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§0 Introduction

The subject of this paper is the most accessible of a series of toposes which
can be constructed from notions of realizability: it is that based on the original
notion of recursive realizability in Kleene [1945]. Of course there are many other
kinds of realizability (see Kleene-Vesley [1965], Kreisel [1959], Tait [1975]). All
these (and even the Dialectica Interpretation) fit into a very abstract framework
described in Hyland-Johnstone-Pitts [1980]. (Since we will refer to this paper
frequently, we shorten the reference to HJP [1980].) In this abstract framework
one passes easily (as is becoming customary, see Fourman [1977], Makkai-Reyes
[1977], Boileau-Joyal [1981]) between logical and category theoretic formula-
tions, using whichever is most appropriate. One good example is worth a host
of generalities, so it is the aim of this paper to present this abstract approach
to recursive realizability in some detail. The basic strategy readily extends to
other cases.

Many people, most notably Beeson (see for example Beeson [1997]), have
considered realizability extended to give interpretations of complicated formal
systems. The flavour of the more category theoretic treatment is to have one
think in terms of models. Thus the approach looks like sheaf models for intu-
itionistic logic (see Fourman-Scott [1979]), where one only has natural access to
the models. (This parallel between realizability and sheaf models was first made
explicit, for set theory, in an untitled manuscript, by Powell.) As in the case
of sheaves, we will find ourselves looking at genuine mathematical structures
(with their non-standard logic) when we investigate truth in the effective topos.
We will be presenting “the world of effective mathematics” as it appears to the
classical mathematician. (Of course, it is possible to present the ideas in the
context of more or less any mathematical ideology.)

While the logical approach to categories enables us to work with concrete
structures and apply our experience of elementary logic, the category theoretic
approach to logic enables us to do away with much logical calculation and to
use instead simple facts about categories (in particular facts about toposes and
geometric morphisms). It has become clear in recent years that much of con-
structive logic can be treated very elegantly in the context of topos theory. This
is in harmony with work in the intuitionist tradition on Beth and Kripke mod-
els (see van Dalen [1978]), and there were many contributions to the Brouwer
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Centenary Conference in this area. This paper simply does the same kind of
thing for realizability. Of course there is a surprise here: the topos of this paper
is most unlike a Grothendieck topos, and it is not initially plausible that theory
abstracted from notions of continuity should have any application in this most
non-topological setting.

The first three sections of the paper serve to introduce the effective topos as
a world built out of the logic of recursive realizability. Much detail is omitted
in the hope of giving a feel for the subject. The main category-theoretic ideas
are explained and interpreted in §§4-6. In particular we show why the notion
of a negative formula arises naturally in the theory of sheaves. In §§7-13, we
apply this work to a study of analysis in the effective topos. We show that in
essence it is constructive real analysis (in the sense of Markov). I am grateful to
Professor Troelstra for some advice on this topic (I find the published material
unreadable) and in particular for detecting an error in an early draft of this
paper. §§14-17 are concerned with features of the effective topos where the
power set matters: uniformity principles and properties of j-operators. The
paper closes with some general remarks on the mathematical significance of the
effective topos.

Finally I would like to thank the organizers of the Brouwer Centenary Con-
ference for the opportunity to present this paper (in such pleasant surroundings!)
and to apologize to everyone for being so long in writing it.

§1 Recursive realizability

Recursive realizability is based on the partial applicative structure (N, ·) where
as in HJP [1980] we write n ·m = n(m) for the result of applying the nth partial
recursive function to m. (This saves on brackets compared with the notation
{n}m.) One can define a notion of λ-abstraction in (N, ·) in the usual way from
the combinators, and we will use it freely in what follows, so that (for example)
λx.x will denote an index for the identity function. We also take for convenience
a recursive pairing function

〈−,−〉 : N× N→ N; (n,m) 7→ 〈n,m〉 ,

and let π1, π2 be (recursive indices for) the corresponding unpairing functions.
Recursive realizability is usually formulated in terms of the notion

e realizesφ

where e is a natural number and φ is a sentence of (Heyting’s) arithmetic. The
critical clauses in the inductive definition are

implication: e realizes φ→ ψ iff for all n, if n realizes φ then e(n) is
defined and realizes ψ,

universal quantification: e realizes ∀n.φ(n) iff for all n, e(n) is de-
fined and realizes φ(n) [n the numeral for n].
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The other inductive clauses are

and: e realizes φ ∧ ψ iff π1(e) realizes φ and π2(e) realizes ψ,

or: e realizes φ ∨ ψ iff either π1(e) = 0 and π2(e) realizes φ or
π1(e) = 1 and π2(e) realizes ψ,

falsity: no numbers realize ⊥,

existential quantification: e realizes ∃n.φ(n) iff π2(e) realizes φ(π1(e))
[π1(e) the numerical for π1(e)].

Finally we give the initial clause for equalities between closed terms

e realizes s = t iff both s and t denote e.

For a careful treatment of the realizability interpretation of arithmetic the
reader may consult Troelstra [1973]. We will see in §3, that this is the interpre-
tation of arithmetic within the effective topos. For an account of the original
motivation see Kleene [1973]; it is interesting to try to understand it in terms
of the present paper.

Apparently Dana Scott first noticed that realizability could be understood
“model-theoretically” in terms of the truth-values {e | e realizesφ}. This gives
us a set Σ = P(N) of non-standard truth-values, and so for each set X, a
set ΣX of non-standard predicates on X. We write φ = (φx | x ∈ X) and
ψ = (ψx | x ∈ X) for elements of ΣX and can reformulate our earlier definition
for the proportional connectives by defining operations pointwise on ΣX as
follows:

(φ ∧ ψ)x = φx ∧ ψx = {〈n,m〉 | n ∈ φx and m ∈ ψx},
(φ ∨ ψ)x = φx ∨ ψx = {〈0, n〉 | n ∈ φx} ∪ {〈1, n〉 | n ∈ ψx},
(φ→ ψ)x = φx → ψx = {e | if n ∈ φx, then e(n) is defined and e(n) ∈ ψx},
⊥x = the empty set.

The reader may also like to have

>x = N.

There is a relation `X of entailment (a pre-order) defined on each ΣX by

φ `X ψ iff
⋂
{(φ→ ψ)x | x ∈ X} is non-empty.

The soundness of the realizability interpretation of intuitionistic proposi-
tional logic is the following proposition.

Proposition 1.1. (ΣX ,`X) is a Heyting pre-algebra: as a category the preorder
has finite limits (meets), finite colimits (joins) and is cartesian closed (Heyting
implication).

Proof. The structure is given explicitly in the definitions above.
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We now introduce the abstract notion of quantification from categorical logic.
For any map f : X → Y of sets we define substitution along f , f∗ : ΣY → ΣX

as composition with f :
(f∗ψ)x = ψf(x).

f∗ is a functor (in fact a map of Heyting pre-algebras) from (ΣY ,`Y ) to
(ΣX ,`X) and quantification along f is given by the adjoints to f∗. As shown
in HJP [1980] these are defined by

right adjoint (∀f.φ)y =
⋂
{f(x) = y → φx | x ∈ X},

left adjoint (∃f.φ)y =
⋃
{f(x) = y ∧ φx | x ∈ X},

where

Jf(x) = yK =
⋃
{> | f(x) = y} =

{
>, if f(x) = y,
⊥, otherwise,

is the natural interpretation as a non-standard predicate of f(x) = y. Note that
while

⋃
{φx | f(x) = y} is a satisfactory alternative definition of the left adjoint,⋂

{φx | f(x) = y} is not a definition of the right adjoint unless f : X → Y
is surjective. However usual quantification is quantification along the obvious
projection, and almost all projections are surjective, so this nuance will cause
the reader (and author) no further trouble.

The reader will see that what we have just described is an interpretation
of intuitionistic predicate logic: we have standard functions and sets, a (non-
standard representation of) standard equality and a collection of non-standard
predicates. We also have a “generic predicate” namely the identity in ΣΣ. We
can encapsulate all this structure in the following proposition.

Proposition 1.2. The (ΣX ,`X) together with the f∗ and their adjoints ∃f and
∀f and the “generic predicate”, form a tripos on the category of Sets (in the
sense of HJP [1980]).

Proof. See HJP [1980].

In what we have said, we have not needed to distinguish formulae from their
interpretations, and we will continue to blur this distinction as far as possible.
(We will use open face brackets to indicate an interpretation when necessary to
prevent confusion.) We say that

φ ∈ ΣX is valid iff > `X φ.

By adjointness we have

φ ∈ ΣX is valid iff > `1 ∀X.φ,

where X : X → 1 is a unique map from X to a one-element set. That is, φ is
valid iff ∀x.φ(x), the universal generalization of φ is valid or realizable. We will
use this notion both to describe and study the topos which we can construct on
the basis of (1.2).
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§2 Description of the effective topos

When constructing a topos from a tripos as in HJP [1980], one must

(i) add new subobjects of the sets one has started with to represent the non-
standard predicates, and

(ii) take quotients of these by the non-standard equivalence relations.

This leads to the description of the objects of effective topos. An object of the
effective topos is a set X with a non-standard predicate = on X ×X such that

symmetry x = y → y = x
transitivity x = y ∧ y = z → x = z

are valid. Note that we do not have reflexivity: (as is the case for Heyting
arithmetic) there need be no uniform realization of (reason why) x = x. We
regard and will write the predicate x = x as an existence predicate, Ex, and
as a membership predicate, x ∈ X. There is a useful discussion of the logic of
existence predicates in Scott [1979].

Of course we need to consider all non-standard maps to obtain the effective
topos, and to do that we are reduced to considering functional relations. The
maps from (X,=) to (Y,=) in the effective topos are equivalence classes of
functional relations where

(a) G ∈ ΣX×Y is a functional relation iff

relational G(x, y) ∧ x = x′ ∧ y = y′ → G(x′, y′)
strict G(x, y)→ Ex ∧ Ey
single-valued G(x, y) ∧G(x, y′)→ y = y′

total Ex→ ∃y.G(x, y)

are all valid,

(b) G is equivalent to H iff
G(x, y)↔ H(x, y)

is valid. We will say that G represents the map [G] : (X,=) → (Y,=). It
is useful to note that if G and H are both functional relations (from (X,=)
to (Y,=)), then to show G and H equivalent, it suffices to show that an
implication in one direction is valid.

