Lineales

Martin Hyland and Valeria Paiva!

The first aim of this note is to describe an algebraic structure, more primitive
than lattices and quantales, which corresponds to the intuitionistic flavour of
Linear Logic we prefer. This part of the note is a total trivialisation of ideas
from category theory and we play with a toy-structure a not distant cousin of
a toy-language. '

The second goal of the note is to show a generic categorical construction,
which builds models for Linear Logic, similar to categorical models GC of
[de P], but more general. The ultimate aim is to relate different categorical
models of linear logic.

The first part of the note consists of two sections. The first section introduces
lineales; the second adds some structure to lineales, compares our work to
other approaches and show the main result of this part.

The second part of the note consists of four sections, which run along similar
lines to part . In section 3 we define our basic categorical construction, section
4 adds the extra structure corresponding to section 2 and shows the main result
of part II. Section 5, adding the modalities « ! » and «? », has no corresponding
section in part I, as we have not even tried to find the right notion of « ! » in
the restricted set-up of lineales. Section 6 describes some preliminary con-
clusions and further work.

1. Introducing lineales

We start by considering a very familiar structure, a commutative monoid
in the category of posets. We are thinking of posets as a restriction of the
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general notion of categories. That is the opposite of what people normally d:
in CS when they explain the notion of a category as a generalization of a poset
We call a commutative (or symmetric) monoid in the category Posets :
pre-lineale. [In the more general set-up we're thinking of a monoid object it
the category of categories.] NN
500 €0 yran a0

Definition1 A pré—lmgale is a poset (L, <) with a given compatzble symmetrzc mronoida,
structure (L, o, e). That 15, a set L equipped with a binary relation « < » satisfying :

Yy t"" @

« a <aforall ain L (reflexivity)
« a<band b <c= asc(transitivity)
« asband b<a=>a=b(antisymetry)

together with a monoid structure (o, ) consisting of a « multiplication » o : Lx L — L
and a distinguished object « e » of L, such that the following hold :

« {aob)oc=ao(boc) (associativity)
» aoe=eoa=a (identity)
« aob=boa (synmetry)
The structures are compatible in the sense that, ifa <b, wehaveaoc<boc, forall cin L.

We write a quadruple (L, £, o, ¢) for a pre-lineale. Note that, even if we want
to think of «o» as a form of conjunction, we do not have a o a = a (idempotency)
nor a < e for all a in L. Thus the relation between the order structure and the
multiplication is not as tight as in a sup-lattice.

But a pre-lineale is not the toy-structure we want to play with. A pre-lineale
corresponds, in the more general set-up of categories, to a symmetric monoidal
category and we are interested in symmetric monoidal closed categories. To
trivialise this notion we first define :

Definition 2 Suppose L is a pre-lineale and a, b € L. If there exists a largest x € L
such that a o x < b then this element is denoted a —o b and it is called the relative

pseudocomplement of @ wrt b.
Thus, by definition, if a —o b exists in a pre-lineale L then

e gof{g—ob)<h

« faoy<bforsomey, thenysa—ob
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Definition 3 A lineale is a pre-lineale (L. <, o, e) such that a —o b exists for all a

and bin L.
Since we defined a lineale to be a simplification of the notion of a symmetric

monoidal closed category, we have an obvious proposition :
Proposition 1 A lineale (L, <, o, e, —o) has the following properties :
1.Ifa<bh, foranycinlL,c—oa<c—obandb—oc<a—og;
2.aob<c&asth—oc
The proof is very easy, it only uses the definition of —o and L. Observe that
the item 1 in the proposition says, in the more general set-up of categories, that
—o: LxL — L is a « bifunctor », contravariant in its first coordinate and
covariant in the second coordinate, while item 2 says there is an adjunction
between functors Qob:L—>Land b—o () : L — L.

Another observation is thataseoa <aforanyae L, weknowe<ag-—oa

anda<aga-—oeforanyae L.
Note that if we denote by L any element of L and write (a)* for (@4 —o 1) we

have :

(i) a <b = bt <a' by prop 1.1.

