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Introduction

The original aim of this paper was to give a rather quick and undemanding proof
that the effective topos contains two non-trivial small (i.e. internal) full
subcategories which are closed under all small limits in the topos (and hence in
particular are internally complete). The interest in such subcategories arises from
the fact that they provide a very natural notion of model for many of the strongly
polymorphic type theories. The nature of these models is that types are
interpreted as objects of the topos, and hence as ‘sets’ in an intuitionistic sense.
They in fact provide ‘set-theoretic’ models in the sense of Reynolds [16], except
that the set-theory involved is non-classical. At the end of the paper we indicate
briefly how one (only) of the two full subcategories gives rise to a model of the
theory of constructions. This sheds some light on how far we can travel with a
simple set-theoretic picture of data types. However, our main concern is to
present a clean mathematical characterization of the complete subcategories.

The basic idea, due to Peter Freyd, remains very simple—it is that the
collection of objects orthogonal to any given object is automatically closed under
all existing limits, and to look at the objects orthogonal to the subobject classifier
in the effective topos. However, one of our original motivations for writing this
paper was that we did not quite believe Freyd’s identification of this category.
During the course of the paper we shall show that the category of (families of)
objects in &4 orthogonal to Q is the category of (families of) subquotients of N.
The chain of reasoning now proceeds by saying that this second category is
equivalent to the externalisation of an internal category, and that the internal
category is therefore small complete. Somewhat to our surprise, it was this second
stage, trivial for an internal category in Fe4, that we found difficulty in making
precise, and it is in the discussion of notions of equivalence and completeness for
internal categories and fibrations that much of the content of the paper now lies.
We should warn the reader that even so our treatment is not exhaustive. We
discuss only two notions {weak and strong) of equivalence for internal or fibred
categories, and only two notions of completeness. Our definitions are well-
adapted for our present purposes, corresponding more or less to the distinction
between being told for any instance of a given set of parameters that there is an
object with certain properties, and being given a function that produces one.

Let C be a small full subcategory of a topos (see § 3 for details) which is closed .
under arbitrary products. Then C cannot contain £2, the object of truth values (in
fact C cannot contain any object intc which Q embeds)}—for if 4 is the disjoint
union of the sets in C, then Q* € C, and hence Q*>» A, which contradicts one
of the constructive versions of Cantor’s theorem. This argument runs parallel
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to that used by Peter Freyd to show that there are no small complete categories in
etz other than posets. This result extends immediately to Grothendieck toposes,
and so if we are to find a complete internal category, we must look in a
nen-Grothendieck topos, for example, the effective topos. If the internal category
is to represent a category of sets, then we must ensure that it does not contain Q.
Thus it makes sense to look at the objects orthogonal to Q, the objects X such
that all maps from £2 into X are constant.

Now, the subobject classifier of the effective topos is a complicated object (see
the note below), and one of our first tasks is to show that an object X is
orthogonal to Q if and only if it is orthogenal tc A2, a much simpler object, and
one with much better properties (in particular, it is internally projective). Our
main result is that the families of objects orthogonal to A2 are the families of
subobjects of N, the object of realisers, and hence that the fibred category of such
families, which is of course complete, is (weakly) essentially smalil.

The paper begins with a section on fibrations. This is not a technical
extravagance—we want to prove results that claim that a certain subcategory of a
topos is essentially small. If we simply took, say, the external category of
orthogonal objects (the orthogonal objects in the fibre over 1), then we would
merely be saying that we had an internal category that had the right giobal
sections. Global sections say so little about an object in a topoes that such a result
would be almost meaningless, and certainly would enable us to deduce nothing
about the completeness of the internal category. Because of this we are
compelled to look at the fibration consisting of the families of orthogonal objects
and to compare that with the fibration which is the externalisation of our internal
category {which does determine the internal category up to equivalence).

This theme is continued in later sections of the paper, where we discuss both
for internal categories in a topos €, and for fibrations over it, first notions of
equivalence, and then notions of completeness.

The weak-strong distinction we make for notions of completeness and
equivalence can be viewed as one aspect of the local versus global problem, since
‘existence’ in the internal logic of a topos corresponds to local existence. There is
therefore a body of material emanating from the school of Grothendieck (for
example, Giraud [8]), which is relevant to our present problems. Much of this is
concerned with the linked notions of descent and of stack—a short section on
which is included here. With a section on the general theory of categories of
orthogonal objects, this concludes our preparatory work, and we-can proceed to
our main results in §§ 6 and 7. The paper concludes with a short section on the
use of these categories in the model theory of various polymorphic lambda-
calculi.

A note on the effective topos

Throughout the paper we shall refer to a topos called the effective topos, but as
the reader familiar with the papers by Hyland, Johnstone, and Pitts [12] and by
Hyland [10] will immediately realise, our results apply equally well tc any
realisability topos—a topos constructed from a partial applicative algebra in the
same way that ‘the’ effective topos is constructed from the natural numbers with
Kleene application. There is just one source of confusion that may arise. In the
case of ‘the’ effective topos the object of realisers is isomorphic o the object of
numerals (the natural numbers object of the topos). Throughout this paper by N
we shall mean the object of realisers.
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Our notation for the effective topos follows that of Hyland [10] but with one
small difference. We recall from that paper that an object of €/'is given by a pair
(X, =) consisting of a set and a Pw-valued relation on X X X such that there are
natural numbers s and k which for all x, y, z in X satisfy

hlrx=y—y=zx,
klrx=yany=z—x=2z,

where 4 lF... denotes the realisability satisfaction. In particular, the object of
realisers N is given by (w, =) where [n = m] = {n} if n =m, and & otherwise.
Maps [f]: (X, =)~ (Y, =) are (equivalence classes of) Pw-valued relations
fi X XY —Pow single-valued and total. We modify this construction slightly by
1dem1fymg two different equahty structures, =, =’ on X if there is an » such that,
for all x, x',
niFx=x"ox="x"

In the framework of Hyland, Johnstone, and Pitts [12] this amounts to taking the
partial order reflection on the fibres of the tripos defining the topos, not simply
the original pre-order. It has the advantage that it gives us canonical subobjects
and also canonical pullbacks. This is of interest in the section on fibrations, since
it means that the fibration %// 2 &4 is cloven even without the use of choice,
and then later in the section on complete internal categories, when we can use the
canonical subobjects to establish strong completeness properties of the separated
subquotients of N.

We take this opportunity to recall that the subobject classifier Q consists of the
set Pw with equality defined by realisable equivalence:

peog={hew| hltp— q&hkq—p},

and that there is a geometric morphism I'41A: ¥ — &7 where T is the global
section functor and A is defined by AS = (5, =) where

w ifs=t¢
7} otherwise.

==

Finally, we refer the reader to Hyland [};ﬁ} for a more complete account of the
effective topos than it is possible to include here.

1. Fibrations

There is as yet no good reference for the theory of fibrations as it appears from
the peint of view of categorical logic: Grothendieck’s development of the theory
in, say, [9] was inspired by vastly different ends than those likely to concern
readers of this paper, and the canonical reference on fibrations for the modern
category theonst Jean Bénabou’s long-awaited boock, has still to appear.
However, it is no part of the purpose of the present paper to give a formal
account of this theory, and although in the interests of being self-contained we
include the basic definitions, readers are referred to Grothendieck [9], Giraud [8}
and, especially, to Bénabou’s JSL article [1].

Lct s and J be categories, p: o — ¥ a functor. A morphism a: A,— A, of o
is said to be cartesian with respect to p if for every B: A,— Ay and ¥: pA,— pA,
in % such that pare ¥ =pf there is a unique map y: A,—> A, in & lying over ¥
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(that is, py = ¥) such that aey =,

pa

ExampLE. For any category &, let & be the category of maps in &: the objects
are morphisms

RN

in € and the maps are commutative squares. Consider the natural codomain
functor cod: €*— €. Then a map
f

(h, k): (C~§~;D)-a (A—>B)

is cartesian with respect to cod if and only if the square

is a pullback.
For any I in #, the morphisms a: A;— A, in & such that pa=id, form a
subcategory 4 of & called the fibre over I.