Functional relations can be composed: if G ∈ ΣX×Y and H ∈ ΣY×Z are
functional relations, then so is ∃y.G(x, y) ∧H(y, z) ∈ ΣX×Z . Also = is a func-
tional relation from (X,=) to itself. These give the composition and identities,
and so we have a category. In view of (2.1), we call this category the effective
topos and denote it by Eff hereafter.

Theorem 2.1. Eff is a topos.

Proof. See HJP [1980] for details.
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We can extend the non-standard interpretation of §1 to give an account of
the internal logic of the category Eff . This goes as for the logic of sheaves
except for obvious modifications to deal with the fact that functions are (only)
represented by functional relations. A general account of the internal first-order
logic of categories is given in Makkai and Reyes [1977], and accounts of the
higher order logic of toposes can be found in Fourman [1977] and Boileau-Joyal
[1981]. As these accounts make clear, categorical constructions can be defined
by means of the internal logic. Thus, not only can (an extension of) validity
in the sense of §1, be used to determine what is true in Eff , but it can also
be used to define categorical constructs. (Now continuing the interplay, these
categorical constructs can then be used to establish further facts about what
is true in Eff .) We now give some simple examples of the logical description
of the structure of Eff . (On a few occasions we will need to quote some more
complicated facts of the same kind.)

1) A map [G] : (X,=)→ (Y,=) is monic iff

G(x, y) ∧G(x′, y)→ x = x′

is valid.

A subobject of (X,=) can always be represented (though not uniquely) by
a canonical monic of the form

[=′] : (X,=′)→ (X,=)

where
Jx =′ x′K = A(x) ∧ Jx = x′K

for some A ∈ ΣX strict and relational for (X,=). Thus subobjects always
arise by restricting the membership predicate while (as far as possible) leav-
ing the equality alone.

2) Given two maps [G], [H] : (X,=)→ (Y,=), their equalizer is represented by
the canonical monic obtained from the strict and relational

∃y.G(x, y) ∧H(x, y) ∈ ΣX

The construction of other finite limits is analogous.

The diagram

(W,=) (Z,=)

(X,=) (Y,=)

[H′]

[G′]

[H]

[G]

is a pullback iff [H] ◦ [G′] = [G] ◦ [H ′], ([G′], [H ′]) : W → Z ×X is a monic
and

G(x, y) ∧H(z, y)→ ∃w.G′(w, z) ∧H ′(w, x)

is valid. The condition that other diagrams give finite limits can be expressed
similarly in the logic.
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3) A map [G] : (X,=)→ (Y,=) is surjective iff

Ey → ∃x.G(x, y)

is valid.

A quotient can always be represented as

[∼] : (X,=)→ (X,∼)

where ∼ is strict relational for (X,=) and such that

“∼ is an equivalence relation on (X,=)”

is valid. Thus quotients are a matter of extending the equality relation and
leaving the membership predicate alone. We can now show that any object
(X,=) of Eff is a quotient of a subobject of an “ordinary set”, justifying the
explanation at the start of this section. For a set X we let ∆X (as in §4) be
the object of Eff with underlying set X and (non-standard representation
of) standard equality.

Proposition 2.2. Any object (X,=) of Eff is a quotient of = by the subobject
EX of ∆X obtained from the existence predicate of (X,=).

Proof. Obvious in view of 1) and 3) above.

Note. We have started using open face brackets to ensure readability (espe-
cially in connection with equality), as promised in §1. We also abuse notation
and write X for (X,=) where context makes the meaning obvious.

§3 Some objects and maps in Ef f
We can easily describe a terminal object 1 in Eff . In view of §2, 1 is ({∗},=)
where {∗} is a singleton, and

J∗ = ∗K = >

Of course any p equivalent to > in Σ{∗} = Σ, that is, any non-empty p would do
as the value J∗ = ∗K. We now calculate the global sections of an arbitrary object
(Y,=) of Eff , that is the maps from 1 to (Y,=). Since {∗} is a singleton, such
maps are represented by degenerate functional relations G ∈ ΣY , such that

G(y) ∧ y = y′ → G(y′)
G(y)→ Ey

G(y) ∧G(y′)→ y = y′

∃y.G(y)
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are all valid. The total condition tells us that for some y, y0 say, G(y0) is
non-empty. The relational and single-valued conditions imply that G(y0) →
(G(y)↔ y0 = y) and hence (since G(y0) is non-empty)

G(y)↔ y0 = y

are valid. Clearly if Jy0 = y1K is non-empty, then

y0 = y ↔ y1 = y

is valid. We deduce at once the following characterization.

Proposition 3.1. Each map [G] : 1→ (Y,=) determines and is completely de-
termined by {y | G(y) non-empty}, which is an equivalence class for the (partial)
equivalence relation

“Jy = y′K is non-empty”.

Conversely any such equivalence class determines a map from 1 to (Y,=).

Finite colimits in Eff are hard to get used to because for a start coproducts
are odd: the realizability interpretation of disjunction is very restrictive. In
particular, the coproduct 2 of 1 with itself is not the obvious object ∆2 with
standard equality (see §4). Let us look at maps from ∆2 to an arbitrary object
(Y,=) of Eff . Suppose G(i, y) represents such a map (where 2 = {0, 1}). Then
since E0 = E1 = >, the total condition tells us that there are y0, y1 such that
G(0, y0)∩G(1, y1) is non-empty. Arguing as for the terminal object we find that

G(i, y)↔ yi = y

However [G] does not correspond simply to a pair of equivalence classes in
{y | Ey non-empty}: the union of the existence of the two equivalence classes
must intersect non-trivially, and this is a real restriction.

In fact the object 2 in Eff can be represented as (2,=) where

E0 = {0}, E1 = {1}, Ji = jK = Ei ∩ Ej

(Of course any p0, p1 with p0 ∩ p1 empty would do as the values E0, E1.) An
argument as above shows that maps from 2 are pairs of maps from 1. Note also
that the only maps from ∆2 to 2 are constant (that is, factor through 1). There
is an obvious monic from 2 to ∆2. In §16 we will show that the whole structure
of Eff depends on 2→ ∆2 not being iso, in the sense that the topology inverting
2→ ∆2 collapses Eff back to Sets.

Since 2 is not ∆2, we would hardly expect the natural number object N in
Eff to be ∆N. In fact it is the object (N,=) where

En = {n}, Jn = mK = En ∩ Em

There are maps 0 : 1→ N and s : N→ N in Eff represented respectively by G0

and Gs where
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G0(∗, n) = {0} ∩ {n} and Gs(n,m) = {n+ 1} ∩ {m}.

Proposition 3.2. N together with 0 : 1→ N and s : N→ N is a natural number
object in Eff .

Proof. Suppose that we are given maps a : 1 → (X,=) and g : (X,=) →
(X,=) represented respectively by Ga ∈ ΣX and Gg ∈ ΣX×X . We can define
representatives Gng for gn inductively by

G0
g(x, x

′) = Jx = x′K, Gn+1
g (x, x′) = ∃x′′.Gng (x, x′′) ∧Gg(x′′, x′).

Now we can define a function f : N→ (X,=) represented by

Gf (n, x) = En ∧ ∃x′.Ga(x′) ∧Gng (x′, x).

We claim that

(?)

1 N N

(X,=) (X,=)

a

0

f

s

f

g

commutes. This amounts to showing that

Ga(x)↔ ∃n.G0(∗, n) ∧Gf (n, x)

and
∃x′.Gf (n, x′) ∧Gg(x′, x)↔ ∃m.Gs(n,m) ∧Gf (m,x)

are both valid. These can both be established by use of elementary logic.
It remains to show that f is unique such that (?) commutes. So suppose

that f ′ represented by Gf ′ is another such map. By use of logic we see readily
that

Gf (0, x)↔ Gf ′(0, x)

is valid and that

Gf (n+ 1, x) ↔ ∃x′.Gf (n, x′) ∧Gg(x′, x)

Gf ′(n+ 1, x) ↔ ∃x′.Gf ′(n, x′) ∧Gg(x′, x)

are both valid. But in terms of this data we can define, by primitive recursion,
a partial recursive function uniformly mapping Gf (n, x) to Gf ′(n, x), and this
is enough to show that f = f ′.

Remark. Since quantification in our logic (see Fourman-Scott [1979] and Scott
[1979]) involves the existence predicate, we see at once on the basis of (3.2) that
the realizability interpretation corresponds to the logic of the natural number
object in Eff .

Corollary 3.3. A sentence of Heyting arithmetic is recursively realized iff it is
true of the natural number object in Eff .
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All the specific objects we have looked at so far have been objects (X,=)
where Jx = x′K non-empty implies x = x′ (in X). Indeed all the objects we
consider until §14 will be (isomorphic to) ones of this sort (see §6 for a discussion
of what the condition means). It is as well to have an example of an object not
of this form. The most obvious example is the subobject classifier in Eff (that is,
the object of truth values). As indicated in HJP [1980] this is the object (Σ,↔),
that is, the set Σ = P(N) with equality given by the non-standard bi-implication.
We leave it as an easy exercise to show that (Σ,↔) is not isomorphic to any
object (X,=) where Jx = x′K non-empty implies x = x′. (Show first that X
would have to have just two elements.) As further examples it is natural to
consider (ΣX ,↔) where now equality is the pointwise bi-implication. These are
essentially the objects out of which we constructed Eff in the first place; they
are in fact the power sets of the objects ∆X (see §4).

§4 The inclusion of the category of sets in the
effective topos

In the last section we saw glimpses of a functor ∆ from the category Sets of sets
to Eff , the effective topos.

Definition. For a set X, define ∆X to be (X,=∆X), where

Jx =∆X x′K =
⋃
{> | x = x′} =

{
>, if x = x′

⊥, otherwise,

is the natural interpretation of the equality in Sets. For a map f : X → Y
in Sets, define ∆f : ∆X → ∆Y to be the map represented by the functional
relation,

Jf(x) = yK =
⋃
{> | f(x) = y} =

{
>, if f(x) = y,
⊥, otherwise.

This definition can be made whenever we construct a topos from a tripos (see
Pitts [1981]), and we always have our first result.

Proposition 4.1. ∆ : Sets → Eff is a cartesian functor (that is, functor
preserving finite limits).

Proof. Functoriality is obvious. That ∆ is cartesian follows easily from the
way finite limits are defined logically in §3. For details see HJP [1980] or Pitts
[1981].