(ii)ao@—ol)s1l ea oat<limpliesa<at—o 1 =at by prop 1.2.
Properties (i) and (ii) are called by Dunn the Intuitionistic Contraposition.
Definition 4 A He?ﬁ;%%iineale is a lineale (L, <, o, e, —o) equipped with a given
compatible symmetric monoidal structure (O, 1) weakly de Morgan-dual to « o ». That
means that

« the given structure (0, L) satisfies
— (associativity) a0 (bOc) = (a0b)Tc
~ (symmetry)aOb=>b0a

« the structure (4, 1) is compatible with (L, <, o, e) means that, as before, if a < b
then foranycinL,alOc<bOc

« the object L is the identity for O

all=10a=a




S

110 Martin Hyland and Valer£a Pai

- we have associative (or absorptive) laws :
(@a0b)oc<al(boc)
ac(bOc)<(@ob)Oc
Note that, if we write (@)* for (2 —o 1), 1 the identity for O, we ca
show ‘
atOb<a-—ob
simply using symmetry of « o » and the distributive law above, as follows :
go(@0b)<(@oat)Ob=
(aoa—o)Ob<s1lOb=b
With definition 4 we are trying to capture the (intuitionistic !) notion tha
conjunction and disjunction are not de Morgan dual — as they are in Classica
Logic, but instead, we have :
- (@0byr=at*o bt
« atOb<@ob)
We can prove,
Proposition 2 A Heyting lineale L satisfies :
(@) at o bt < (2D D),
(b)atabt<@ob)t

To show (b), as (a o b)* = (a 0 b) —o 1, it is enough to show @+ Db o(ao b) < 1,
easy as

(@tob)oboa)=atOroboa)<
at0(loa)=@ 0Ol oa=atoa< L

To show (a) at o b* < (2 O b)* we use the same kind of reasoning, as it is
enough to show (at o b o (@D by < 1.
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Note that as ¢ is the identity for o and L the identity for O,
atolt<@D=at=atoe= 1t<e

By proposition 1.2, as eo L < 1 we have e < L —o 1 = 14, thus 1* = e. Buit
in the weakly-dual case we cannot guarantee that e* = 1 as we only know
that : ’

gt0et<(aoet =at=at0L et <e

Note that the condition of compatibility says in the more general set-up of
“ategories that O is a covariant bifunctor.

We would call the symmetric monoidal structure (0, 1) de Morgan-dual to
o » if we had equality in condition (a) and (b). In that case we would call the
ineale a strong Heyting lineale.

One may think that names were badly chosen as a lineale already satisfies
vhat maybe be called a Heyting condition, namely

aobsceash—oc

it lineales have no notion of disjunction whatsoever, while Heyting lineales
an be restricted to Heyting algebras if o satisfies a universal property (cf.
elow in def. 5).

. Additive lineales

A (Heyting) lineale is characterized by its « multiplicative » structure given
y (<, o, —o, ) (perhaps also (0, 1)). But we can have another « layer » of
ructure, called its additive structure.

efinition 5 A semi-additive (Heyting) lineale is a (Heyting) lineale equipped
ith an extra symmetric monoidal structure, notation (x, 1) such that given a and b
L, a x b satisfies

«axb<aandaxb<b

« Ifmissuchthatm<aand m<bthenm<axb

Note that a x b is defined as a binary greatest lower bound; that having
1ary glb’s we can easily define finite n-ary ones and that 1 is the empty-set

3, which means that forallae L,a <1.In particulare <1 (and L <1, if it is
zsent). Also (x, 1) being a symmetric monoidal structure means
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« (axbyxc=ax(bxc
e axXxb=bxa
e axXl=1xa=a

A semi-additive lineale corresponds to a symmetric monoidtal clos
category with products in the more general framework.

Definition 6 An additive (Heyting) lineale is a semi-additive (Heyti»1g) line
equipped with an another symmetric monoidal structure, notation (®, Oy such t
givenaand bin L, a ® b satisfies :

« q<a®@bandb<a®b

» fas<nandb<nthena®b<n

Dually, 0 <a for any a € L, in particular, 0< 1, 0<eand 0< 1.

Observe that the conditions in the definition 5 and 6 above are t
restrictions to the poset set-up of the conditions on the existence of produ
and coproducts. They could be described in terms of adjunctions, in this ca
Galois connections, to a diagonal functor, A : L — L x L. Note that they «
determine a lattice structure in L.

If the four constants L, ¢, 0 and 1 are distinct we have a picture like

SN
N

but they may coincide.