DEerINITION. A functor p: o — F is a fibration if it satisfies either of the two

following equivalent conditions:

(i) for any A, in o and any map &: J— pA,in $, there is a cartesian lifting o
of & with codomain A, (that is, a cartesian map «: A;— A, such that
pa=aj;

(ii) any map J—pA in ¢ lifts to of, and any map A,— A, in & factors as a

map in the fibre over pA, followed by a cartesian map (note that such a
factorisation is unique up to unique isomorphism if it exists).

If we have canonical cartesian liftings, that is, a function assigning a cartesian
lifting to each pair (&: Dy—> pA,, Ao), then we say that the fibration is cloven. Of
course the axiom of choice implies that every fibration is cloven—but in a sense
the converse is also true, the assumption that we are given a cleavage of our
fibration can be made to replace many important uses of choice.

To return for a moment to our example, we see that cod: €*— € is a fibration
if and only if & has pullbacks, and that a cleavage amounts to bemg given for
each pullback diagram
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v —% .
a canonical pullback completion. In the sequel we shail be particularly concerned

with subfibrations of cod: &€*— € where € is the effective topos. We note that
this fibration is cloven (see the note following the introduction).

1.1. Lemma. Suppose p: o — $ is a cloven fibration.

(i) Any map A,— A, factors uniguely as a map in the fibre over pA, followed
by a canonical cartesian.

(i} For any f: J— I there is a ‘pullback functor’ f*: d'— of’.

Proof (sketch). Part (i) is clear. In (ii) an important point is the way the use of
a cleavage replaces choice. If pA =1, then for f*4 we take the domain of the
canonical cartesian f*A— A over f. If & maps A’ to A in ', then for f*« we
- take the factorisation of

f*Ar__}Ar_g(_)A
through f*A— A.

Note however that in a cloven fibration canonical cartesian liftings dc not
necessarily compose (if they do, and if canonical liftings of identities are
identities, then we say- that the fibration is split), and so the composition functor
F*g* is not necessarily equal to the functor {gf)*, although there is a canonical
isomorphism between them. This idea gives rise to another way of looking at
fibrations—as indexed categories. Both notions attempt to capture the concept of
one category varying continuously over another. In a fibration p: A — 4, the
fibre ¢! plays the role of the category as'seen from I, and an object of s’
represents an [-indexed family of objects of the category. The cartesian maps
capture the notion of relabelling. In a fibration, the variation of & over £ is
implicit; in an indexed category, on the other hand, it is explicit. Formally, an
indexed category over f is a pseudo-functor $°P— Cat, where each I gets sent to
the fibre ¢/, and each map to the corresponding puitback functor. The ‘pseudo’
refers to the fact that f*g* is not actually equal to (gf)*, but only isomorphic to
it, and that these isomorphisms satisfy certain coherence conditions.

A morphism of fibrations (over the same base ) is called a cartesian functor.
A cartesian functor from p: f— Ftop': o' — Fis simply a functor G: A — A’
over $ which sends cartesian maps to cartesian maps. If «f and &' are cloven,
then we do not require that G preserves the canonical cartesians. Note that if
G: d— o’ is any functor over #, then for any [ in . it restricts to a functor
Gl o' — A'" between the fibres over I. If G is cartesian, then for any f: J—1,
there is a canonical natural isomorphism between the functors G’f* and
F*Gh s — o', though they are not in general equal.

The fibrations with which we shall be concerned will be almost exclusively
subfibrations of

gz
l
3
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(and in particular where € is the effective topos). In cod: €*— €, the fibre over /
is just the slice category /7, and for f: J— I, the puilback functor f*: & — & is
given by pullback along fin €. If € is a topos, then it is well known that each
fibre /1 is also a topos, and that the functors f* are logical, that is, they preserve
finite limits, colimits, exponentials, and the subobject classifier. In particular, the
subobiject classifier of /1 is o
Qe X I— L

Even if € is a general finite limit category, cod: &*— & has strong properties.
Not only is it a fibration, it is also a co-fibration; i.e. the opposite functor
cod®®: (&%°P— ¥ is a fibration. Put more concretely, this says that each f* has
a left adjoint Z;: &/J— €/I (given in this instance by composition with f), and
that the Zy are preserved up to isomorphism by pullback functors, i.e. they satisfy
the Beck—Chevalley condition: if

k

. SN
AR
- N,

is a pullback in €, then the induced natural transformation Z,k*—g*Z, is an
isomorphism. We express this by saying that cod: €*— € always has %-indexed
copreducts, for if we regard

Y

L 1€&/J

J

as a family of sets Y} indexed by J, or as a J-indexed variable type, then
Y

el |
J

is the I-indexed variable type ¥;.; 1.

If € is a topos, then the functors f* also have right adjoints FI; corresponding
to fibrewise products, and these adjoints automatically satisfy their corresponding
version of the Beck—Chevalley conditions. In fact cod: *— € is complete and
cocomplete (for all €-indexed limits and colimits).

2. Categories of orthogonal objects

The major result of this paper is a characterisation of the fibred category of
objects in the effective topos €/ orthogonal to Q or any codiscrete object AS for
S a set with at least two elements. This section is devoted to a discussion of
orthogonal categories in general.

X
We recall that an /-indexed family of objects | | | is said to be orthogonal to a
“N\T

map 8: A— A’ if and only if the /-indexed family‘ of maps
X\ire X\ r+ar X 14

Vil =l

I I {
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is & family of isomorphisms (equal to an isomorphism in /[). Note that here we
have taken the notion of orthogomnality with respect to a single map, a l-indexed
family. The interested reader should however have no difficulty in formulating the
definition of orthogonality with respect to a J-indexed family. Everything we have
to say in this section holds also for orthogonality with respect to such a family,
but this generality will not be needed in the sequel. The reader familiar with Freyd
and Kelly [6] will immediately realise that several of the arguments carried out in
this section are the internal versions of results there, although we shall not
produce them in their greatest generality.

Let On4(0) be the full subcategory of &* with objects the families of orthogonal
objects.

2.1. ProrositioN. (i) The composite Outh(9)— € — € is a fibration and the
inclusion Ox4{8)— €* a cartesian functor.
(i) For each I, the fibre Ou#{(0) is closed under all external limits which exist in
&L In particular, Ouh(8) is finitely complete.

(iii) Owi(8) is closed under internal limits in €.

Proof. (i) It suffices to show that if J % Iand

Y X
L=t
J I
Y X
is cartesian lying over «, then | | | is an orthogonal family in case !
J I
is such. However,
Y X
V=14
J i;
Y X
cartesian implies { | | isomorphic to o*{ | |, and
J I
X\re X\ atro X\r1e
wl L) = 1] =l
I I I
X
since a* is logical. But this last is isomorphic to a*| | |, and the result follows.
p _

(ii) This is left to the reader
(iii) We shall show that Owx#(6) is closed under @-indexed products, i.e. that
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IL,: &/J— &/I restricts to a functor Ox#(0) — Ox4(8), leaving the case of the
Y

equaliser to the reader. If | | | is an arbitrary J-indexed family, and C is

J
an arbitrary object of €, then there is a canonical isomorphism

IL(¥"C) = (LYY,

Y
If now | | | is orthogonal, then this gives us
J
(Hay)I*A’ o Ha,(YJ*AI) - HW(Y]*A) o= HQ(YJ*A),
as required. |

As our main concern in later sections will be with the notion of orthogonality
with respect to 0: A—1 for A weli-supported and internally projective, we
concentrate our attention on this particular case.

DermnTion. If A is an object in &, then Owx#4(A), the category of objects
orthogonal to A, is the fibred category of objects orthogonal to A—1.

2.2, LEMMA. If there is an epimorphism from A onto B (a condition we shall
henceforth write in shorthand as A—> B), then Oxit(A) is a fibred subcategory of
Owth(B). ‘

X
Proof. Suppose | | | is orthogonal to A. Then the composite
I
e Y\I'B [ x\I4 x X\ 4
Li=tl] =i ==y
I I I i I

is iso. But since A — B, the second component is monic, and hence is iso.

For the next group of results we shall assume that & takes the special form
A—1, so that A is well-supported (but we note that the apparently more general
case of §: A— A’ can be obtained by localising to &/A’).

2.3. LEMMA. Suppose A—>1. Then Ou#4(A) is closed under subobjects.

Proof. Without loss of generality we can assume that /=1 as the proof rests
only on elementary properties of toposes. Suppose that X is orthogonal to 4 and
X' X. Since A—>1, the induced map x: X — X* is monic. Moreover, the
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commutative square
X' — X

[

XFA 3 > XA
is a pullback. Now pullbacks of isos are iso, and hence X' is in Ou(A).