The next result is a general feature of realizability toposes.

Proposition 4.2. ∆ : Sets → Eff is full and faithful.
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Proof. Suppose that f, g : X → Y in Sets, and that

Jf(x) = yK↔ Jg(x) = yK

is valid. Then Jf(x) = yK = > iff Jg(x) = yK = > whence f(x) = y iff g(x) = y:
thus f = g. This shows that ∆ is faithful. To show that ∆ is full, let G ∈ ΣX×Y

be a functional relation from ∆X to ∆Y . The relational and strict conditions
are automatically satisfied, the single-valued condition implies that for given x
there is at most one y with G(x, y) non-empty (constructively, inhabited), and
the total condition implies that there is at least one such y for given x. Thus
we have g : X → Y such that G(x, y) is non-empty iff g(x) = y. Then clearly

G(x, y)→ Jg(x) = yK

is valid: an index for the identity realizes it. But the total condition becomes

Ex→ G(x, g(x))

is valid, whence
Jg(x) = yK→ G(x, y)

is valid. Thus G represents the map ∆g. This shows that ∆ is full.

Remark. André Joyal has pointed out that ∆ is analogous to the Yoneda em-
bedding: it is cartesian, full and faithful, and (so) preserves exponentiation.
But I do not understand the force of this analogy.

The main result of this section is another general feature of realizability
toposes. Recall that in (3.1) we showed in effect that the global section functor
on Eff is naturally isomorphic to Γ : Eff → Sets defined by

(i) Γ(X,=) = {x | Ex is non-empty}/ ∼ where x ∼ x′ if Jx = x′K is non-
empty;

(ii) if G is a functional relation from (X,=) to (Y,=) representing g, then
Γ(g)([x]) = {y | G(x, y) is non-empty} where [x] denotes the equivalence
class of x.

Γ is a concrete version of the global section functor, with which we can work,
even constructively: starting from an arbitrary base topos E , Γ(X,=) still makes
sense as the interpretation in E of “the set of maps from 1 to (X,=)”. (Of course,
“non-empty” must be replaced by “inhabited”).

Theorem 4.3. ∆ is the direct image functor of a geometric morphism, whose
inverse image functor is Γ.

Proof. The global section functor is always cartesian: alternatively, Γ as defined
is cartesian by the logical construction of finite limits described in §3. So we
concentrate on the adjointness. We define the unit of the adjunction ηY : Y →
∆ΓY for (Y,=) in Eff by the functional relation

(y, [y′]) 7−→
⋃
{Ey | y ∈ [y′]} =

{
Ey, if y ∼ y′
⊥, otherwise.
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Now let G be a functional relation from (Y,=) to ∆X. The total and single-
valued conditions imply that if Ey is non-empty, then there is a unique x ∈ X
with G(y, x) non-empty. The relational condition implies that if Jy = y′K is
non-empty, then we get the same x for y′ as for y. Thus we have a well-defined
map g : ΓY → X. By logic, the composite ∆(g) ◦ ηY is represented by

H(y, x) =
⋃
{Ey ∧ Jg([y′]) = xK | y ∈ [y′] ∈ ΓY }.

By the strict condition
G(y, x)→ Ey

is valid; so since G(y, x) is non-empty iff x = g([y]) and since clearly

Ey → H(y, g([y]))

is valid, we deduce that
G(y, x)→ H(y, x)

is valid. Since both G and H are functional relations, this shows (as remarked
in §2) that they both represent the same function, and we have our factorization

[G] = ∆(g) ◦ ηY .

It remains to show that g is unique with this property. But if g′ : ΓY → X is
such that

G(y, x)↔
⋃
{Ey ∧ Jg′([y′]) = xK | y ∈ [y′] ∈ ΓY }

is valid, then G(y, g′([y])) is non-empty, so that g′ = g. This completes the
proof.

Remark. It is an easy corollary of the proof of (4.3) that maps (Y,=)→ ∆X in
Eff have a simple canonical representative. Let g : ΓY → X correspond under
the adjunction to a map (Y,=)→ ∆X. Then this latter map is represented by
the functional relation

(y, x) 7−→
⋃
{Ey | g([y]) = x} =

{
Ey, if g([y]) = x,
⊥, otherwise.

We can now indicate how category theory may be applied to study realizability.
(4.2) and (4.3) together say that ∆ : Sets → Eff is an inclusion of toposes (see
Johnstone [1977]) so that Sets is j-sheaves on Eff for a suitable topology j. We
give an identification of j, which depends on the fact that Sets has classical
logic.

Proposition 4.4. The topology j such that Eff j ' Sets is the double negation
topology.

Proof. In the first place, Sets is dense in Eff since ∆ preserves the initial object
(see (8.1)); so j is at most ¬¬ (the greatest dense topology). But Sets is boolean,
and from this it follows that j must be ¬¬.

We can now describe what the use of “classical objects” in intuitionism
amounts to in our context: since they are defined by liberal use of ¬¬, they are
when interpreted in Eff , the objects in the image of ∆. Thus ∆(Sets) should
be regarded as the world of classical mathematics within Eff .
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§5 Basic facts from the logic of sheaves

While the material presented in this section is implicit in the topos theoretic
literature, it can not be found in the form we require. With Grothendieck
toposes one has typically a subtopos Ej of a topos E which one understands
(E is usually a functor category) and one requires results which enable one to
discuss Ej in terms of E and the topology j. For us however the situation is
different. It is the topos Ej (that is Sets) which we understand and we wish to
obtain information about E (that is Eff ) in terms of Ej and j.

We present the material in the following general context. E is a topos with a
topology j, Ej is the full subcategory of E consisting of j-sheaves and L : E → Ej
is the sheafification functor left adjoint to the inclusion Ej → E . We give the
basic definitions in a number of useful equivalent forms which are implicit either
in Johnstone [1977] or in Fourman-Scott [1979].

Definition. Any object F of E is j-separated iff any of the following equivalent
conditions is satisfied:

(i) for any j-dense monic m : Y ′ � Y and maps f, g : Y → F with fm = gm,
we have f = g;

(ii) the unit ηF : F → L(F ) of the adjunction is monic;

(iii) E |= ∀f, f ′ ∈ F.j(f = f ′)→ (f = f ′).

A subobject (monic) A � E of an object E of E is j-closed if any one of the
following equivalent conditions is satisfied:

(i) if a : E → Ω classifies A� E, then ja = a;

(ii) the commutative square

A L(A)

E L(E)

is a pullback;

(iii) E |= ∀e.j(e ∈ A)→ e ∈ A.

Of these different formulations, (i) is the traditional category theoretic one, (ii)
is particularly useful for understanding Eff and (iii) is the logical formulation
(treating j as a propositional operator).

It is obvious from the definitions that F is j-separated iff the equality on F
is j-closed, and that a subobject of a j-separated object is itself j-separated.
We collect some further folkloric facts about these notions in the next theorem.

Theorem 5.1.

(a) If E and F are j-separated, then so is E × F . Also ηE×F : E × F →
L(E × F ) = L(E)× L(F ) is ηE × ηF .
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(b) If F is j-separated, then so is FE for any E. Also the composite of

ηFE : FE → L(FE) with the natural map L(FE)
α→ L(F )L(E) followed by

the isomorphism L(F )ηE : L(F )L(E) → L(F )E is the monic ηEF : FE →
L(F )E, and the evaluation map FE × E → F is obtained by factoring
ev ◦ (α ◦ ηFE × ηE) through ηF .

(c) If C � F is j-closed and α : E → F then α∗(C) � E is j-closed. Also
L(α∗(C)) = L(α)∗(L(C)).

(d) If A� E and B � E are j-closed then so is A∧B � E. Also L(A∧B) =
L(A) ∧ L(B).

(e) If B � E is j-closed then so is (A → B) � E for any A � E. Also
L(A→ B) = L(A)→ L(B).

(f) If A � E is j-closed and α : E → F then ∀α.A � F is j-closed. Also
L(∀α.A) = ∀L(α).L(A).

(g) If R � E × E is a j-closed equivalence relation on E, then the quotient
E/R is j-separated. Also the image (or surjective monic) factorization of

E L(E) L(E)/L(R)ηE

is
E E/R L(E/R) = L(E)/L(R)ηE/R

Proof. All trivial by the logic of j-operators (sketched at the end of Fourman-
Scott [1979]). Category theoretic proofs are (implicit) in Johnstone [1977].

Let us now explain why we are interested in closed subobjects. Our under-
standing of Grothendieck toposes rests on the fact that inverse image functors
preserve coherent logic (that is ∧, ∨, ∃). But the inclusion of Sets in Eff is
in the wrong direction if we wish to see some of the logic of Sets preserved in
Eff . In general a direct image functor preserves little, but we can get rather
strong results, when dealing with inclusions Ej → E , by restricting attention to
j-closed subobjects. This is significant because a j-closed subobject A � E
“agrees with its meaning in Ej” in the sense that

η∗E(LA) = A

(This is version (ii) of the definition.)
Given an interpretation of the atomic formulae of a first order language in E

we get (i) an interpretation JφK of an arbitrary formula in E , and (ii) by applying
L an interpretation of the atomic formula in Ej hence an interpretation JφKj of
an arbitrary formula in Ej . Clearly if JφK is a subobject of E, then JφKj is a
subobject of L(E). We are interested in when JφK “agrees with the interpretation
JφKj in Ej” in the sense that

η∗E(JφKj) = JφK.

The relevant definition is of a form familiar from Troelstra [1973].
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Definition. In a first order language, the negative formulae (or formulae in
the negative fragment) are those built up from atomic formulae using ∧, →, ∀.

Theorem 5.2. If an interpretation of a first order language in E interprets
the atomic formulae as j-closed subobjects and φ is a negative formula with
JφK � E, then

η∗E(JφKj) = JφK.

Proof. Induction on the complexity of φ using (5.1)(c)(d)(e) and (f).

Remarks.

1) We can only have equality for j-separated objects.

2) As JφK is j-closed, η∗E(JφKj) = JφK is equivalent to JφKj = L(JφK).

3) The result is just a consequence of the “j-interpretation” of the logic of E .
For negative formulae we are reading it not as a prescription for deriving the
logic of Ej from that of E , but as the statement that the logic of E agrees
with that of Ej .