Trivial examples of additive Heyting lineales are Heyting algebras (whe
oand x and O and + coincide and 0 = 1 and 1 = ¢) and Boolean algebras (
before plus a** = a).

Proposition 3 In an additive Heyting lineale we have the distributive laws :
vao(b@c)=@ob)®@oc)
«a0GBx0)<@Ob) x@c)

Notice that the first law is a direct consequence of the fact that tt
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« category » L is a symnmetric monoidal closed one, as @ is a coproduct and
coproducts are preserved by functors which have right-adjoints. The semi-law
is a consequence of x being a categorical product, as bxc<band bxc <¢
impliesaO(b xc)<aOband aO(b xc)<aOc, so

albxc)<@Dhxc)x@Ohxc)S@b)x(ac)

Comparison with other approaches

It seems reasonable to compare the approach taken here with the one by
Hesselink using Girard monoids. Quite apart from the fact that Girard monoids
are based on/par the linear connective less amenable to intuitive explanations,
Hesselink’s approach is based on the classical equivalence between A — B and
— A v B. It seems to us that one should strive for the more general set-up — in
this case the intuitionistic one — as that allows us to restrict ourselves to the
classical case, when (and if) wanted.

A strong Heyting lineale can be seen as a Girard monoid wrt O and a
Girard monoid restricts to a phase structure, the model for linear logic
provided by Girard himself in [tcs60]. Also a Girard monoid is a generaliza-
tion of the de Morgan monoids in Dunn, the semantical model for relevance
logic.

The definition of a Heyting additive lineale is also very similar to some
work done by Ginsberg and also Fitting on bilattices. Again the difference is
that the structure on the horizontal direction need not be a lattice. The
conditions forced on us by the (categorical) adjunction are not strong enough
for that, but of course a bilattice is a rather special case of an additive Heyting

lineale.,

Rules and axioms of Linear Logic
Axioms :

A A (identity)

I L+
r-1,A T,0FA

Structural Rules :

_THA  ermutation) FEAA AT EA
ol 1A pe ’ T AL cut)

Logical Rules :

( var;)

I -BA
T, Bl A
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Multiplicatives :

(unit) rea (unit,) Lea

FTFa LA
CABA FTHAA Y B A
@ TAsBFaA ®) FT FA®B AN

TAFA T BFA I A B A
@ “rraasrar @ TEAaBaA

THAA I'',BEA
L,A—BFA,A

(—o) I LAFB

(o) F'A—B

Additives :
C'HAA TFBA T,A A B A
&) —TFA&%EA &) T ALBFA TA&ETF
@y LAFA TBEA @) L FAA r+B,A
V TT,A®B FA "TFA®B,A F'FA® B,

* Observe that in rule (—o,) we only deal with one formula on the right-ha
side of the turnstyle, according to our intuitionistic flavour of Linear Logic
Then we have another obvious proposition

Proposition 4 An additive Heyting Lineale (L, <, 0, —o, O, ¢, 1, +, %, 1, 0) is
algebraic model of Linear Logic, as described above.

Just read atomic propositions in LL as elements of L, -as leg, ® as o al
the other connectives and constants for their homonimous.

Note that the poset reflection of GC is a lineale, the simplest non-collaps
one (see figure above).

3. A categorical construction

Suppose C is a concrete linear category with products, by that we mean
concrete symmetric monoidal closed category with products. And suppose th
L is an object of C endowed with a (Heyting) lineale structure (<, o, —o,
(perhaps also (@, 1)). To make notation manageable we write :

- (U, V] for the internal hom in C,
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« U ® V for the tensor product in C, with identity I;
« UxV for the categorical product in C, with identity 1.

Then we can construct the category M;C, which has as objects morphisms of
C of the form U ® X—2%5 L. One such object is written as (U «¢*+—X) and called A.

Given two objects, says A = (U «~+—X) and B = (V «&Y), the morphisms
of M;C are pairs of morphisms of C, f: U — V and F : Y — X such that the
following diagram is satisfied,

U®F
uey uex
fey a
Vey L

where the diagram being satisfied means that given u ® y in U ® Y, the
composite morphism o « (U ® F) applied to (1 ® y) as an element of L is smaller
than B « (f ® Y) applied to (u ® y). Simplifying, morphisms are pairs of maps
inC(,F),f:U~- VandF:Y — X such that

o, Fy) <B(fu,y)

It is easy to verify that M;C is a category with an abundance of symmetric
monoidal structures.