A corollary is that Gx#4(A) is a reflective subcategory of &*— €. Since Owh(A4)
is closed under subobjects, any map

Z X
V=i
I 1
Z X
factors through a quotient of { | |{ itsimagein{ | | | whichis in G«#4(A). This,
I I

together with the definability of Ox#(A}), gives the ‘solution set condition’, and we
can apply the indexed adjoint functor theorem. The following characterisations of
orthogonal objects and maps into orthogonal objects will be useful in the sequel.

2.4. PROPOSITION. Suppose A—>1.

X
(i) The family | | | is orthogonal to A if and only if there is a map A such that
the diagram ‘ !
X A X A
! X, IFA 1|
{ {
ev| *
X\ (X
i
L) ——1 !
H !
commutes. Note that when this is the case, the diagram is a pushout.
X Y
(i) Any map | | |—={ | | from an arbitrary I-indexed family into an
I I
orthogonal family factors through the pushout
X iI*A X ™A
L <A 2|
1z !
evl l
X [ x\}
Lj——1}
f 1

Proof. Again assume that I = 1.
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(i) A map i X*— X satisfies ev=Ax=m(AXid) if and only if id=
KA: X*— X* where k is the constant functions map, since x is the exponential
adjoint of . As x is monic, it has a right inverse if and only if it is an isc.

(ii) This is immediate from (i).

It wili also be useful sometimes to rewrite the pushout condition of 2.4(i) as the
equality of a pair of maps.

X
2.5. LeMMA. Suppose A—v1. Then, in each fibre, | | | is orthogonal to A if and
only if the two composites I ‘
X I*A - X A o X I*A4 X
! X [FAP? = || X LA X TR A 2 J X A5 i
I | I e A g I

are equal.

2.6. Remark. The meaning of this lemma is perhaps more intelligible if we
make use of the internal logic of the topos. The family (X;| i € ) is orthogonal to
A if the formula

Viel VpeA— X, . 3xe X, . VacA. ¢p{a)=x

holds in the internal logic. The lemma above says that if A is well-supported (that
is, ‘Ja € A . @ = a’ holds), then this condition for orthogonality is equivalent to

Viel VpeA— X, Va,a’' e A. ¢p(a) = ¢{a’).
Proof. As the argument is the same for each fibre, assume I=1. If X is

orthogonal to A, then the two composites are obviously equal. To prove the
converse note that since A — 1, the diagram

XAXAXAZXA XK A— XA
is a éocqualiser, and that we thus have a commutative triangie
XPx AT x4 |
evl /
X

The result now follows from Proposition 2.4.

We shall make use of this lemma immediately in proving a technical resuit
which will be our main tool in relating different categories of orthogonal objects.

~ 2.7. ProposiTioN. Suppose B—> A—> 1. Suppose moreover that there is ¢ map
2— A inducing a surjection B*—> B* by composition. Then the fibred categories
Owth(B) and Owih(A) are equal.
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Proof. We already have that @M(B} is contained in Ow#(A). Suppose

X
conversely that { | | is orthogonal to A. Then the diagram
I
X *8 X i*A
) X, [*BIA cmp |
{ I
Je
x\"® X
) X, I*B"" —33 1 |
i I

commutes. But the left-hand vertical is a surjection, and so the bottom arrows are
equal. The result now follows from Lemma 2.5.

In the restricted case which we shall be considering in the rest of the paper, we
have stronger closure properties for Ou4(A) and a simpler description of the
reflection into it. Assume that A—->1 and that A is internally projective, that is,
(—)* preserves surjections.

2.8. LemMa. Suppose A—v>1 and is internally projective. Then the fibred
category Outh{A) is closed under quotients.

Proof. Again we can assume that /=1 and show that if X —Y and X is
orthogonal to A, then so is Y. Now the diagram

X —Y

|

XA . YA
commutes, and the left-hand side is a surjection. On the other hand, it is also
monic, since A—>1, and hence is an isomorphism.

2.9. PROPOSITION. Suppose that A—>1 and that A is internally projective. Then

in the pushout
*A

X\ X
Ll oxra T} |
[ I
ev' l
X X\
sl
1 I
X\! X

V| is the reflection of | | | into Outh(A).
I i
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Proof. As usual, we shall carry out the argument for I =1. Note first that for
any B— C the diagram
BxA — CXA

l l

B—C

is always a pushout. As (—)* preserves epis, in the diagram
7

X4 > x4
ev (XYt x a—E— (xH?
ev E
! : '.
X - X' |
NA i
id v

X+ > X

the top square is easily seen to be a pushout. The back square is a pushout by
definition, and the bottom square is trivially a pushout. It follows that the fill-in
for the right-hand vertical of the front face makes the front face a pushout toc.
The conclusion now follows from Proposition 2.4.

3. Internal categories and equivalence

Suppose that
d
C= (cl Lo, CO)
cod

is an internal category in an arbitrary left exact category €. We recall that the
externalisation of C is the fibred category p: [C]— & defined as follows: the
objects of [C] in the fibre over some I in € are maps I—> C,, to be thought of as
I-indexed families of objects of C. Given an I-indexed family ¢: /—C, and a
map «: J— I, we think of the J-indexed family aoc: J— C, as the relabeliing of
c along &. A map from d: J— C, to ¢: [—> C, is then given by a pair (a: J— I,
f: J— C,), such that the two diagrams

f

]—"_':’Cl

N ldom
C()

J e,y

1| le

Ci ~goq™ Co

and
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commute. In effect, a map lying above the relabelling « consists of a J-indexed
family of maps in C from the J-indexed family of objects d to the relabelied
family & °c = a*c. Composition is defined using the internal composition of C.

3.1. ProrosiTion. The functor p: [Cl—> € is a (split) fibration (cf. § 1).

Proof. The map (a, f) is cartesian if and only if fis a family of isomorphisms,
that is, if and only if f factors through Ise(C) »» C,, the object of isomorphisms of
C. Now (g, f) factors as (idy, f) followed by (e, idcoce ) where idg: Co— Cy is
the map giving the identities of C. Notice that the canonical cartesian maps
(@, idcoco o) are closed under composition, and hence that the fibration is split.

As an example of this consider the case of a ‘small full subcategory’, where we
now assume that € is a topos, or at least is locally cartesian closed. Suppose we
g _

are given a family | | |} of objects of &. This gives an internal category € with
Co

obiects C, and whose object of maps is the Cp X Co-indexed family whose fibre

over (x, y) is the collection of maps in the topos from S, to §,, in other words

is the exponential (nif)“) in the slice €/CoX Co. Write (C) for the

full subcategory of &€ on those maps obtained by pullback from the single map

§

d - d
} 1. Of course (C)&»% is a full subfibration of €——> %, and our
Cy ‘

intuition tells us that [C] and (C) should be equivalent.

3.2. LemMA. If the fibration €*— € is cloven (as is the case if we have enough
choice in the meta-theory, or constructively in certain other cases including that of
the effective topos), then there is a full and faithful cartesian functor from the
fibration [C]— € to €*— € whose essential image is (C).

Proof. Of course we take the image of a: I— C, to be the domain of the
canonical lifting of & to &* with codomain f. It is routine to check that if & maps
I to C, and B maps J to C,, then the hom-set [C](a, f) is one-to-ome
correspondence with the commutative squares

a*S — B*S
I
This establishes fullness and faithfulness. Finally, by definition, (C) consists
a* X
precisely of those objects of %’ isomorphic to some }
1

Note however that, except under special circumstances, in the absence of

choice we cannot obtain a pseudo-inverse to the functor [C}— (C). This is
Y .

because for an arbitrary object | | | of (C), there may be many different

I
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a: I—C, expressing Y as a pullback of S. A functor (C)— [C] requires us to
make a choice, but it is a use of choice at the level of meta-theory, and so is
(relatively) harmless. Thus, in the sequel we shall assume that (C) and [C] are
equivalent categories over & (in the terminology introduced below we shall
assume that they are strongly equivalent). Note however that we can still
distinguish them: {C] is a split fibration, while {C) is not.