§6 Separated objects and closed subobjects in
Ef f

In this section, we describe what (5.1) means for the particular case when E is
Eff and Ej is Sets so that j is the double negation topology. (In fact we do not
use this last fact, so that the material relativizes to an arbitrary base topos Ej).
We will say that an object of Eff is separated when it is j-separated and that a
subobject of an object is closed when it is j-closed.

Proposition 6.1. An object of Eff is separated iff it is isomorphic to one of
the form (X,=) where Jx = x′K non-empty implies x = x′.

Proof. By version (ii) of the definition of j-separated, we see that if an object is
separated, it is a subobject of some ∆X. But any canonical monic into ∆X is
of the required form. Conversely any object of the required form is a subobject
of a ∆X (the obvious map is monic), and subobjects of separated objects are
separated.

Definition. An object (X,=) of Eff , where Jx = x′K non-empty implies x = x′,
is a canonically separated object of Eff . (Such an object is completely deter-
mined by the values Jx ∈ XK for each x in X, and is essentially (that is, modulo
trivial coding) given as a canonical monic into ∆X.)

Proposition 6.2. If (X,=) and (Y,=) are canonically separated, then so is the
usual product (X × Y,=) where

J(x, y) = (x′, y′)K = Jx = x′K ∧ Jy = y′K
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Proof. Immediate from (5.1)(a) and the definition of the product of maps in the
logic.

The case of function spaces is more complex than that of products. Since
the general description of a function space (see HJP [1980]) is too clumsy, we
must use (5.1)(b) to construct a suitable representation.

Proposition 6.3. Let (Y,=) and (Z,=) be objects of Eff with (Z,=) canonically
separated. Then the function space (Z,=)(Y,=) may be taken to be the canonically
separated object (ΓZΓY ,=) where (taking Γ(Z,=) ⊆ Z)

Jα = α′K = J∀y ∈ Y.α([y]) = α′([y])K =
⋂
{JEy → α([y]) = α′([y])K | y ∈ y}

and where the evaluation map is represented by the functional relation

JEα ∧ Ey ∧ α([y]) = zK.

Proof. (5.1)(b) gives us a monic from (Z,=)(Y,=) to ΓZΓY defined in the logic
by

J∀y ∈ Y.α([y]) ∈ ZK

which is equivalent to the formulae given as (Z,=) is canonically separated. The
representation of the evaluation map follows from the definition in the logic of
the map described in (5.1)(b) by elementary logic.

Remark. If for every y ∈ Y , Ey is non-empty (and we may disregard the others),
then the following alternative representation of the function space is canonically
separated: (ZY ,=) where

Jα = α′K =
⋂
{Jy = y′ → α(y) = α′(y′)K | y, y′ ∈ Y }

and where the evaluation map is represented as above. (We get this alternative
representation by considering the obvious map from ΓZ(Y,=) to ZEY , where
EY is the canonical subobject of ∆Y of which (Y,=) is a quotient.) Then if
we disregard those α in ZY such that Eα is non-empty, we can continue this
process and obtain a simple description of iterated function spaces of separated
objects. We consider this further in §§7 and 11.

We next consider closed subobjects in Eff .

Proposition 6.4. A subobject of an object (X,=) of Eff is closed iff it is
represented by a canonical monic determined by A ∈ ΣX of the form

A(x) =
⋃
{Ex | [x] ∈ A} =

{
Ex, if [x] ∈ A
⊥, otherwise,

for some A ⊆ Γ(X,=).
(It does no harm to let A denote the subset of Γ(X,=), the canonical monic as
defined and the closed subobject which it represents.)
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Proof. By version (ii) of the definition of j-closed, a closed subobject of (X,=)
must be of the form η−1

X (∆A) for some A ⊆ Γ(X,=). But what we have
described is easily seen to be equivalent to the definition of η−1

X (∆A) in the
logic.

Definition. A monic of form (X,=′)
[=′]→ (X,=) where

Jx =′ x′K =
⋃
{Jx = x′K | [x] ∈ A} =

{
Jx = xK, if [x] ∈ A
⊥, otherwise,

for some A ⊆ Γ(X,=) is a canonical closed monic. ((6.4) shows essentially that
the closed subobjects are just those represented by canonical closed monics).

Remark. On many occasions it is more natural to disregard in (X,=′) the x
which are not in A. We shall suit terminology to need and refer to this modifi-
cation also as a canonical closed monic. Note that the notion becomes particu-
larly simple in case (X,=) is canonically separated, as then we may take A ⊆ X
(taking Γ(X,=) ⊆ X again).

We now say what (5.1)(c),(d),(f) mean for the effective topos.

Proposition 6.5. Let A � (X,=) and B � (X,=) be subobjects of (X,=),
C � (Y,=) a subobject of (Y,=) and [G] : (X,=)→ (Y,=) a map in Eff .
If C is a canonical closed monic (defined from C ⊆ Γ(Y,=)), then [G]−1(C) is
the canonical closed monic defined from

(Γ(G))−1(C) = {[x] | {y | G(x, y) non-empty} ∈ C}

If A,B are canonical closed monics (defined from A,B ⊆ Γ(X,=)), then A∧B
is the canonical closed monic defined from A ∩ B. If B is a canonical closed
monic (defined from B ⊆ Γ(X,=)), then A → B is the canonical closed monic
defined from

ΓA→ B = {[x] | if [x] ∈ ΓA then [x] ∈ B},

and ∀[G].B is the canonical closed monic defined from

∀Γ([G]).B = {[y] | if G(x, y) non-empty then [x] ∈ B}.

Proof. (5.1) tells us that the relevant subobjects are closed and that we get
a representation by applying Γ, doing the required construction in Sets, and
taking the corresponding canonical closed monic.

Remark. The constructions described in 6.5 are particularly simple in case the
objects (X,=) and (Y,=) are canonically separated.

Finally we consider the meaning of (5.1)(g) for the effective topos. It gives a
converse to the obvious remark that if (X,=) is canonically separated, then the
equality (or diagonal) in (X,=)× (X,=) is the canonical closed monic defined
by the diagonal in X ×X.
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Proposition 6.6. Suppose that ∼ ∈ ΣX×X represents a closed equivalence
relation on (X,=) in Eff . Then the quotient (X,∼) is isomorphic (in the obvious
way) to the canonically separated object (Γ(X,∼),≈) where

J[x] ≈ [x1]K =
⋃
{Jx′ ∼ x′1K | x′ ∈ [x] and x′1 ∈ [x1]}.

Proof. The composite (X,=) −→
[∼]

(X,∼) −→
η(X,∼)

∆Γ(X,∼) is represented by

H(x, [x1]) =
⋃
{Jx ∼ x′1K | x′1 ∈ [x1]}

By (5.1)(g) we require the image factorization of [H], and what we have is a
standard definition of this factorization in the logic.

§7 The effective objects

Since Sets is included in Eff , Eff contains classical mathematics so much of it
is not particularly “effective”. In this section we consider objects whose close
relation to the applicative structure (N, ·) ensures that operations on them are
genuinely “effective”. In later sections we will show that the objects of analysis
in Eff are (quite familiar) objects of this kind.

Definition. An object (X,=) is (strictly) effective iff

(i) Jx ∈ XK is non-empty each x ∈ X,

(ii) Jx ∈ XK ∩ Jx′ ∈ XK non-empty implies x = x′, and

(iii) Jx = x′K = Jx ∈ XK ∩ Jx′ ∈ XK.

(Occasionally we may describe an object as effective when it is isomorphic to
one of the above form. It will be obvious when this loose sense is meant.)

Clearly effective objects are (canonically) separated, and we can easily show
that they share the closure properties of separated objects.

Proposition 7.1.

(a) If (X,=) and (Y,=) are effective, then so is their product.

(b) If (Z,=) is effective, then so is the function space (Z,=)(Y,=) for any (Y,=)
in Eff .

(c) A subobject of an effective object is effective.

(d) A quotient of an effective object by a closed equivalence relation is effective.

Proof.

(a) is trivial; look at (6.2).
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(b) follows by inspection of (6.3). If we restrict to those α ∈ ΓZΓY with Eα
non-empty, then we get an object satisfying (i),(ii) and (iii) above.

(c) requires more work. Let (X,=) be strictly effective and let (X,=′)→ (X,=)
be a canonical monic with Jx =′ x′K = R(x) ∧ Jx = x′K for some strict
relational R ∈ ΣX . Write x ∈′ X for x =′ x and put
X ′ = {x ∈ X | Jx ∈′ XK is non-empty}. Since Jx ∈′ XK ∩ Jx′ ∈′ XK non-
empty implies Jx ∈ XK∩Jx′ ∈ XK non-empty which implies x = x′, we get a
strictly effective object (X ′,=) with Jx ∈ X ′K = Jx ∈′ XK. It is isomorphic
to (X,=′) because⋂

((Jx ∈ X ′K ∩ Jx′ ∈ X ′K)↔ Jx =′ x′K)

is non-empty.

(d) follows from (6.6). If ∼ is a closed equivalence relation on (X,=) which is
strictly effective, then Jx ∼ xK ∩ Jx′ ∼ x′K non-empty implies
Jx ∈ XK ∩ Jx′ ∈ XK non-empty which implies x = x′. It follows that
(Γ(X,=),≈) is strictly effective.

The full subcategory of Eff whose objects are the effective ones has a concrete
representation familiar to logicians in connection with the effective operations.
Take partial equivalence relations on N (that is equivalence relations on their
fields) R,S, . . . and write N/R = {[n]R | n ∈ Field(R)} for the set of equivalence
classes of R. Let a map F : R → S be a map F : N/R → N/S such that there
is f ∈ N with

F ([n]R) = [f(n)]S

for all n ∈ Field(R). Clearly we have a category.
Each partial equivalence relation R gives rise to a strictly effective object

(N/R,=) of Eff where E([n]R) = [n]R. A map F : R → S gives rise to a map
(N/R,=)→ (N/S,=) represented by

F ([n]R, [m]S) =
⋃
{[n]R ∧ [m]S | F ([n]R) = [m]S},

and so we have a functor into Eff which is clearly faithful and is full by applying
global sections to (7.1)(b). Clearly any strictly effective object is isomorphic to
one obtained from a partial equivalence relation. Let us describe the function
space SR in the category of partial equivalence relations. It is given by

eSRf iff nRm implies e(n)Sf(m).