Proposition 5 The construction above really defines a category M1C.

Clearly identities are pairs of identities of C, composition is composition in
each coordinate and associativity is an immediate consequence of the as-
sociativity in C.

Linear structure of M C
One of the possible symmetric monoidal structures of M;C is :

Definition 7 Given two objects A = (U «<*—X) and B =(V 3—Y) in M,C we
define A ® B their tensor product as follows :

A®B=(URV 2% v, x1x1U YD)

The morphism « a ® B » intuitively says a @ B (u, v, f, @) = o (u, fv) o B (v, gu).
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To define the morphism o ® B consider the following map, which we call o :

UV (v, XIxuyh) Y2 8 ueve v, Xl Y290 ye X -,1

Similarly we define (U® V) @ ([V, X] x [U, YD) ~£51. Then to get 0. ® B we
pair a and } and use the multiplication « o » of L, as follows :

(U V)@ ([V, XIx [L YD) <PB5 L xL 25 L

Proposition 6 The construction above induces a bifunctor, covariant in
both coordinates, with identity Im given by (I «*——1), where the morphism
I ® 1=1-.>L just picks up the object « e » from L.

Note that ® is not a categorical product, for instance we have no
projections, even if C is a Cartesian closed category.

Definition 8 Given two objects A= (U ¢4—X) aind B = (V &+=Y) in M1C we define
[A, B} their internal hom as follows :

o —o

[A, Bl =([U VIx[Y, X] e—F2-U®Y)

The morphism « o.—o B » intuitively says (o —o B (f, F, u, y) = o (u, Fy) —o B (fu, ).
The definition of the morphism o —o  is similar to the definition of ® above.

- First consider maps o.and B :

(MU VIX[Y, XD URY) S i vieuey-“2hye y-L,r

U VI, XD U Y) 22Y8 Yy xjeue Yy Y2 yex 2 s L

Then, to obtain o —o B we pair o and B and compose the result with —o,
considered as a map fromLxLtoL:

(U VIXIY, XD ® (UeY) =P, 1xrL= L

Note that if we consider the internal hom {4, Al=({U, UIX{X, X] <=2 U X),
there is always a morphism from Ium to it,

I —f 1

U, ul =[x, X] «—3%—U®X

as C is syrumetric monoidal closed with products and e < o (4, x) —o @ (12, x).
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Proposition 7 The construction above induces a bifunctor, contravariaret in its first
coordinate and covariant in its second coordinate.

Having defined both a tensor product and an internal hom, vwe want to
prove that they provide us with a symmetric monoidal closed category.

Proposition 8 The category MiC is a symmetric monoidal closed category.
The proof is simple, one has to verify the natural isomorphism =
Hom (A ® B, C) = Hom (A, [B, C])

This can be done by looking at the diagram

UV 2P v, XIx[U Y] u —% X
f <f1, fo> <f, fa> fi
W oY% z [V, WIx[Z Y] Y230 vez

If the morphism (f, <f,, f,>) is a Hom (A ® B, C), then given (1, ) in U® V
and z in Z, we know (a0 ® B) (i, v, fiz, fr2) <y (f (u, v), 2).

That means, by definition of tensor, that a(u, fizv) o B(v, frzu) <y (f (u, v), 2).
But as L is a lineale,

a (u, fizv) o B (v, fazu) Sy (f (u, v), z) & a(u, frzu) £ B (v, frzv) —o v (f (u, v), z)

Now to show that (<f.f,>, f;) is in Hom (A, [B, C]) we have to show

o, fi(v,2)) S(B—oy) (fu, fou, v, )

But (B —o 1) (fu, fou, v, 2) = P (v, fuz) —o vy (fuv, z) which we know, if
ransposing is allowed.

If we have a Heyting lineale we can also define another bifunctor « 0 » of
ibjects in M, C.