One example of this full subcategory construction is the full subcategory of
subsets of a given set X, obtained from the family £— PX, where ¢ is the
membership relation on X X PX. We however will be more interested in the
internal category of subquotients of N. As in the normal category of sets we can
take this category to have as objects the internal collection of symmetric and
transitive relations on N:

Qo= {R e P(N X N)

‘R is symmetric and transitive’}.

However, we can also describe Oy as a family of sets of equivalence classes of
elements of N:

{FcPN| VXeF3xeN.xeXAVX,YeF[AxeN.xeX nxeY—>X =Y]}.
Qo

Living over O, we have an obvious family | | | of sets in &, given by restricting

o
the membership relation &>»>PN X P*N to Q, (the fibre over F is thus F). We

obtain the same result from the first presentation by observing that the disjoint
union of the relations R determines a symmetric and transitive relation on
N %X Q. If we take the domain of this relation, and then quotient by what is now
an equivalence relation, we obtain a set { which is of course still defined over Q,,
and is isomorpkic to the family g: QO — Qg given above. The internal category of
subquotients of N is the full internal category on this family of objects.

An object over I of the externalisation [Q)] is given by a map from [ to Qg, and

' X

the associated subfibration (Q) of #*— & consists of those familigs | | | such

that there is I

Externalisation is functorial in the sense that an internal functor F: C—D
gives rise to a cartesian functor [F]: [C]—[B] over €, and is 2-functorial since a
similar property holds for internal natural transformations. However, extending
this to (C) and () again involves some use of choice at the level of the
metatheory. Nevertheless, we need to consider how (internal) properties of
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F: C—D are related to corresponding properties of [F]: [C]— [D]. While the
internal statements that express the notion that ‘F is full’ or ‘is faithful’ are
straightforward, the way to express ‘F is an equivalence’ is not. Suppose that
F: C—DB is an internal functor which is (internally) full faithful and essentially
surjective on objects. Then in order to get a pseudo-inverse functor D— C, we
need some form of choice in %€ (what we have been calling choice in the
metatheory will no longer do). This can come from a global choice principle in €
(as is the case for small categories in &%) or it can arise more locally—given for
example by the projectivity of D,. It thus becomes useful to distinguish between
two different internal notions of equivalence—we shall say that an internal
functor F; C— D is an equivalence if and only if it has a global pseudo-inverse
and a weak equivalence if and only if it is internally true in & that it is full, faithful
and essentially surjective on objects:

Ve, ¢'e CoVhe Dfdomh=Fcrcodh=Fc'—3f e C,. Ff =h],
Vf, g e Cyfdomf =domg Acodf =codg A Ff =Fg—f =g],
V¥d e Dydc e Cy 3i € Iso(C)[dom i = Fc A codi=d].

3.3. Remark. We do not consider here the intermediate condition when F
has internally a pseudo-inverse (that is, when the object of pseudo-inverses is
inhabited). This holds in the presence of the internal axiom of choice, and fails in
general, unless we know, for example, that D, is internally projective.

We shall say that two (internal) categories C and D are weakly equivalent if
there are an E and a pair of weak eguivalence functors F: E— C and G: E—~D.
It is easy to see that weak equivalence is symmetric reflexive and transitive, and
that it is therefore the closure as an equivalence relation of the relation on
categories generated by the weak equivalence functors. This notion has been
extensively treated by Freyd [S] who notes that many proofs of equivalence in
mathematics proceed by first establishing a weak equivalence in one direction and
‘then using choice to obtain a pseudo-inverse.

As has been observed by, for example, Bunge and Paré in [3] (where the
authors however use the language of indexed category theory), we can detect
many interesting properties of an internal funcior F at the level of its
externalisation.

3.4. PrROPOSITION. Suppose F: C— D is an internal functor. Then

(i) F is (internally) faithful if and only if [F] is faithful;

(i) F is (internally) full if and only if [F] sastisfies the following condition:
for every I in €, C, and C, in [C) and map g: [FKCy)— [FXC,) in
[DY, there are a cover a: J—1I and a map f: o*(C))— a*(Cy) in [T}
such that {FI(f) = a™*(g);

(i) F is (internally) full and faithful if and only if |F} is full and faithful;

(iv) Fis a (strong internal} equivalence if and only if [F] is an equivalence;

(v) F is (internally) essentially surjective on objects if and only if [F] satisfies

the following condition:

for every I in &, and every D in [D}, there are a cover w: J — 1 and an
object C in [CY such that [FI(C) = a*(D).
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Proof. The arguments for these are all essentially the same. It is straightfor-
ward to show that if the internal functor has one property, then the externalisa-
tion has the corresponding property. To proceed in the reverse direction consider
the generic instance. Note that (iv) can be made to follow from the fact (cf.
Bunge and Paré [3]) that ‘

[ ]: Catg—> Flbsg

is a local equivalence (i.e. for each C, C’, the induced functor between the
functor categories Catgz(C, C') and Fibg([C],[C']) is an equivalence)—a fact
which itself follows from similar arguments to those given below. We sketch
proofs for (ii) and (iv). A functor F: C— D is full if and only if

VA, BeCyVg: FA—FB3f: A—B.Fg=f{.

Take the pullback
| P > D,
CoxX Cy M Dy X Dy

Here P— D, is a P-indexed family of maps from the P-indexed family

F
FP(P—> Co X Cy =5 CO) = P> Cy X Cp 2% Co—s Dy

of objects of D to

F
FP(P—> Cy X Co Co) =P Cy X Cog 25 Cy—> Dy,

By hypothesis there is an a: J— P and J— C, such that
FI(J— C)=a*(P—Dy),

but this implies that P (the set of triples A, B, g with g: FA— FB) can be
covered by J for which there is an assignment (4;, B;, f;) such that (A, B;, Ff;) =
aj. For (iv) suppose we are given F: [C]— [D], G: [D]— [C] cartesian functors,
together with natural isomorphisms #: Idiq— GF, &: FG-—1dp). Look at the °
generic family of objects of C, Co— C, in [C]%. The transformation n gives a
C,indexed family of isomorphisms from Cy— C, to [GF)(Cy— Cy), that is to

say, a map COL C, factoring through Iso{C) making

Co i"’ C Co 1 > C4
id\ | dom ia] | cod
F G

" Co Co > Dy > Cy

commute. We obtain &: Dy,— D; similarly, and it is now simple to verify that

CoiCl and DQ—&Dl are (internal) natural isomorphisms Idg— GF and
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Following this proposition we can define an equivalence of fibred categories to
be a pseudo-inverse pair of cartesian functors over €, and a weak equivalence

¢ -5 g

¢ .
of fibrations over € to be a cartesian functor which is full faithful and satisfies the
condition:

for every I'in %, and every D in 9, there are a cover a: J—>{ and an object C
in €’ such that [F](C) = a*(D).

Finally, we note that Bunge and Paré prove

3.5. PropositioN. If C and D are internal categories, then [C] and D] are
weakly equivalent fibrations if and only if C and D are weakly equivalent internal
categories. ‘

4. Strong and weak notions of completeness for internal categories

The notion of equivalence is useful in naive category theory because it
preserves and reflects all the categorical structure we are interested in. We,
however, can no longer afford to be naive, and we must choose the notion of
equivalence carefully so that it preserves the structure we are interested in—or
more realistically we must lock at various levels of structure and see how they are
preserved and reflected by the two levels of equivalence which we introduced in
the last section. In particular, we can no longer afford to be hazy about the
distinction between a category having structure (in the sense of the internal logic)
and a category actually coming equipped with the structure.

Consider even the simple case of an internal category C with a terminal cbject.
Either C can have the terminal object in the strong sense of there being a
designated map T: 1> Cy such that

¢, om, ¢,
l lcod
: T

1 —— G
is a pullback, or else it can have a terminal object in the weak sense that
{ce CO| Ve'eCo3laeCy. a: ¢'—c}, the internal collection of terminal ob-
jects, is inhabited (i.e. the map from this into the terminal object of € is a
surjection). Of course the strong sense implies the weak, but not conversely (the
principle that every inhabited set should have a global element is equivalent to
the projectivity of 1, and does not hold constructively). Suppose now that
F: €— 2 is an internal functor. If F is a strong equivalence, then it preserves
and reflects the property of having terminal objects—both in our weak and our
strong sense. Similarly, if F is a weak equivalence, it preserves and reflects the
weak structure, but does not reflect the strong. Moreover, although a weak
equivalence preserves the property of having a strong terminal object, since FeoT
will be a terminal object of % when T is a terminal object of €, this is misleading
(for example, weak equivalence does not preserve the property of having strong
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binary products). Of course if & has a strong terminal object, then € has a weak
one. Note that the same problems exist at the level of fibrations: there is a
distinction between there being a terminal object in each fibre of a fibration
p: d— &, and there being a cartesian functor from id: €— ¢ that picks it out.