A moment’s thought shows that this corresponds to the prescription for finding
the spaces of functions from (N/R,=) to (N/S,=) given by (7.1)(b). This is
a useful way to think of the material in §§10 and 11. (In fact the embedding
of the partial equivalence relations in Eff preserves the local cartesian closed
structure of the former category.)

One particular effective object is crying out for attention: that corresponding
to the equality relation on N. This is the object N = (N,=) where

Jn = mK = {n} ∩ {m}
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As we noted in §3, this is the natural number object; we consider some of its
properties in later sections. First however, we will use it to give a character-
ization of effective objects. Recall that any object (X,=) is a quotient of a
subobject of ∆X. For effective objects we can replace ∆X by (N,=).

Proposition 7.2. Every effective object is a quotient by a closed equivalence
relation of a closed subobject of (N,=).

Proof. If (X,=) corresponds as above to the partial equivalence relation R on
N, then the closed subobject of (N,=) is that determined by Fld(R) ⊆ N and
the closed equivalence relation ∼ is given by

Jn ∼ mK =
⋃
{〈n,m〉 | nRm} =

{
{〈n,m〉} , if nRm,
⊥, otherwise

That the resulting quotient of a subobject of (N,=) gives rise to the same R is
immediate in view of (6.4) and (6.6).

Now we can state our characterization theorem.

Theorem 7.3. The following conditions on a object X of Eff are equivalent:

(i) X is isomorphic to a strictly effective object;

(ii) X is a closed quotient of a closed subobject of (N,=);

(iii) X is a closed quotient of a subobject of (N,=).

Proof. (i) implies (ii) is (7.2), (ii) implies (iii) is trivial and (ii) implies (i) follows
from (7.1)(c) and (d).

Remark. Since (N,=) is the natural number object, we have shown that the
effective objects are those subnumerable in a certain way. However the equality
on an effective object must be closed (as it is a separated object) and there are
quotients of (N,=) by equivalence relations which are emphatically not closed.
(The reader will know where to look after reading the next section!) So the
effective objects are a proper subclass of the quotients of decidable objects
recently studied by Peter Johnstone in a general context.

§8 Markov’s principle and almost negative
formulae

In this section we see how the general result of (5.2) can be extended in the case
of the topos Eff and (double negation) topology j with Eff j = Sets.

Lemma 8.1. ∆ : Sets → Eff preserves the initial object. Thus J⊥K is always a
closed subobject, and hence decidable objects are closed.

Proof. Trivial category theory.
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Lemma 8.2. Markov’s principle

∀R ∈ P(N).(∀n.R(n) ∨ ¬R(n)) ∧ ¬¬∃n.R(n)→ ∃nR(n)

holds in Eff .

Proof. As the arithmetical statements holding in Eff are those realized in the
original sense of Kleene (see §3) this is the standard argument (Troelstra [1973]).
Note that we do not need to know about P(N):

Lemma 8.3. If R� N×X is a decidable subobject in Eff , then ∃n.R(n, x) �
X is closed and Γ(∃n.R(n, x)) = ∃n.Γ(R(n, x)).

Proof. This amounts to ¬¬∃n.R(n, x) ≤ ∃n.R(n, x) which follows by (8.2).

Remark. Though (8.2) depends on Markov’s principle in Sets, and so does
not relativize to an arbitrary topos, (8.3) does relativize: we will always have
j(∃n.R(n, x)) ≤ ∃n.R(n, x).

(8.1) and (8.3) suggest that we extend the class of negative formulae.

Definition. A formula is called almost negative iff it is built up from atomic
formulae using ∧, →, ∀, ⊥, and sequences of ∃n applied to decidable formulae
(typically equations between numerical-valued terms).

We now give our extension of (5.2).

Theorem 8.4. If the atomic formulae of a first order language are interpreted
as closed subobjects in Eff and φ is almost negative with JφK � E, then

η∗E(JφKj) = JφK

Proof. As for (5.2) using (8.1) and (8.3) as well.

The force of (8.4) is that, for φ almost negative φ is true in Eff iff the
corresponding interpretation of φ in Sets is true: that is, the meaning of φ in
Eff “agrees with” its classical meaning.

(8.4) is a version of 3.2.11(i) and (ii) of Troelstra [1973]; we could obtain
a more proof-theoretic version by relativizing to the free topos (with natural
number object). For a language which can “express its own realizability” we
could obviously obtain versions of 3.2.12 and 3.2.13 of Troelstra [1973]. For the
sake of completeness we give a version of 3.6.5 of Troelstra [1973].

Definition. (cf. Hyland [1977]) PR(a.n) is the least class C of formulae such
that

(i) C contains all atomic formulae;

(ii) C is closed under ∧,∨,∀,∃;

(iii) if φ is almost negative (more generally almost negative preceded by exis-
tential quantifiers) and ψ is in C, then (φ→ ψ) is in C.
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Proposition 8.5. In the situation of (8.4), if φ is in PR(a.n) with JφK � E,
then

JφK ≤ η∗E(JφKj).

Proof. By induction on the complexity of φ. (Note that ∨ and ∃ are calculated
differently in Ej from the way they are in E).

Remark. For a general sheaf subtopos Ej of E we have JφK ≤ η∗E(JφKj) for all φ
in PR(j-closed). So if atomics are interpreted as j-closed, then we get the result
for all φ in PR(negative).

The force of (8.5) is that, for φ in PR(a.n), if φ is true in Eff , then the
corresponding interpretation of φ in Sets is true. This gives rise to a conservative
extension result (when relativized) as in Troelstra [1973] §3.6.

§9 Choice principles and the real numbers

In this section we make a start towards showing that analysis in Eff is just
constructive recursive analysis. (We already have Markov’s principle (8.2).)
We do this in two steps. First we show that we have the choice principles to
ensure that the Dedekind reals (the right reals in a topos) are Cauchy (see
Fourman-Hyland [1979] and also Fourman-Grayson this volume). Then we
use the results of §7 to show that the Cauchy reals in Eff can be identified with
a familiar strictly effective object used in constructive recursive analysis.

First we need to know what the space of functions from N to an arbitrary
(X,=) looks like in Eff . As stated in HJP [1980], by logical considerations it is

(ΣN×X ,=)

where
JG = HK = EG ∧

⋂
{G(n, x)↔ H(n, x) | n ∈ N, x ∈ X},

with EG the non-standard value of “G is a functional relation”.
Suppose now that e realizes ∀n ∈ N,∃x ∈ (X,=).φ(n, x). Then for every

n, e(n) ∈
⋃
{Ex ∧ Jφ(n, x)K | x ∈ X}. For each n pick xn such that e(n) ∈

Exn ∧ Jφ(n, xn)K. Set G(n, x) = En ∧ Jx = xnK. Now (uniformly in e) we can
find numbers realizing EG and ∀n.∃x.G(n, x)∧φ(n, x): G is relational, strict and
singlevalued in a standard way from its definition; λn. 〈n, π1(e(n))〉 realizes G
is total; λn. 〈π1(e(n)), 〈〈n, π1(e, n)〉 , π2(e, n)〉〉 realizes ∀n.∃x.G(n, x) ∧ φ(n, x).
Thus (uniformly in e) we have a number realizing

∃g : N→ (X,=).∀n.φ(n, g(n))

and so we have proved the following result.

Proposition 9.1. AC(N, X), the axiom of choice from the natural numbers to
an arbitrary type X, holds in Eff .
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Remark. We used AC(N, X) in Sets in the above proof. But if (X,=) is effective,
then no use of a choice principle in the base topos is needed (compare (7.1)(b)):
in this case the argument is contained with Troelstra [1973] 3.2.15.

By a similar proof (left to the reader) we also have the stronger result.

Proposition 9.2. DC(X), the axiom of dependent choices on an arbitrary type
X, holds in Eff .

Remark. Again DC(X) is used in the proof, but is not needed for effective
objects X.

AC(N,N) is enough to show that the Cauchy and Dedekind reals are the
same. To get an explicit representation of R as a strictly effective object, we
use the Cauchy sequence definition.

Lemma 9.3. The integers Z and rationals Q in Eff can be taken as strictly
effective objects (Z,=) and (Q,=) where for x in Z or Q, Ex = {#x} where
#x is an elementary code for x.

Proof. They are obtained successively from (N,=) by taking closed (decidable)
quotients of closed (decidable) subobjects of products: so the result follows from
the prescriptions involved in (7.1)(a), (c) [easy case of closed subobjects] and
(d).

Lemma 9.4. The space of maps from N to Q in Eff is the strictly effective
object (QN,=) where

QN = the recursive functions from N to Q

and Jα ∈ QNK = {e | e(n) = #a(n)}, the set of indices for α.

Proof. This is the prescription implicit in (7.1)(b).

Since we have enough choice to show that any reasonable notions of Cauchy
sequence give the same reals in Eff we define CS, the collection of (restricted)
Cauchy sequences by

CS = {r ∈ QN | ∀n, p.|rn − rn+p| < 1
2n}

This definition is in the negative fragment and so since < is decidable on the
rationals and hence by (8.1) closed, defines a closed subobject of QN in Eff . In
view of (8.4) we can identify it.

Lemma 9.5. The space of Cauchy sequences in Eff is the strictly effective object
(CS,=) where CS is the set of recursive Cauchy sequences and Jr ∈ CSK is the
set of indices for r.

Proof. By the discussion above.

To obtain the reals R, we take the quotient of CS by the equivalence relation
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r ∼ s iff ∀n.|rn − sn| < 1
2n−3

(This choice of definition gives one plenty of “elbow room”.)

Proposition 9.6. The space R of reals in Eff is the strictly effective object
(R,=) where

R = the recursive reals (that is reals with recursive
Cauchy sequences converging to them)

and Jx ∈ RK = the set of indices for Cauchy sequences converging to x.

Proof. As before ∼ defines a closed equivalence relation so this is by the pre-
scription of (7.1)(d).

We have shown that the reals in Eff are represented just as they are in (con-
structive) recursive analysis. Of course, as they too are defined in the negative
fragment, the operations of addition, multiplication and so forth are what they
should be. To do serious analysis however we need to consider functions which
we do in the next few sections.