Yefinition 9 Given two objects A = (U «%+—X) and B = (V &4+—Y) in M1.C we define
O B their [par operator as follows :

ADB =X, VIxiY, Ul <2 x oy
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The morphism « a0 B » intuitively says (a0 B) (f, g, x, y) = a (x, gy) CH P (fx, ).
The definition of the morphism o O B is similar to the definitions of & and [-, -]
above. First consider maps o and B :

(AX, VIX[Y, UD®(X® Y A, x viexo V)22 yvey b, L

X, VIXIY, UD® XeY) 22X ¥y e xeoy) X2 ue x°1

Then to obtain a0 B we pair a and B and compose the result with 0, considered
asamapfromLxLtoL:

(U VIXIY, XD®WU®Y) =B [ x1 2 41

Proposition 9 The operation AQ1B defines a bifunctor 0 : M1.C x M1.C — M C with
identity given by the object Ly = (¢—+—1 L D), wherethemap L:1® I=1— L
picks up the object L from L. ' :

4. Additive structure of M;C

Now we want to define products and coproducts in M;C. To do that we
need at least

« a semi-additive (Heyting) lineale

« (disjoint ?) coproducts in C.

Note that it is not necessary to add products and coproducts to M;C at
the same time.

Suppose C is a linear category with coproducts. Then a form of dis-

tributivity holds, namely :

UR(WV+W=z=URQV+URW

As C is symmetric monoidal closed, the functor U ® (-) has a
right-adjoint, [U, -], hence it preserves colimits and, in particular, initial
objects and coproducts.

Definition 10 Given two objects A = (U «*—X) and B = (V ¢+-Y) in M;C we
define A & B their categorical product as follows :

A&B=UxV258x 4 y)
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The morphism « o & B » intuitively says (o & B) (u, v, (33)) = o (1, x) > § (@, y).

But note that, despite the similarity with previous definitions, the multi-
plication « X » is not used, what is used is the structure on C, as an element of
X + Y is either (x, 0) or (y, 1) but not both.

Proposition 10 The operation « & » above defines a bifunctor & : MiC x ML C — M1C,
with identity given by 1m = (1 <2+—0) and A & B is really a categorical prodie ct in MiC.

To define the morphism (U x V) ® (X +Y) -2%£8 | in C, which corresponds
to the object A & B in MiC, we do :

UV X+ =UxVOX+UxVY 2 = ex+vey )L

E Projections are trivially given by projections in C in the first coordinate and
janonical injections in the second coordinate.

i,,

Uxve—"FP x. vy

™ i]

U(—~—-&—-X

e have a diagonal functor A : MC — M1 C x MC

U e—9%— X

[N
UxUée———X+X

>n by the diagonal in C in the first coordinate and the canonical folding
> in the second coordinate.

© show the universal property of products we consider an object C = (W «%4—2)
1 that there are maps in M;C of the form

We—I—7 We—J3 7

f F g

Ue—t— X Ve %" vy
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Then there is a unique map in M;C from Cto A & B,

We———L—-Z

<f,g>[ J(é)
Uxve%5P x%y

Dually we can define

Definition 11 Given two objects A = (U «*—X) and B = (V ) in MLC we
define A @ B their categorical coproduct as follows :

AOB=U+V 228 _xxv

T R AT ISR

The morphism « o ® B » intuitively says (0. @ ) ((;7), x, y) = o (x, gy) @ B (fx, y)-
It is another easy proposition to show that A @ B is a bifunctor with identity
Ou = (0 <%— 1) and A @ B is a categorical coproduct. Note that as morphisms

of C 0y and 1, are isomorphic, but not as objects of M;C. Note also that the
additive structure of the lineale L is not used at all.

The category M,C was defined following the pattern of GC, so it is no
surprise that

Proposition 11 The category M1 C is a model of Linear Logic as described before.

The last observation in this section is that we can describe another useful
monoidal structure in M, C.

Definition 12 Given two objects A = (U «2+X) and B = (V B—Y) in My C we
define A o B another tensor product as follows :

AoB=UV < xov)

The morphism « oo B » intuitively says (ao B U B v, x B y) = {u, x) ® B (v, y).
Its usefulness will become apparent in the next section.

5. Modalities in M, C

Now the intention is to define a comonad in M, C to provide an interpreta-
tion of the modality or exponential « ! » of Linear Logic.
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We start by recalling the rules for the modality « ! ». These are= :

I AFB . L. I' VB .
I —-——-——r,/ A B (dereliction) 1L TIAFB (weakening)
ILIA!/AFB . ITHA
e Lhp s L2 2 P S o S N .4 1
II. T IAEB (contraction) V. 7% 74 O

But as observed by several people, the four rules for the modality « ! » fall
neatly into two pairs. The pair (II, III) has to do with putting back into the
logic, in a controlled way, contraction and weakening and the pair (I, IV) makes
« ! » look like the 3 modal operator of 54.