DerniTioN. An internal category C has strong (binary) products if there is an
internal functor C?— C right adjoint (by a given internal adjunction) tc the
diagonal A: C— C?. In addition, C has weak (binary) products if the foﬂowmg is
internally true in €:

Ve,c'eCo3deCodn, i’ eCy.m. d—cara': d—c’
A ‘d is a product of ¢ and ¢’ with projections & and 7",

We define weak and strong pullbacks, equalisers, etc. similarly. C is strong
(respectively weak) finite complete if it has strong (respectively weak) finite
products and equalizers.

4.1. ProrosiTioN. (1) Strong equivalences preserve and reflect all strong
(respectively weak) finite limits. In particular, if F: C— D is a strong equivalence,
then C is strong (weak) complete if and only if Db is.

(iiy Weak equivalences preserve and reflect weak finite structure. In general
weak equivalences neither preserve nor reflect strong finite structure. Of course,
since strong structure implies weak structure, if C and D are weakly equivalent
categories, and C has some strong finite structure, then D has the corresponding
weak structure.

Suppose now that D is an internal category. Again we can say that C has strong
limits if the diagonal C— C® has a right adjoint in the 2-category Cat(%), and
that C has weak D-limits if it is internally true that every functor D— C has a
limit cone over it. Again, if F: C— C’ is a strong equivalence with pseudo-
inverse G say, then F preserves and reflects the property of having strong D-limits
- (and also preserves and reflects the limits). Moreover, it still preserves and
reflects the property of having weak D-limits, since we can use G to lift
D-diagrams in C' to D-diagrams in C. As we would expect, if F is a weak
equivalence, then it will in general neither preserve nor reflect the property of
having strong D-limits. Moreover, it will not preserve the property of having
weak D-limits, though it will reflect it. Consider the case for preservation.
Suppose we have a D-diagram in C'; then in order to find a limit we have to lift
the diagram to C. However, although we know that we can lift the objects of the
diagram to C individually, we have ne constructive way of lifting them collectively
(this is where the use of the pseudo-inverse G is crucial in the proof that strong
equivalences preserve the existence of weak limits). More precisely, to prove that
weak equivalence preserved the existence of weak limits we would like to know
that a weak equivalence induced a weak equivalence of functor categories
FP. CP— C'P, but this is false. Suppose we regard objects C, C', and D as
discrete internal categories. Then a weak equivalence functor from the discrete
internal category correspending to C to the internal category corresponding tc C’
is the same as a surjection C—> C’, and the category of D-diagrams in C is the
discrete category on the exponential C”. But the functor (—)” does not preserve
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surjecticns in general. If, on the other hand, we know that C’ has weak D-limits,
then we can use F itself to transfer diagrams in C to diagrams in C’, and then
have to lift oniy the apex of the limit cone back to C.

This problem remains quite serious, in that even if we know that C has weak
limits for all internal diagrams, we can not deduce the same for C'. The solution
seems to be, instead of considering individual diagrams, to consider families of
diagrams.

DeriNTION. An internal category € is weakly complete if, for ali internal
D

families of diagrams | | |—I*C in C, it is internally true that there is a limit

1
cone over each diagram. We say that C is strongly complete if, for each family of
diagrams in C as above, there is a function on I which assigns limit cones.

4.2. PropOSITION. (1) Strong equivalences preserve and reflect both strong and
weak completeness.
(ii) Weak equivalences preserve and reflect weak but not strong completeness.

Proof. It remains to be seen how, given a weak equivalence F: C— ', we lift

a family of diagrams

Dl’

Gty | |-

I
in C’ to a family in C. To do this we take the iso-comma square for G’ along I*F
in the 2-category Cat(%/I) (a conmstruction which acts as the bipuilback in the
2-category):

D —— D

o| = |o

*C — I*C'
D B
That is to say, we take the family | | | of diagrams with objects triples
I .

(d, a,(c, i}), where c € Cy, d € Dy over i, and « is an isomorphism G'd— Fc. The
maps are the obvious pairs of maps. The family G is a family of diagrams in C
indexed by I, and therefore has a family of limits, but applying F to this family of
limits gives a family of limits in C' for the family G'".

We could make analogous definitions of the weak and strong completeness of a
fibration p: of — € with respect to families of #-diagrams. It is however easier
simply to say that of is strongly complete if it has finite limits in each fibre and
each pullback functor a*: Al— s¢’ has a right adjcint IT,. We must of course
require also that the finite limits are preserved by the o* and that the II, satisfy
Beck—Chevalley conditions. Now & is weakly complete if, given a finite diagram
in the fibre over I, there is a §: K— 1 such that the pullback aleng § of the
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diagram has a limit in the fibre over K, and if for each a: J— I and each A € o/,
there is B: K—» 1 such that I1z.,B*A € of* exists. The compatibility conditions
we require are again.that the o preserve all finite limits and €-indexed products,
though this now has to become subject to their existence.

We leave the following as exercises for the reader:

4.3. ProrosiTION, (i) Strong equivalences of fibrations preserve and reflect both
strong and weak completeness.

(ii) Weak equivalences of fibrations preserve and reflect weak but not strong
completeness.

4.4. PROPOSITION. An internal category C is weakly (respectively strongly)
complete if and only if its externalisation [C} is weakly (respectively, strongly)
complete as a fibration.

5. Stacks

The need to distinguish between strong and weak concepts arises from the fact
that the notion of existence given by the internal logic of a topos is local
existence, while we have been wanting t¢ extract global information.. This is
possible if instead of an arbitrary fibration, we have a stack (see Giraud [8],
Bunge and Paré [3]). In the first reference we can find the definition of stack
(champs in French) over an arbitrary site. Here, however, we shall be interested
only in stacks for the regular topology on a topos or quasi-topos &, and for this
case the definitions can be made somewhat simpler.

Let p: sf— & be a fibration, and suppose that a: J—>1 is a surjection. Form
the complex

IX I I3 I, T = J—L

By an object with descent data with respect to @, we mean an object A e &’
togethér with an isomorphism 6: mgA—>mw{A in the fibre over JX,;J. In
addition, we require that A*6=id, and that #{,0=a10°756. A map of
objects with descent data (A4, 8) to (A’, 8') is just a map A— A’ in the fibre over
J which commutes with the descent maps 6 and &'. This gives us a category
Pesc,,. Note that any object of «f’ gives us an object with descent data by
pullback, and so a functor p,: &' — Fescy. |

Dermvimion. The fibration p: of — € is a stack if for all I and all o1 J— 1 the
functor p, defined above is an equivalence of categories.

5.1. Remark. The notion of descent data is a finitary way of expressing a
compatible family of objects generated by A on the crible over [ generated by a.

ExampLE. The fibration &— & for % a topos is a stack. Suppose we have
X

@: J—1Iand | | | in the fibre over J with descent data 6 with respect to a.

J
What this amounts to is being given, for each j, j' in J such that aj = ¢f’, an
isomorphism

6 X3 X
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Moreover, the 6;; compose (6, .= 6, »6;;) and 6;;=id. We can descend
X : '

| | to I by considering sections for this structure: as the fibre over I we take

J
maps ¢: J;— X such that ¢; € X; and 6, 0, = g;..

We can obtain many more examples of stacks from this single instance.

5.2. LEMMA. Suppose p. A — € is astack and p': A’ — € is a subfibration of p
closed under isomorphisms such that if o: J—1, x e ' and a*x e o', then
xed’'. Then A'is a stack.

5.3. COROLLARY. Any subfibration of & — & definable in the sense of Bénabou
(1] is a stack, and hence any subfibration definable in the internal logic of the topos
is a stack. In particular, the following are stacks:

(i) separated objects for a topology j on €;

(ii) sheaves for a topology j on €;
(i) families of subquotients of a particular object N of &;
(iv) the fibration Ox4(8) for any map 0.

