace given in
Theorems 3.2 and 3.1 respectively are mutually inverse. [

Thus we have succeeded in establishing a premonoidal
generalization of Theorem 2.1.

Remark 3.2. Starting from a fixpoint operator, there is
another candidate for the definition of a trace, viz

' (f) = (A, (f;m2)"); fim : A— B

where f: A®QU — B®U. If K is monoidal this is the same
as the construction used in Theorem 3.2, but in the general
premonoidal case they are different, and tr’ does not seem
to have useful properties.

4 Examples

4.1 Monoids

Let M be a traced symmetric monoidal category as in Def-
inition 2.3 and (M,p : M @ M — M,n : I — M) be a
monoid in M. Let K be the Kleisli category of the monad
TA=M® A on M, so K(A, B) =M(A, M ® B). Then the
tensor on M lifts so that J : M — K is a centred symmetric
premonoidal category (it is monoidal iff M is a commutative
monoid).

Figure 2: Premonoidal Conway Axioms

Proposition 4.0.2. In the above situation, the operation
tr 5 : K(A® U, BRU) — K(A, B)

defined by tArZ,B(f) = tr%7M®B(f) is a premonoidal trace.
(|

Notions of computation based on monoids are fairly com-
mon. Commutative monoids such as the natural numbers
under addition can be used for modelling resource usage (e.g.
timed computations) whereas non-commutative monoids
model, for example, side-effecting output. In Haskell syntax,
the signature could look like this:

class Monoid m where
mult :: (m,m) -> m
unit ::m

newtype Cross m a = Cross (m,a) deriving Show

instance Monoid m => Monad (Cross m) where
return a = Cross (unit,a)
Cross(m,a) >>= f = let Cross(m’,b) = f a
in Cross(mult (m,m’), b)

instance Monoid [a] where
mult (s,t) = s ++ t
unit = []

-- command which writes to the output
output s = Cross(s,())

If we then apply our construction of a premonoidal Conway
operator from the trace defined in Proposition 4.0.2 then
we end up with an mfix operation of the type described by
Launchbury and Erkok:

instance Monoid m => MonadRec (Cross m) where
mfix f = let Cross(m,a) = f a
in Cross(m,a)

And this does have the expected behaviour:

nats_output =
mfix (\ys -> do output "first "
output "second."
return (0 : map succ ys))

> nats_output
Cross ("first second.",[0,1,2,3,4,5,6,7,8,9,...

The two side effects have happened once only and in the
order specified.

4.2 State

Let M be a traced symmetric monoidal category, S be an
object of M and K be the category with the same objects
as M and K(A,B) = M(S ® A,S ® B) with the evident
composition. If M is closed then K is equivalent to the Kleisli
category of the state monad TA = S —o S ® A. Then J :
M — K is premonoidal.

Proposition 4.0.3. In the above situation, the operation

trh 5 : K(A®U,BRU) — K(A, B)

defined by tArX,B(f) = tr89 4 s (f) is a premonoidal trace.
O

Again, the derived fixed point operator on the Kleisli
category is easily defined in Haskell:

newtype State s a = State (s -> (s,a))

instance Monad (State s) where
return a = State (\s ->(s,a))

State m >>= f = State (\s -> let (s’,a) =m s
State m’ = f a
in m’ s’)

instance MonadRec (State s) where
mfix f = State (\s -> let State m = f a
(s’,a) =m s

in (s’,a))

Note how the final value, a is recursively defined, but the
final state s’ is not — operationally, each time we go around
the loop, the initial state is ‘snapped back’ to s.

5 Related Work

Compared with Launchbury and Erkok’s work on axioma-
tising mfix, our definitions and results are in a rather more
general setting, but account for rather fewer concrete exam-
ples. The axioms in [15] are almost identical to our definition
of a premonoidal Conway operator except that they weaken
some of our equations to inequations (interpreted in a con-
crete category of domains), add a strictness condition on one
and regard some as additional properties which may hold in
some cases (i.e. not part of the basic definition of what they
call a ‘recursive monad’). These weaker conditions admit
definitions of mfix for monads such as Maybe (1 + (+)), lazy
lists and Haskell’s I0 monad [8] which do not have Conway
operators satisfying our conditions.

Paterson has designed a convenient syntax for program-
ming with Hughes’s arrows (just as Haskell adds do to sim-
plify programming with monads). Paterson’s recent paper
[20] gives axioms for an ArrowLoop operation which are the
same as our definition of a premonoidal trace; our results
thus prove an equivalence between ArrowLoop and a partic-
ular (newly identified) class of mfixs.

Jeffrey [13] has also considered a variant of traces in a
premonoidal setting, though his construction is rather differ-
ent from ours: he considers a partial trace (only applicable
to certain maps) on the category of values rather than on
that of computations.

Friedman and Sabry have also recently looked at defining
an mfix operation [9], though their approach is rather dif-
ferent from the axiomatic one which we and the others cited
here have taken. They view the ability to define computa-
tions recursively as an additional effect and give a ‘monad
transformer’ which adds a state-based updating implemen-
tation of recursion to an arbitrary monad. Lifting the oper-
ations of the underlying monad to the new one is left to the
programmer (and can generally be done in different ways).