Remark. It is seldom efficient to grind things out in models for constructive
analysis: where possible one should use the axiomatic point of view. Consider
for example the question of the fundamental theorem of algebra in Eff . This
theorem is proved in Bishop [1967]. One way of reading Bishop’s constructive
mathematics (though not the intended one!) is to regard it as formalized in an
intuitionistic type theory with extensional equality and using (DC). Hence in
view of (9.2) the fundamental theorem of algebra is true in Eff (as it is in other
realizability toposes). In view of the obvious representation of C in Eff derived
from (9.6), and the fact that

“α1, . . . , αn are the roots of zn + an−1z
n−1 + · · ·+ a0 = 0”

defines a closed subobject (in C2n) we can interpret this fact as follows. There
is an effective process taking indices for the recursive complex coefficients of a
monic polynomial of degree n over the recursive complex numbers to indices for
the recursive roots. It is not trivial that a recursive polynomial has recursive
roots and any natural proof would seem to establish the stronger result and as
such would have the form of an abstract proof using (DC).

§10 Effectivity and Church’s Thesis

It is time to give substance to the claim made in §7 that operations on effective
objects are “effective”. We first consider the special case of Church’s Thesis.

Lemma 10.1. The space of maps from N to N in Eff is the strictly effective
object (NN,=) where

NN = the recursive functions from N to N

and Jα ∈ NNK = {e | e(n) = α(n)}, the set of indices for α.
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Proof. This is the prescription implicit in (7.1)(b).

Proposition 10.2. “Church’s Thesis” that all functions are recursive,

∀α ∈ NN.∃e.∀n.∃y(T (e, n, y) ∧ U(y) = α(n))

holds in Eff . [T is Kleene’s T -predicate and U his output function.]

Proof. In view of (3.3) elementary recursion theory can be developed in Eff as
in Troelstra [1973]. So by (8.4) ∀n.∃y.(T (e, n, y) ∧ U(y) = α(n)) in Eff agrees
with its meaning in Sets. Then λe. 〈e, 〈e, e〉〉 realizes “Church’s Thesis”.

Remark. Church’s Thesis as traditionally formulated in Heyting’s Arithmetic
(see Troelstra [1973]) is an amalgam of our “Church’s Thesis” and AC(N,N).

We can hope to generalize (10.2) to all effective objects in view of (7.3) which
states that they can in a certain way be subnumerated (by the codes for their
elements).

Lemma 10.3. If (Z,=) is strictly effective and (Y,=) is arbitrary in Eff , then
the space of maps from (Y,=) to (Z,=) in Eff is the strictly effective object
(ZΓY ,=) where

ZΓY = the “recursive” maps from ΓY to Z (that
is, the maps with indices),

and α ∈ ZΓY = {e | e(n) ∈ Eα(y) for all n ∈ Ey},
the set of indices for α.

Proof. This is the prescription implicit in (7.1)(b).

Here then is a generalization of (10.2).

Proposition 10.4. Let (Y,=) ←
SY

B � N represent the effective object (Y,=)

as a quotient of a closed subobject of N, and let (X,=) ←
SX

A � N represent

(X,=) as a quotient of a closed subobject of N. Then a “generalized Church’s
Thesis”

∀α ∈ Y X .∃e.∀a ∈ A.∃z(T (e, a, a) ∧ α(SX(a)) = SY (U(z)))

holds in Eff . (One can usefully compare this result with the treatment of the
extended Church’s Thesis in Troelstra [1973].)

Proof. The conditions given ensure that α(SX(a)) = SY (U(z)) interprets as a
closed subobject. (Note that U(y) ∈ B is implicit, so we need B closed.) Since

∃z(T (e, a, z) ∧ α(SX(a)) = SY (U(z)))

is equivalent to

∃z.T (e, a, z) ∧ ∀z.(T (e, a, z)→ α(SX(a)) = SY (U(z)),
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it also interprets as a closed subobject. It remains to determine e from an index
for α. The total condition for SX gives a map taking any a ∈ A to an element
of ESX(a); an index for α maps this to EαSX(a); the condition that SY is onto
provides a map from this to some b ∈ B with SY (b) = αSX(a). e is an index for
this composite which can clearly be chosen effectively in the index for α.

In particular, we can see that when effective objects are presented (via partial
equivalence relations) as closed quotients of closed subobjects of N, then maps
between them are effective in the indices (and this holds in Eff ). This is typically
the situation in constructive recursive analysis.

§11 The effective operations

In this section we use (10.4) as the induction step to show that the statement
that the finite types over N are the hereditarily (extensional) effective operations
holds in Eff .

Assume for notational purposes a collection of type symbols generated from
O by × (for products) and → (for function spaces). The finite types over the
natural numbers (Nσ | σ a type symbol) are defined inductively by

NO = N
Nσ×τ = Nσ × Nτ ,
Nσ→τ = (Nτ )Nσ

The hereditarily effective operations (HEOσ | σ a type symbol) (see Kreisel
[1959] and Troelstra [1973]) may be defined by first defining a collection
(Rσ | σ a type symbol) of partial equivalence relations inductively by

nROm iff n = m,
nRσ×τm iff π1(n)Rσπ1(m) and π2(n)Rτπ2(m),
eRσ→τf iff if nRσm then e(n), f(m) are defined and e(n)Rτf(m).

We can then regard HEOσ as the equivalence classes N/Rσ. In view of the
discussion in §7, we can equally regard HEOσ as built up (together with indices
for its elements) from the natural number object in Eff , by taking the usual
products and function spaces as in (10.3). Thus in Eff Nσ = (HEOσ,=) where

Ex = the indices for x

and where nRσm iff n,m are indices for the same x ∈ HEOσ. Then we can
regard HEOσ as the global sections of the finite types over N in Eff .

These definitions all relativize and our next result states that Eff “knows
that its finite types are the effective operations”.

Theorem 11.1. For each σ, Nσ = HEOσ holds in Eff , in such a way that the
products and function spaces correspond.
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Proof. The Rσ’s are defined by negative formulae, and so by (8.4) interpret in
Eff as closed partial equivalence relations agreeing with their meaning in Sets.
If we calculate the equivalence classes in the obvious way using (7.1)(d) we just
get (HEOσ,=) that is Nσ in Eff . Clearly the rest of the structure corresponds
as it ought. (If this is too abstract, the reader can use a laborious induction,
with (10.4) dealing with the main induction step.)

Remark. Something quite deep is going on behind (11.1) which is connected
with iterations of the effective topos construction as studied in Pitts [1981]. It
is in connection with the effective objects that we can get a general expression
of the idempotency of realizability (see Troelstra [1973] 3.2.16).

§12 Sequential continuity

From (8.2),(9.2),(10.4) and discussion in §9, it should be clear that analysis
in Eff is just constructive recursive analysis. So we have the usual continuity
results which are versions of the Kreisel-Lacombe-Shoenfield theorem.

Theorem 12.1. “Brouwer’s Theorem” that every map from R to R is contin-
uous holds in Eff .

Proof. The reader will have to do this himself (along the lines of (12.4) below) or
else find (as I have failed to do) a readable account from the Russian school.

(12.1) is only moderately spectacular. Recursive maps on the recursive reals,
while not the restriction of continuous functions on the (classical) reals (see
(13.4)), are continuous on their domain. (This is stated as Exercise 15.35 in
Rogers [1967].) So we just need effectivity to get (12.1). By passing to higher
types we get a more interesting phenomenon: we get effective maps, which are
not continuous on their effective domain, but which are still continuous from
the point of view of Eff .

We consider the hereditarily effective operations. By (11.1), in Eff these
are just the finite types. (The reader will see that much of the material can
be developed for an arbitrary “type structure” over N.) We define a notion of
sequence convergence on each HEOσ inductively as follows:

on HEOO = N, xn → x iff ∃k,∀n ≥ k.xn = x;
on HEOσ×τ = HEOσ ×HEOτ , (xn, yn)→ (x, y) iff xn → x and yn → y;
on HEOσ→τ = (HEOτ )HEOσ , fn → f iff xn → x implies fn(xn)→ f(x).

We say that a function f ∈ HEOσ→τ is continuous iff f preserves sequence
convergence.

Remark. The meaning of these definitions in Eff does not agree with the mean-
ing in Sets.
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Let us initially restrict attention to the hereditarily effective operations of
pure type (HEOk | k a pure type symbol) where each k + 1 denotes (k → O).
For fn, f in HEOk+1, we say that µ ∈ HEOk+1 is a modulus for fn → f iff

∀x ∈ HEOk.∀n ≥ µ(x).fn(x) = f(x)

(We do not assume here that fn → f in HEOk+1: this is false in Sets, though
true in Eff .)

Lemma 12.2. (In Eff .) Assume functions in HEOk+1 are continuous. If µ is
a modulus for fn → f in HEOk+1, then fn → f .

Proof. Let xn → x. Since µ is continuous, there is a k such that for all n ≥ k,
µ(xn) = µ(x) = k′ say. As f is continuous there is k′′ such that for all n ≥ k′,
f(xn) = f(x). Then for all n ≥ max(k, k′, k′′),

fn(xn) = f(xn) = f(x).

Remark. This argument is entirely elementary and has useful application to a
variety of type structures in a variety of toposes.

Lemma 12.3. (In Eff .) Assume all functions in HEOk are continuous. If
fn → f in HEOk+1, then there is a modulus µ for fn → f .

Proof. The sequence with constant value x converges to x in HEOk, so we can
deduce fn(x)→ f(x), that is

∀x.∃k.∀m ≥ k.fm(x) = f(x).

By basic arithmetic choose k minimal for each x. This gives us a function
µ : HEOk → N which by (11.1) or (10.4) is in HEOk+1.

Remark. This argument depends on effectivity in Eff . Again there are many
useful versions of it.

Lemma 12.4. (In Eff .) If µ is a modulus for fn → f in HEOk+1 and F ∈
HEOk+2, then there is an r such that

∀n ≥ r.F (fn) = F (f).

Proof. From indices bn,m, b, c for fn, µ, f, F respectively we wish to find an r
such that ∀n ≥ r.F (fn) = F (f). Following Gandy, use the second recursion
theorem to define an index b′ by,

b′(a) =

{
b(a) if m(a) < least y. y shows c(b) = c(b′) [= y0 say],
bn(a) for n least ≥ y0 with c(bn) 6= c(b), otherwise.

[y shows c(b) = c(b′) iff T (c, b, π1(y)) ∧ T (c, b′, π2(y)) ∧ U(π1(y)) = U(π2(y)).]
We see easily that y0 exists and that ∀n ≥ y0.c(bn) = c(b) (using Markov’s
principle). Thus y0 is clearly what we want.
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Remark. This essentially is Gandy’s proof of the Kreisel-Lacombe-Shoenfield
theorem. Since both ∀n ≥ k.F (fn) = F (f) and µ is a modulus for fn → f are
interpreted as closed subobjects in Eff , it makes no difference whether we do
(12.4) externally in Sets or internally in Eff .