However, many ‘naturally occurring’ fibrations are not stacks. For example,
externalisations of internal categories are not generally stacks. An example is the
full subcategory in F4(S") on the single object the connected double-covering of
the circle. This double-covering is locally isomorphic to S*I] S, but of course is
not globally so.-

Bunge [2] shows how to construct, given a locally small fibration & over the
topos %, a stack F with a weak equivalence F: F— & over € such that for any
G: F— % into a stack there is H: F— ¥ such that

F

F

S

7
—
.y

4
commutes up to isomorphism, and H is uniquely determined up to a unique
isomorphism. The weak equivalence F: F— & is called the stack completion of
%. From the universal property it follows that any stack which is weakly
equivalent to F is (strongly equivalent to) its stack completion.

We shall not discuss the general construction of the stack completion as we do
not need such generality, but we shall want a description of the stack completion
for a full subfibration & of &. In this case, because %> provides us with a stack
which contains &, the construction of % becomes simple. All we have to do is to

X
collect the necessary objects: take those families { | | such that there is a pullback
I
Y — X
Y J 21

with | | | in &. Let % be the full subcategory of &2 on these. It is immediate
J
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from Lemma 5.2 that this is a stack and by definition the inclusion ¥— F is a
weak equivalence.
Recall that in the case that the subfibration & is the ‘externalisation’ (C) of
a small full subcategory C on a family of objects S— C,, it consists of those
Y

| [ such that there is a pullback

7 Y — 3§
J — G
Its stack completion, which we shall write {C}, is therefore the full subcategory of
Z .
& of those | | | such that there is a pullback
i
Y — Z
7 %1
Y
with | | | in &.
J

In other words, (C) consists of the objects such that there is a global map

7 C, satistying
Viel. Y;=a(j),
while {C} consists of those objects such that
Yieldce(y. Z;=8,.
Note that in general these two conditions are not equivalent. For such a family
Z— I 0 be in (C) we need a function I — C, giving such a ¢ for each i, and in the
absence of choice in the topos this is impossible to guarantee.
If Q— O, is the family of subquotients of N considered before in § 3, then the
stack completion of [Q] is the fibration {Q} of families of subquotients of
Z
N—ihose | | | such that
!
VieldAcN.A—Z,
In § 6 we will show that when N is the object of realisers in the effective topos,
these two fibrations are not strongly equivalent, though they become so when we
restrict the indexing category to the separated subobjects in the topos. This will
enable us to apply the following result.

5.4. LemMMA. If the stack p: sd— € is weakly complete, then it is strongly
complete.

Proof. The proof is in fact routine, and follows from the observation that
families of limits for the same diagram naturally carry descent data.
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6. Discrete objects in the effective topos

The title of this section needs to be explained: we define the discrete objects in
the effective topos as those orthogonal to A2. Our first result shows that we
could obtain the same category from many different objects.

6.1. Prorosmmion. (i) If S is a set containing at least two elements, then
Orth{AS) = Omih{ A2). :

(i) If U is a uniform object with (at least) two distinct global sections, then
Outh(U) = Outh( A2).

(iil) Omh(Q) = Ouh(A2).

Proof. (i) We recall that A: ¥— %/ is equivalent to the inclusion of the
T—-sheaves. Now in any topos € and for any topology j, if X is a j-sheaf then the
sheafification ¥ —aY of an arbitrary object Y gives rise to an isomorphism
X — X7 In our case we get AS*? = A(S%) = (AS)? The conclusion now follows
from Proposition 2.7.

(i) Recall (Hyland [16]) that the uniform objects are those U/ which are
-uniform with respect to N:

Vo[VueUIneN. p(u,n)—>IneNVuelU. ¢{u, n)l.

In the effective topos the uniform objects are precisely the quotients of
-sheaves. Suppose U is as in the statement. Then the two distinct global
sections give a monic 2> U. If now AS— U, then ASY = AS™V s A§A2= A§?
since this is essentially happening in &, and we again apply Proposition 2.7 to
obtain the resuit.

(iii) We remind the reader that, in the effective topos, Q = (Pw, «). It is easily
seen that the relation G: Pw X Pwo— Pw, defined by

w ifS=T,

G, T) = {Q otherwise,

gives rise to a surjection A(Pw)—>Q, and hence Q is uniform. Moreover ‘T’ and
‘1’ are distinct global sections.

It is casy to deduce properties of the discrete objects as A2 is internally
projective in /. In fact all AS are, and a simple way to see this is to recall the
description of function space for a topos based on a tripos (cf. Hyland, Johnstone
and Pitts [12]). For (X, =) and (Y, =) in %/ the function space is (Z, =) where
Z =& (X, =), (¥, =)) and

[f =gl={n e o| ni-f is functional’ A Vx € X ¥y € Y[f{x, y) < g(x, y)]}.

In case (X, =)= AX, a map fin Z is completely determined by an X-sequence
(¥e)rex such that (Nex [y: = y.]#@. This collection with the suitably restricted
equality is (isomorphic to) the function space (Y, =)*¥. It is easy to see now that
AX is internally projective.

6.2. COROLLARY. Ox#4(A2) is closed under subobjects, quotients, and all the
limits in the topos.

This however caly begins to become significant when we have
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6.3. LemMa. The object N is discrete.

Proof. This follows from the uniformity principle of Hyland [18]. It is however
easy to see with the representation of the function space (¥, =)2¥ given above
that N2 is based on the set of diagonal pairs of N X N. Thus N 5 N4,

So we know that Ox#(A2) is a fairly large category—it contains at least all the
subquotients of N. In the remainder of this section we shall see that O»#(A2) is in
fact the stack completion of the fibred categery of subquotients N——the stack of
families of subquotients of N. We begin by working in the fibre over 1.

Recall that the objects AS can be characterised internaily—they are the sheaves
for the double negation topology; cf. Hyland [10]. Ir the fibre over 1 we can also
give a good description of the separated objects for this topology: any separated
object is isomorphic to one given as (X, |—|) where

o [kl ifx=x,
e =] {@ - otherwise,
as in [16]. Conversely, any such object is separated. It is now easy to see that any
object in &/is covered by a separated object, for if we have an arbitrary (Y, =),
then '

(Y, |—|) —— AY

J,

(¥, =)

where |y|=[y=y]. Note however, that this covering is not canonical as it
depends on the presentation of (Y, =) we are given.

6.4. LEmMma. If X is a separated object in the effective topos, then there is a
subobject E »» X X N such that

(a) m: E— X,
E

(b) { | | € FA(E4IN).
N

In general we shall say that an object X has Property (f) if there is an
E»» X X N satisfying (a) and (b) above.

Proof. Assume that X is presented as (X, |—|) as above, and define £ by
E: XX w—Po,

{n} ifnelx|,
e =] .
(x, n) @& otherwise.
Then E is trivially relational for both X and N, and hence defines the subobject
E. In order to show that E surjects onto X we must show that there is an m
realising
VxeXHeekE. me=x.

The essential part of the statement is that given an » € |x| we should be abie to

:
|
3
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find an {x,n) such that {m}(n),€ E(x, n). But now any m coding a total
recursive function w — @ X @ whose first component is the identity will do. It remains

E E
to prove that | | | is a 7-sheaf in €//N. We show that { | | is a closed
N N
| AX XN
subobject of a sheaf. Since the functor N* is logical, N*AX = ! is
certainly a sheaf, and we have - N
E
} > N*X>>N*AX.
N
This inclusion is —1=-closed in &#/N if and only if
Ers> X XN»>AX XN

is closed in the fibre over 1. Now E>» AX X N can also be given by the map
E: X X w— Pw. We must show that

IF¥x € AX ¥Yn e N[mE(x, n)— E(x, n)].
So given x in X, n in w, m € [r =n], and information that E{x, n) is non-empty,
we must find recursively in m an m’ e E(x, n). But of course m =n, and if
E(x, n) is non-empty then it is {n}, so the task is not too difficult.

We now turn our attention back to other fibres of the fibration. We shali need
some notation. We have a sheafification functor for the ——-topology which we
shall write as a cartesian functor

g;/l a &,2
w’

On each fibre this restricts to a functor a;: €//I— %,f/[ giving the sheafification

functor in €//I for I*(m), the —-topology there. Sometimes we shall abuse

notation and drop the suffix 1 from a,.