6 Conclusions and Further Work

We have formulated and proved a natural generalisation of
the theorem relating traces and Conway operators to the
case of premonoidal categories. This has applications to

the semantics of some non-standard recursion and feedback
operations on computations which have been found useful
in functional programming.

It would be interesting to see if one could explain Launch-
bury and Erkok’s weaker axiomatisation in a more general
setting. The natural thing to try here is to be more explicit
about the presence of an abstract lifting monad, along the
lines of [10]. This may also help establish a connection with
the partial trace operation used by Jeffrey [13]. We would
also like to have some more examples.

We are in the process of investigating the premonoidal
version of the ‘geometry of interaction’ construction, which
traditionally embeds a traced monoidal category into a com-
pact closed one. This is interesting from a mathematical
view and may also have some connection to the building of
layered protocol stacks from stateful components.

References

[1] R.S. Bird. Using circular programs to eliminate multi-
ple traversals of data. Acta Informatica, 21(3):239-250,
1984.

[2] P. Bjesse, K. Claessen, M. Sheeran, and S. Singh. Lava:
Hardware design in Haskell. In International Confer-
ence on Functional Programming, 1998.

[3] S. L. Bloom and Z. Esik. Axiomatizing schemes and
their behaviors. Journal of Computer and System Sci-
ences, 31(3):375-393, 1985.

[4] S. L. Bloom and Z. Esik. Iteration Theories.
EATCS Monographs on Theoretical Computer Science.
Springer-Verlag, 1993.

[5] V. E. Cazanescu and Gh. Stefanescu. A general re-
sult on abstract flowchart schemes with applications to
the study of accessibility, reduction and minimization.
Theoretical Computer Science, 99:1-63, 1992.

[6] K. Claessen and D. Sands. Observable sharing for func-
tional circuit description. In Asian Computing Science
Conference, 1999.

[7] R. L. Crole and A. M. Pitts. New foundations for fix-
point computations: FIX-hyperdoctrines and the FIX-
logic. Information and Computation, 98:171-210, 1992.

[8] L. Erkok, J. Launchbury, and A. Moran. Semantics
of fixio. In Proceedings of the Workshop on Fized
Points in Computer Science (FICS’01), Firenze, Italy,
September 2001.

[9] D. P. Friedman and A. Sabry. Recursion is a computa-
tional effect. Technical Report 546, Computer Science
Department, Indiana University, December 2000.

[10] C. Fuhrmann, A. Bucalo, and A. Simpson. An equa-
tional notion of lifting monad. Theoretical Computer
Science, 2007 To appear.

[11] M. Hasegawa. Models of Sharing Graphs (A Categorical
Semantics of Let and Letrec). Distinguished Disserta-
tions in Computer Science. Springer-Verlag, 1999.

[12] J. Hughes. Generalising monads to arrows. Science of
Computer Programming, 37:67-112, 2000.

[13]

[14]

[15]

[16]

A. Jeffrey. Premondoidal categories and a graphi-
cal view of programs. http://www.cogs.susx.ac.uk/
users/alanje/premon/, June 1998.

A. Joyal, R. Street, and D. Verity. Traced monoidal
categories. Mathematical Proceedings of the Cambridge
Philosophical Society, 119(3), 1996.

J. Launchbury and L. Erkok. Recursive monadic bind-
ings. In International Conference on Functional Pro-
grammang, 2000.

J. Launchbury, J. R. Lewis, and B. Cook. On em-
bedding a microarchitectural design language within
Haskell. In International Conference on Functional
Programming, 1999.

J. Launchbury and S. L. Peyton Jones. State in Haskell.
Lisp and Symbolic Computation, 8(4):293-341, 1995.

E. Moggi. Notions of computation and monads. Infor-
mation and Computation, 93:55-92, 1991.

P. S. Mulry. Strong monads, algebras and fixed points.
In M. P. Fourman, P. T. Johnstone, and A. M. Pitts,
editors, Applications of Categories in Computer Sci-
ence, number 177 in LMS Lecture Notes, pages 202—
216, 1992.

R. Paterson. A new notation for arrows. In Proceed-
ings of the International Conference on Functional Pro-
gramming. ACM Press, September 2001.

A. J. Power and E. P. Robinson. Premonoidal cate-
gories and notions of computation. Mathematical Struc-
tures in Computer Science, 7(5):453-468, 1997.

A. J. Power and H. Thielecke. Closed Freyd and k-
categories. In International Conference on Automata,
Languages and Programming, 1999.

A. K. Simpson. A characterization of the least-fixed-
point operator by dinaturality. Theoretical Computer
Science, 118(2):301-314, 1993.

A. K. Simpson and G. D. Plotkin. Complete axioms
for categorical fixed-point operators. In Proceedings of
15th Annual Symposium on Logic in Computer Science.
IEEE Computer Society, 2000.

P. Wadler. The essence of functional programming.
In Proceedings of the 19th Symposium on Principles of
Programming Languages. ACM, 1992.