Theorem 12.5.

(i) In Eff it holds for all pure types r+ 1 that fn → f in HEOr+1 iff there is
a modulus µ for fn → f in HEOr+1, and that all members of HEOr+1 are
continuous.

(ii) In Eff it holds for any types σ, τ , that all members of HEOσ→τ are con-
tinuous.

Proof.

(i) follows by induction using (12.2), (12.3) and (12.4).

(ii) follows by extension using cartesian closedness of the hereditarily effective
operations and of the continuous functionals (in the sequential version, see
Hyland [1979]).

The reader should compare (12.5) with the example of Gandy (see Gandy-
Hyland [1977]) of a type 3 effective operation not continuous on the type 2
effective operations. Continuity has a quite different meaning internally in Eff .

Remark. The finite types over N in Eff coincide not only with the hereditarily
effective operations in Eff , but also with the sequentially continuous functionals
in Eff . The use of the modulus was introduced originally in the context of
recursion theory on the (sequentially) continuous functionals by Stan Wainer.

§13 Failure of compactness

As is well known, there are decidable subsets R of 2<N, the set of finite binary
sequences such that

(i) any recursive α ∈ 2N extends some u ∈ R,

(ii) there are α ∈ 2N which extend no u ∈ R (so that no finite S ⊆ R will
satisfy (i)). This has an immediate consequence for Eff .

Proposition 13.1. In Eff there is a decidable subobject R of 2N such that

(i) any α extends some u ∈ R,

(ii) for any k, there is an α which extends no u ∈ R of length ≤ k.

Thus in Eff there is a decidable cover of 2N, Cantor space, by basic clopen sets,
with no finite subcover.
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Proof.
EITHER (i) and (ii) are almost negative and hold in Sets of the recursive reals,
OR immediate from Church’s Thesis.

Corollary 13.2. In Eff there is a continuous but unbounded function F : 2N →
N.

Proof. Set F (α) = least length of u ∈ R with α extending u.

(13.1) shows that the Fan Theorem fails as badly as possible in Eff . This is
why we get (13.2). There are Grothendieck toposes in which (13.1) holds without
the stipulation that R is decidable. In the known examples, all continuous
functions from 2N to N are uniformly continuous and so bounded. It is not
know whether there are Grothendieck toposes in which (13.1) holds.

The traditional way to obtain results analogous to (13.1) and (13.2) for the
reals is to use “singular coverings” as studied in Zaslavskĭı-Cĕıtin [1962]. (Of
course one can set up (13.1) and (13.2) in an analogous fashion.)

Proposition 13.3. In Eff , there is a sequence of rational intervals covering R,
but of arbitrarily small measure.

Proof. Essentially a diagonal enumeration, see Zaslavskĭı-Cĕıtin [1962]. The
proof is also sketched in Rogers [1967] Exercises 15.36, without considerations
of effectivity. But the conditions, to be satisfied by the sequence of rational
intervals, can be expressed as almost negative formulae, so by (8.4) this does
not matter.

Corollary 13.4. If Eff there is a continuous function R to R which is un-
bounded on some closed bounded interval, and so in particular is not uniformly
continuous on some closed bounded interval.

Proof. Same references as for (13.3).

Remark. The results of this section can all be regarded as proved internally in
Eff , that is, they follow from the effectivity we established in §10.

Though we know Grothendieck toposes in which R fails to be locally compact
(Fourman-Hyland [1979]), in all known examples, the typical consequences of
local compactness for analysis still hold. Certainly continuous functions on
bounded closed intervals are uniformly continuous. So the effective topos opens
up possibilities unknown amongst Grothendieck toposes. Further examples can
be found in Zaslavskĭı-Cĕıtin [1962].

§14 Quotients of classical objects, and power
objects

It is a familiar feature of intuitionistic mathematics that collections of sets (spec-
ifies) can appear far more amorphous than collections of functions. We have
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seen in Eff that the object of functions between “well-behaved” objects is itself
“well-behaved” ((16.3) and (7.1)(b)). We have seen this good behaviour in other
contexts (Moschovakis [1973], Scott [1970], are the early references), and it can
be made the basis for nice proof-theoretic results. However, when the subobject
classifier is itself complicated, the power set of however simple a (to some extent
inhabited) object will be complex. It is time to look at such objects in Eff .

As we mentioned in §3, the subobject classifier Ω in Eff can be taken as
(Σ,↔) where ↔ is the realizability bi-implication on Σ = P(N). We may and
so do think of the members of Σ as existing “globally”. Clearly then (Σ,↔) is
a quotient of ∆Σ. This will mean that we can obtain maps to Ω in Eff from
suitable maps to Σ in Sets.

Lemma 14.1. Suppose ∆Y → (Y,=) is a surjection. Then a map f : X → Y
induces a map f : (X,=)→ (Y,=) in Eff such that

EX ∆(X) ∆(Y )

(X,=) (Y,=) commutes

∆(f)

f

iff x = x′ → f(x) = f(x′) is valid. (That is, iff f preserves the equality
relation.) Under these circumstances f is represented by the functional relation
Ex ∧ Jf(x) = yK.

Proof. By a routine use of logic.

In the case of the surjection ∆Σ→ Ω, every map arises as in (14.1).

Proposition 14.2. Any map from (X,=) to Ω = (Σ,↔) in Eff is f as defined
in (14.1) for an f : X → Σ such that both

(i) x = x′ → (f(x)↔ f(x′)) and

(ii) f(x)→ Ex

are valid.

Remark. Given f : X → Σ with (i) valid, one can easily define g : X → Σ with
both (i) and (ii) valid, and such that f = g. Set g(x) = Ex ∧ f(x).

Proof. Since maps from (X,=) to Ω are in bijective correspondence with maps
1 → P(X,=), (14.2) is immediate from the description of the power set in
(2.12) of HJP [1980]. A reader who finds that proof unpalatable, can take a
representative G(x, p) for a map (X,=) to Ω, set f(x) = J∀q.(∀p(G(x, p) ∧ p→
q) → q)K, and check that G(x, p) ↔ Ex ∧ (f(x) ↔ p) is valid: since (i) is valid
for f , the remark above applies to give (ii) for g(x) = Ex ∧ f(x). (Suitably
relativized, this is a proof of (2.12) of HJP [1980].)

From (14.2) we see that if (X,=) is separated then any map (X,=) → Ω
factors through q : ∆Σ→ Ω. Our next result gives this within Eff .
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Proposition 14.3. The map q(X,=) : ∆Σ(X,=) → Ω(X,=) is a surjection for
any separated (X,=) in Eff .

Proof. From (6.3) we see that ∆Σ(X,=) is (isomorphic to) ∆(ΣΓX). Then
q(X,=) : ∆(ΣΓX)→ P((X,=)) is represented by

H(f,R) = ER ∧
⋂
{R(x)↔ Ex ∧ f([x]) | x ∈ X}.

But we can take ΓX ⊆ X (assuming (X,=) canonically separated) and so by
setting f to be the restriction of R to ΓX, we see at once that

ER→ ∃f.H(f,R)

is valid, so that [H] is surjective.

§15 The Uniformity Principle

First a general uniformity principle for Eff .

Proposition 15.1. Let ∆X → (X,=) be a surjection and let (Y,=) be an
effective object. Then

∀φ[∀x ∈ (X,=).∃y ∈ (Y,=).φ(x, y)→ ∃y ∈ (Y,=).∀x ∈ (X,=).φ(x, y)]

holds in Eff .

Proof. Take (Y,=) strict effective and consider first the case when (X,=) is
∆X. Let e ∈ J∀x.∃y.φ(x, y)K. Then 0 ∈ Ex each x ∈ X, so b = π1(e(0)) ∈ Ey
for some y ∈ Y , unique as (Y,=) is strict effective; and c = π2(e(0)) is in
Jφ(x, y)K. But then if d = λn.c, we find that λe. 〈b, d〉 realizes the formula in
square brackets. (There is no dependence on Eφ.) The result for a quotient of
∆X is an immediate consequence of the special case.

We have an immediate corollary.

Corollary 15.2. The “Uniformity Principle”

∀φ[∀X ∈ P(N).∃n ∈ N.φ(X,n)→ ∃n ∈ N.∀X ∈ P(N).φ(X,n)]

holds in Eff .

Proof. N is an effective object and by (14.3) P(N) is quotient of ∆(ΣN).

The uniformity principle is an extreme form of choice principle: the choice
function is constant because the domain is amorphous while the range is well-
behaved. Conditions on both the range and the domain are necessary. Obviously
there are non-constant functions from N to N. As regards conditions on the
range, the reader may like to show that the quotient map from ∆Σ to Ω does
not split.
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§16 j-operators: forcing 2→ ∆2 to be iso

In a topos, j-operators are maps j : Ω→ Ω satisfying

p ≤ j(p) p→ q ≤ j(p)→ j(q)
j(p ∧ q) = j(p) ∧ j(q) or equivalently > ≤ j(>)

j(j(p)) = j(p) j(j(p)) ≤ j(p)

Of course there is also an internal object of j-operators, a subobject of ΩΩ which
we can describe in Eff as follows.

Proposition 16.1.

(i) The object ΩΩ in Eff can be taken as (ΣΣ,=) where

Jf = gK = J∀p.f(p)↔ g(p)K

(ii) The object of j-operators in Eff is the subobject of (ΣΣ,=) represented by
the canonical monic defined by either of the above ways of giving the notion
of j-operator. Alternatively it is (J,=) where J is the set of j-operators
and where

Jj = kK = Ej ∧ J∀p.j(p)↔ k(p)K

with Ej = Jj is a j-operatorK.

Proof. (i) follows from (14.2) in the matter of (14.3) and (ii) is then immediate.

Remark. As explained in Johnstone [1977] j-operators correspond to topologies
and so to subtoposes. It is known that the lattice of j-operators under point-
wise ≤ is a complete Heyting algebra (internally). The reader should refer to
Fourman-Scott [1979] for an explicit constructive treatment. It is perhaps worth
commenting further on the order relation. We have

Jj ≤ kK = Ej ∧ Ek ∧ J∀p.j(p)→ k(p)K

defining the appropriate subobject in Eff . If were are looking at external j-
operators, then j ≤ k iff

∀p.j(p)→ k(p)

is valid. Finally note that if j(⊥) is non-empty then j is the degenerate topology
which collapses the topos.