It is well known that @; can be defined in terms of a,. For any I-indexed family
X X

| |, the sheaf a,{ | |is the left-hand vertical in the pullback
I I
aX — a X
I — AI
X
Recali that a family | | | is separated if and only if the canonical map

X X
l >y l«
I i

is monic. It is easy to see from the above that if X is separated in the fibre over 1,
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X
then | | | is separated in the fibre over 1. Furthermore, if I is itself separated in

I
the fibre over 1, the ‘if’ becomes ‘if and only if’.

X

6.5. LemmA. If I is separated, and | | | is separated in the fibre over I, then
X I
| 1 has Property (1) in the topos 411 (cf. Lemma 6.4).

I
Proof. Since I is separated, so is X, and hence there is E »>X X N satisfying
E
the requirements £E— X and | | | € $4--(%#/N). As
N
X X XN
} | X, I*N= R
I v
we can take
E X
V=4 | | %X I*N
1 I
by appropriate composition. We stili of course have that the composite
E X X
S N PP UAN N
I i I
is a surjection, but more remarkably,
E
Ve - ((EFID/I*N) = Fh——(EJ1I*N).
I'*N

Consider the diagram
Er— XXN»» g, X XN — aX XN

IXN— IXN —— [ XN —> al XN _
Since I is separated, the final map in the top row is monic (it is a pullback of a
monic). Furthermore, the composition of the top row gives a closed monic. It

follows -that E>—»a,X X N is also closed, as closed subobjects are stable under
E

pullback. Hence { | | is a sheaf, as required.
I*N
Y

6.6. ProrosITiON. Suppose | | | is an I-indexed family orthogonal to A2 = a?2.
I

e L
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Y X
Suppose furthermore that | | | is covered by a family | | | with Property ().
I I
Y
Then | | | is a subquotient of I*N.
I

Proof. Since the proof is carried out relative to, but not entirely in, the topos
E%”/I , we shall abuse notation and work as if I=1. Let Ex>X XN be a
subobject satisfying the requirements of Property {f). Define E’ to be the image
of Ein Y X N:

E > X XN

I

E'— Y XN

Plainly E'— Y. We shall show that the projection on the second coordinate

E'— N is monic. Now we have E'>»>N*Y =Y X N. But Y is orthogonal to 2,

and hence so is N*Y. Consequently, E’ is orthogonal tc a2 by Lemma 2.3.
E

However, since | | | is a sheaf over N,

E\az E E
Vst =~
N N AN

and we have a commutative diagram

E\N? E E

l == || Ixnl !l

N N N/
E' E' N*a2 E' E'
1=l — b Ixal !
N N N N

“Now the top-right path is a surjection, and hence so is the composite of the
bottom row. This is the diagonal of the puliback of E— N against itself, and so
implies that £'— N is monic, and that the diagram

E'>— N

l

Y
presents Y as a subquotient of N.

6.7. ProrosiTioN. Let I be a separated object. Then the following three full
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subcategories of /]I are identical:
X .
(i) families | | | orthogonal to a2 (i.e. Outh(a2)");
I
(ii) families locally isomorphic to a subquotient of N (i.e. {Q});
(iii) families covered by a subquotient of N (i.e. (Q)").

Proof. Clearly (iii) implies (ii) whether I is separated or not. Moreover, (iii)
implies (i) by Lemma 6.3, and this lifts to give (ii) implies (i) since Ox#{a2) is a
stack, and (hence) closed under local isomorphism. We really only need the

Y
hypothesis on 7 to show that (i) implies (iii). If { | is an J-indexed family of
I
orthogonal objects, then in %/ we can cover Y by a separated cbject X. This
X Y
gives a separated cover { | |—{ | | in /I and we apply Lemma 6.5 and
I I
Y
Proposition 6.7 to see that | | | is in (i)~
I

Since any object J can be covered by a separated object, we obtain as an
immediate corollary: -

6.8. THEOREM. The two stacks Ox4(a2) of families of discrete objects, and (Q)
of families of subquotients of N are identical as fibred subcategories of €f>*— €.

However we note that

X

6.9. ProrosiTiON. Not every family | | | which is locally a quotient of I*N is

I
globally so. In particular, Oxth{a2) and [Q)] are not strongly equivalent fibrations.

6.10. REMARK. At present we do not know whether there is an internal
category C such that Ox#4{a2) is strongly equivalent to [C] or not.

' Proof. We show that the fibrations differ in the fibre over the object (2, ~),
where

[0~0}={1~1]={0},

[0~1={1},

[1~0]={2}.

Note that this is not a separated object and that its sheaf reflection (in fact its
separated reflection) is the terminal object 1. We have A2—> (2, ~)— L.
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As our family over (2, ~) we take the object A = (A, =) where

A={0} x NU{1} x N — {0}
with
, . <[l~]]: n,m) ifn_imm_j;
LG n)=(j, m)] {Q otherwise,

labelled by f: A— (2, ~) given by f((i, n), j) =i ~j] % {n}.
~ The verification that this description does indeed give two objects and a map in
&/ is routine, as is checking that the pullback of A over A2 is C = (4, =) with
[(G, n)=(j, m)]={n| i=j An=m}. Thus C is a subobject over A2 of A2*N,
‘Finally, for future reference, we note that the map A— (2, ~) is separated (the
diagonal is closed), and so A— (2, ~) is a family of separated subquotients of N.

We can now show that A—(2, ~), despite being locally a subquotient of
(2, ~)*N, can not be so globally. If it were, then we would have a map (2, ~) — Q,
giving A by pullback from the generic subquotient of N. Since A— (2, ~) is a
family of separated subquotients, this would factor through the subobject F, of
(), which names the separated subquotients. This object P, is in fact a sheaf (see
§7), and so the map (2, ~)— F, would factor through 1. This would imply that
the family A— (2, ~) was a constant family, which it is not. It is perhaps casiest
to see this by looking at the pullback C over A2. The fibre of C over 0 is N, and
so C, if a constant family, would have to be isomorphic to A2 X N over A2.
Suppose ¢: C—> A2 X N is this isomorphism; then e ¢ maps C to N. Using the
fact that both C and N are canonically separated, from the realiser for

Yee C.3(i, n)e A2X N. ¢(c)=(i, n),
we see that ¢(0, n) = ¢(1, n), but then ¢(1, —) is not surjective.

7. Complete internal categories

We summarise the results obtained at the end of the last section:

7.1. THEOREM. Let Q be the full internal subcategory of the effective topos &
on the subquotients of N. Then the externalization [ Q] g Which is equivalent to the
full subfibration (Q)ey of global subquotients of N, is weakly (but not strongly)
equivalent to Oxth(a2), the stack of families orthogonal to a2, which may thus be
taken to be its stack completion.

Since Ow#(a2) is (strongly) complete, we obtain as an immediate corollary:
7.2. CoroLLARY. The subcategory Q (respectively [Qlsp) is weakly complete.

Dana Scott has observed that one small complete category in a topos gives rise
to many more, for example any category of algebras for a triple over the small
category. We however shall be more interested in another small category of
sets—the internal category P of separated subquotients of N, which is the internal
category corresponding to the subcategory of &/ called by Scott the category of
modest sets (Scott [17]).

Let F, be the object of closed partial equivalence relations on N, that is,
B={Se Qﬁ}—d S € Oo}. In the fibre over P, we have a generic closed partial
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equivalence relation on N,

|

Fy

where R ={(S, ny, n,)| Se€ Py {(ny, ny) €S}. We take the domain of R and
quotient it with respect to what is now an equivalence reiation to obtain P,— P,
an indexed collection of objects. Of course P is the full internal subcategory on
this coliection—the internal category with object of objects P, and object of maps
given by the exponential

(1)

' Pl

(lepoxpo)mﬂr LR
B

in E41(Py X Fy).
Note that F, is a retract of J,, and that R is obtained by pulling back the
Q

generic family { | | for Q. We thus obtain an inclusion functor P—> Q. This has
Coy

a reflection Q— P obtained by internalising the separated reflection (a partial

equivalence relation on N is mapped to its —-closure).

In complete analogy with the results obtained previously for Q, the externalisa-
2 cod od

tion [P] is equivalent to the full subfibration (P) of €4/”——> &/ consisting of the
X

families { | | of separated objects which are subquotients of I*N. Moreover, the
i

stack completion {P} may be taken to be separated families which are locally
subquotients of N, and so to be the stack of separated families orthogonal to a2.
Instead of {IP} we shall sometimes write fod, as it is the stack corresponding to
the category of modest sets (cf. Hyland [11]).