Suppose C is a linear category which has countable coproducts (instead
of finite ones as in the last section). Then using the well-known construction
of MacLane ([CWM] p. 168 theorem 2) we can show that C has free
(commutative ?) monoids, as C being symmetric monoidal closed the other
condition in MacLane’s theorem is automatically satisfied. Having free
monoids means that there exists a functor F : C — Mon C, which is left-adjoint
to the forgetful functor U : Mon C — C. In other words, there is an adjunction
<F, U, n, &> : C = Mon C, which we write simply as F — U.

The adjunction says that every map on C of the form,

X-Lsu vy, )
corresponds, by a natural isomorphism, to a monoid homomorphism fof the form
(X7, e, bxe) LY, my, )

We write ()* for the composite functor U« F : C — C, recall from MacLane that
X" =11 ien X' and denote by (*, 1, ) the corresponding monad in C.

Note that the unit of the adjunction F — U, the natural transformation
M : C — C takes any object X of C to the carrier of the free monoid X". Also
the co-unit of the adjunction e : Mon C — Mon C takes any free monoid
(X, n*, u® arising from an arbitrary monoid (X, 1, ) to itself. Thus

e: FU(M,m, ) = (M, 0% ) = (M, n, p)
where the morphism e corresponds to « iteration » of the original multiplica-
tion .
Now, in this stronger version of the existence of monoids, the monad (*, 1, )

is easily proved a strong monad, so there are morphisms

X, YIRS 1%, Ve
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and using these we can define the endofunctor below.

Definition 13 The endofunctor § : MiC — MiC takes an object (U «¢*4+—X) of M1C
to the object (U «<2#— X°), where intuitively uSo. (x1, x2, ..., xn) means uce x1 and woxz
and ... and uon.

The object Sa. of MLC is defined by the sequence of morphisms

Uex 251L

U-[X L] =X, L]

X L tsL

So far so good and very similar to what happens in GC. But if we try to
make another definition

 Definition 14 The endoﬁmctor T : MLC — MC takes an object (U <+—X) of MLC
to the object (U S [U, XD, where intuitively y uTof means uofu.

But to give the morphism in ueu x1-1% L we would need to « duplicate » U, so that
§®1 1 ® eval

U®U X] —sUUR U XI— U® X—5L

Also to obtain comonoids in M1LC, which would satisfy rules (confraction) and
(weakening), for instance

u D X

U U ——— [U X]x[U X]

we need LI's with some kind of structure.

Thus the proposal at the moment is to take C with free comonoids, having
ree comonoids means that there exists a functor F; : C -Common C, which
s left-adjoint to the forgetful functor U, : Common C — C. In other words,
here is an adjunction <F;, U, 11, &> : C - Mon C, which we write simply as
U,

The adjunction says that every map on C of the form,

XLsUuy, v, dy).

rresponds by a natural isomorphism, to a comonoid homomorphism f of the form
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(X* e, 8x2) L (Y, my, Sv)

We write (), for the composite functor U « F : C — C, and denote by= (() *, n, 1)
the corresponding monad in C.

Definition 15 The endofunctor F : MLC — MLC takes an object (U <+—X) of M1C to
~ the object (U, EEX), where intuitively uFa (x1, x2, ..., Xn) means that u can be shared
-~ out between u1, uz, as many times as necessary so that woxy and uzoux and .. . and unoxn.

But this definition of F has to be shown to work and this is work im pro gress.

% 6. Further work

g Apart from making sure that the definition of the modality « ! » works
- properly, which seems to be clear from previous work on Hopf Algebras by
Sweedler and others, it seems that the main work that remains to be done is
to get things at the rightlevel of generality. The one adopted here seems clearly
inadequate, as one would like to « change basis » on doing the construction
of MC, i. e. one would like to have constructions MLC, with different L’s.

It is worth mentioning that there is some joint work in progress with
Carolyn Brown from LFCS, Edinburgh connecting the quantales models for
Linear Logic arising from Petri Nets to the dialectica-like ones proposed in
Brown/Gurr, Lics’90, see [H&dP] for the extension that allows Petri Nets with

multiplicities >2.
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