Let us look again at the double negation topology. (We do not bother with
a constructive version.)

(¬¬)p =
⋃
{> | p is non-empty} =

{
>, if p non-empty,
⊥, otherwise

Clearly then we have the following lemma.
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Lemma 16.2. For any j, (¬¬) ≤ j iff
⋂
{j(p) | p nonempty} is non-empty.

Proof. Trivial.

We now consider how to force monics to be iso. Let a subobject of (X,=)
be given by a canonical monic A and define a map Ω to Ω by

φA(p) = J∃x ∈ (X,=).A(x)→ pK.

Clearly if j forces A� (X,=) to be iso, then

φA(j(p))→ j(p)

is valid. This gives us a way to describe the least j-operator forcing A� (X,=)
to be iso.

Proposition 16.3. In the above situation, jA, the least j-operator forcing A�
(X,=) to be iso, is

jA(p) = J∀q.((φA(q)→ q) ∧ (p→ q)→ q)K.

Proof. Obvious, as in the logic this says

jA(p) =
∧
{q | φAq ≤ q ∧ p ≤ q}

where
∧

is taken internally in Ω. It is easy to check that (as (p→ q) ≤ (φA(p)→
φA(q)) is valid) jA is a j-operator.

We now show that forcing 2 � ∆2 to be iso collapses Eff to Sets.

Proposition 16.4. The least j-operator forcing 2 � ∆2 to be iso is (¬¬).

Proof. Let j be the least j-operator forcing 2 � ∆2, obtained as in (16.3) from
φ : Ω→ Ω. Here

φ(p) = {0}→p ∪ {1}→p = {e | e(0) ∈ p or e(1) ∈ p}}.

Clearly it suffices to show (¬¬) ≤ j, that is by (16.2)
⋂
{j(p) | p non-empty} is

non-empty. In fact it is enough to show that
⋂
{j({n}) | n ∈ N} is non-empty:

for if a is in

∀p, q.(p→ q)→ (j(p)→ j(q)) and x is in
⋂
{j({n}) | n ∈ N},

then (a(λn.n))x is in
⋂
{j(p) | p non-empty}. Now take b in J∀p.p → j(p)K, c

in J∀p.j(j(p)) → j(p)K, and take as 2 � ∆2 is j-dense d in j({0}) ∩ j({1}).
Note that e = λx.c((ax)d) is in J∀p.φ(j(p)) → j(p)K. Define using the second
recursion theorem an index f by

(fk)(0) = b(k)
(fk)(1) = U(least y.T (e, S1

1(f, k + 1), y)).

Now by a standard kind of argument, we can show that

S1
1(f, k)(0) = (fk)(0) = b(k) ∈ j({k})

and S1
1(f, k)(1) = (fk)(1) = e(S1

1(f, k + 1))

are all defined, and then we see that S1
1(f, 0) is in φ(j({n})) for all n and so

e(S1
1(f, 0)) is in

⋂
{j({n}) | n ∈ N} as required.
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§17 j-operators and decidability

(16.4) appears to restrict the j-operators in Eff , but in fact we can show that
they have a rich structure. Apparently it was Powell who first realized that
there is a connection between notions of degree and the forcing of decidability
in recursive realizability. We content ourselves with a precise statement and a
sketch of a proof.

First we give a lemma of Andy Pitts which simplifies the presentation of the
proof.

Lemma 17.1. In the situation of (16.3) jA can alternatively be defined by

φ∗A(p) =
⋂
{q ⊆ N | p ∧ {∗} ⊆ q and φA(q) ⊆ q},

where ∗ is an index for the empty partial function, so long as Ex non-empty
implies A(x) non-empty.

Proof. Let us drop the subscript A. Note that φ preserves inclusion. Hence
because

p→ (p ∧ {∗}) ≤ φ(p)→ φ(p ∧ {∗})
is valid, we can deduce that

φ(p) ≤ φ∗(p)
is valid. Also we have

φ(φ∗(p)) ⊆
⋂
{φ(q) | p ∧ {∗} ⊆ q and φ(q) ⊆ q}

⊆
⋂
{q | ∧{∗} ⊆ q and φ(q) ⊆ q} = φ∗(p),

so that
φ(φ∗(p)) ≤ φ∗(p)

is valid, rather trivially. Thus by the definition of j in (16.3) we have j ≤ φ∗

in Eff , and it remains to show that φ∗ ≤ j. We can take a ∈ J∀p.p → j(p)K
and since φ(j(p)) ≤ j(p) in Eff , we can take b ∈ J∀x ∈ (X,=).(A(x)→ j(p))→
j(p)K. Now define an index e by the second recursion theorem as follows.

e(x) =

{
a(n), if x = 〈n, ∗〉
b(m)(λy.e(z(y))), if x = 〈m, z〉 , z 6= ∗.

Consider for any p, the set S(p) = {x | e(x) ∈ j(p)}. We see easily that (i)
p ∧ {∗} ⊆ S(p), and (ii) φ(S(p)) ⊆ S(p), so we can deduce that φ∗(p) ⊆ S(p).
Thus clearly e realizes ∀p.φ∗(p) ≤ j(p), and this completes the proof.

Now for A ⊆ N, let DA(n) = {〈0, n〉 | n ∈ A} ∪ 〈1, n〉 | n 6∈ A} so that DA

represents canonically the subobject

A ∨ ¬A� N,

the “decidability of A”. We write

ψA(p) = J∃n ∈ N.DA(n)→ pK,
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and kA for the least j-operator generated by ψA, that is, the least j-operator
forcing A to be decidable. By (17.1) kA is equal to ψ∗A in Eff .

Theorem 17.2. (External version). kA ≤ kB in Eff iff A is Turing reducible
to B.

Proof. Note first that kA ≤ kB in Eff iff ∀n.ψ∗B(DA(n)) is valid (holds in Eff ).
Suppose that e(n) ∈ ψ∗B(DA(n)) for each n. We wish to show how to com-

pute A from B, that is how to determine DA(n) from a knowledge of DB(m)
for finitely many m. Let x = e(n) ∈ ψ∗B(DA(n)); then
either x is of form 〈y, ∗〉 and we easily see that y must be DA(n) so we are
home,
or x is of form 〈m, e1〉 say in which case e1 ∈ DB(m)→ ψ∗B(DA(n)) so we take
x1 to be e1(〈0,m〉) or e1(〈1,m〉) as appropriate, x1 ∈ ψ∗B(DA(n)), and repeat
this process. From the definition of ψ∗B , this terminates in a finite number of
steps giving DA(n) as required.

Suppose conversely that A is Turing reducible to B via an index f . Define
using the second recursion theorem e(n, y) where y is (a code for) a finite set of
numbers of form 〈m, 0〉 or 〈m, 1〉 as follows.

e(n, y) =


〈k, ∗〉 , if there is a computation {f}y(n) = k

(using only information in y),
〈m, g〉 , if the computation {f}y(n) asks for a

value not in y, and g is an index for
〈m, i〉 7→ e(n, y ∪ {〈m, i〉}).

It is easy to see that for all n, and for y information true of B, e(n, y) is defined
and in φ∗B(DA(n)). In particular for y the empty set, we have for all n,

e(n, y) in φ∗B(DA(n)).

Thus ∀n.ψ∗B(DA(n)) is valid. This completes the proof.

Remark. In fact there is a proof of the implication from right to left along the
following lines; if j forces B decidable, then the statement that A is reducible
to B and that the computation is always defined, are almost negative for Eff j ,
and so hold in Eff j ; hence in Eff j A is decidable, that is j forces A decidable.

We cannot find a crude internal version of (17.2) in view of Goodman [1978].
However the proof of (17.2) is effective, so we can get something out of it. Clearly
the function which associates kA with A is internally defined in Eff . We must
say what we mean by “A Turing reducible to B”: we mean the natural notion of
computability relative to (partial) characteristic functions. We obtain a result
by restricting attention to closed subsets of N, that is to P(N) = {A ⊆ N |
∀n.¬¬n ∈ A→ n ∈ A}.
Proposition 17.3. The statement

∀A,B ∈ P (N).(A Turing reducible to B)↔ kA ≤ kB
holds in Eff .

Proof. By the effectivity of the proof of (17.2).
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§18 General remarks on the effective topos

The pleasing feature of the effective topos is that in it, ideas about effectivity
in mathematics seem to have their natural home. We mention the two main
examples.

1) Constructive real analysis. We have tried to indicate that this is what analy-
sis in Eff is in essence in §§8-13. It is worth noting how the realizability logic
makes distinctions for us. Consider the examples (Kreisel [1959]) that the
intermediate value theorem holds classically but not effectively for recursive
(continuous) functions on the recursive reals. In Eff ,

∀f ∈ RR.f(0) < 0 ∧ f(1) > 0→ ∃x ∈ (0, 1).f(x) = 0

is false while

∀f ∈ RR.f(0) < 0 ∧ f(1) > 0→ ¬¬∃x ∈ (0, 1).f(x) = 0

is true (as it is true in Sets and equivalent to a negative formula).

2) Effective algebra. We have not discussed this at all, but it seems worth
pointing out that the definitions have a natural meaning in Eff . A recursively
presented field (see Metakides-Nerode [1979]) is an enumerable (decidable)
field in Eff . It has a splitting algorithm iff irreducibility of polynomials
is decidable in Eff . Thus the effective content of a recursively presented
structure corresponds to properties of it which hold in Eff . This suggests
that positive results in effective algebra should be established by proving
results in constructive logic from axioms which hold in Eff , and interpreting
the results in Eff . That is, one should use the axiomatic method. Of course,
negative results obtained in effective algebra can be interpreted in Eff to give
independence resutls.

What we lack, above all, in our treatment of the effective topos, is any real
information about axiomatization analogous to the results obtained in Troelstra
[1973] axiomatizing realizability over both Heyting and Peano arithmetic. Of
course, one would expect to look at the effective topos defined over a topos
other than Sets (say over the free topos with natural number object) to get
a result corresponding precisely to an axiomatization. But all I wish to point
out is that (despite the suggestive work of Pitts [1981] on iteration) we have
no good information in this area. We can not properly be said to understand
realizability until we do.
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