7.3. ProrosiTION. The externalisation [P) is weakly but not strongly equivalent
to Mod.

Proof. The counter-example given at the end of § 6 for Proposmon 6.9 serves
equally well in this case.

7.4. CoroLLARY. The category P (respectively [Pley) is weakly complete.

Proof. Both Ow#4(a2) and the fibration of families of separated.objects are
isomorphism-saturated subfibrations of %/">— %/ closed under all limits.

Unfortunately, we cannot improve on this corollary to obtain strong complete-
ness for P (or for that matier for Q).

7.5. ProrositioN. The category P and hence (a fortiori) Q is not strongly
complete as an internal category of €.
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Proof. We show that (P) (and at the same time (Q)) is not strong complete.
Consider the map T: 1-» £, and take the indexed product I1,2 of 2. We show
that this cannot be globally a subquotient of £*N, and hence is in neither (P) nor -

(Q). Now

P

2
HTZ = i H
Q

where dom: 2— Q classifies 252 (cf. Johnstone [13, Example 1.45)). If (Q)
were closed under indexed products, there would be a subset A>>N X Q and a
surjection o: A—+2 such that

commutes. Thus ‘
Voe2IneN. ¢ =o(n, dom ¢).
But 2 is a retract of P2, and so is uniform with respect to N. It follows that
AneNV¢pel. ¢ =o(n dom o).
Now this implies that
Vo, '€l . domp=dom¢'=T—¢p=¢"

On the other hand, 2= {¢ €2| dom ¢ = T}. This contradiction shows that (P) is
not closed under indexed products in %4/ (although /o of course is).

7.6. Remark. This example alsc gives another proof that (P) and SMod
(respectively (@) and {Q}) are not strongly equivalent.

At the time of writing we have no example of a (non-posetal) strongly complete
internal category in a topos. However, Q and, in particular, P do have somewhat
stronger completeness properties than has yet become apparent. _

Let Je be the full subcategory of €/ consisting of the separated objects. Then
Feo is a locally cartesian closed left exact category, in fact a quasi-topos, and we
shall consider the fibrations (Q) and (P) relativised to Fe# (i.e. restricted to those
fibres over separated objects). |

7.7. PROPOSITION. . The fibrations (Q) g, and (P)gy,, are strongly complete.

Proof. By Proposition 6.7, (Q)s, and (P)g, are the same as {Q}s, and
{P} o, tespectively. They are thus closed under (finite limits in the fibres and)
those families of internal products in the topos indexed by separated obiects.
Since Beck conditions are inherited from 4/, this is rather more than is required.
Alternatively, we can observe that since every object in &4 is covered by one
from e, a fibration over &4 is weakly complete if and only if its reduction over
Fes is. Hence (Q)s,. and (P)g,, are weakly complete, but by Proposition 6.7 they
are alsc stacks, and therefore strongly complete.

As far as Q is concerned, this is now the end of the road, but with P we can go
a tittle further.
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7.8. LemmaA. The category P is an internal category in Sep.

Proof. We know that Q—— is a sheaf, and so also is any power of it. Now F; is
a subobject of P°N defined in the negative fragment of logic, and hence is also a
sheaf (cf. Hyland [10]). Furthermore, R is separated over F,, and hence the
exponential which gives P, is separated over P X Fy. Since Fy X F is separated, P,
is separated in its own right.

As a corollary of the two results above we now have:

7.9. TueoreM. The category P is weakly complete-as an internal category of &/,
and strongly complete as an internal category of Fep.

7.10. RemMaARK. This result can be extended slightly by using the fact that (any
power of) P, is a sheaf, and so is projective.

Appendix: an awful warning on the subject of Beck conditions
Once agam consider P as an internal category of /. Since P is an internal
category in Fep, for any I the separated reflection /— of induces an isomorphism

[P]” > [P}

It follows that, given any a: J—1, a*: [PY—[P]' has a right adjoint
IZ: [P} — [P}, since we can compute it from II,,: [P]*— [P]°’, which exists
because of the strong completeness of P over Fe¢4. This however can rot imply
the strong completeness of P over €/ (cf. Proposition 7.5). In fact, the separated
reflection o is not left exact, and this induces a failure of the Beck—Chevalley
conditions for the functors IT?. Specifically, the Beck condition fails for the

pullback
2 2
l ldom
1 £

though at present our proof of this is indirect.

—

_I_
e

8. Models of polymorphic A-calculi

In this section we give a brief account of how the categories discussed in the
previous section may be used to model various polymorphic extensions of the
lambda-calculus. Our strategy is to take an internal category € (in our case it will
be P) as our collection of types. Thus, the interpretation of a closed type term
will be a global element of C,, that is, a map 1— C,. More generally, we have to
interpret terms which depend on free (type and other higher-order) variables. We
shall assume that these variables range over objects whose interpretation may be
taken to be objects of the topos. Thus, if we take as the simplest real example

PO R
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Girard’s ‘Systtme F’ (Reynold’s second-order lambda-calculus, Girard [7],
Reynolds [16]), we have type expressions which may only depend on variables
ranging over types, whereas in the extension to F, we have type expressions
which depend on variables ranging over higher-order functionals on types. We
interpret these type expressions in the natural way—as types varying over the
interpretation of the domains of the free variables, and so as objects of [C] in the
fibre over some I. For those familiar with the work of Seely in this area (Seely
[18]), what we are essentially doing is using a restriction of the externalisation
process to give a hyperdoctrine over some subcategory of the topos, and hence a
version of Seely’s notion of PL-category. More precisely, it is a version of the
2TAC-hyperdoctrines used by Pitts to prove a completeness result for internal
category models with respect to the second-order lambda calculus. We refer the
reader to Pitts [15] for a more detailed account of how to use internal categories
than the sketch here.

We shall indicate how a sufficiently complete internal category C in € can be
used to model Systeme F extended by notation for finite products (pairing and a
terminal object). Consider [C] restricted to the fibres over the full subcategory €
of € on objects (C5),e- Note that in the case of P and &/, this subcategory is
contained in e, while in the case of Q it is not. We interpret a map ¢: C5— C,
as a type-term in n free (type) variables ¢(X, ..., X,,). We take these terms as
constants, and generate the syntax for F over them. We wish to define recursively
the interpretation of the type terms of the theory as follows:

interpret the substitution of one term into another by categorical composition
(pullback in the fibration);

the term representing the product of two types which have, or previously have
been coerced into having, the same free type variables, by taking their product
in the relevant fibre: so

[0(Xy, ..., X)X 0'(Xq, ..., X)]=[6] < [6]

in the fibre [C]“Y;

the term representing the function space of two type expressions with the same
free type variables similarly, by taking an exponential in the relevant fibre;

and finally the abstraction with respect to the variable X; of the term
0(X4, ..., X,) as 1L,  where Il is the right adjoint to #*, which we require
to exist.

We regard the instantiation of a polymorphic type at a type as a syntactic
operation, and thus interpret it using composition.

The individual terms in the calculus are now interpreted as maps in [C] in a
more or less standard way. Thus a free variable of some type ¢ is interpreted as
the identity on the interpretation [¢] of ¢. Of course ¢ may itself depend on
some type variables, [¢]: Ci— Cy, but this does not really alter things; we have

. id
[x,]: Co— Co— C;.
In terms of the fibration, we need [C]¢ to be cartesian closed in each fibre and

the a*: [C]?¥— [C]® to preserve this structure (se Frobenius reciprocity holds).
Moreover, [Cle should have (strong) indexed products.
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Let us consider, however, under what circumstances these necessary properties
of the externalisation [C] imply the corresponding properties of the internal
category C. In general, completeness properties are forced to hold for C only if
the syntax of the lambda calculus is strong enough to provide a generic instance,
and then they are forced to be strong. For example, at the lowest possible level of
the general schema given above, an internal category provides a model for the
ordinary (non-polymorphic) typed A-calculus if its global sections form a cartesian
closed category. This of course says nothing about the category being internally a
cartesian closed categery, still less that the product and exponential structure
should be strong. However, even in a weak polymorphic calculus, for example
the second-order fragment, we have generic types X X Y and Y— X where X and
Y are free type variables {(both then interpreted as maps Cy X Cy— C,). We also
have the terms 7,(ux «v) and uy_ x(vy), both of type X, giving generic instances
of the first projection and evaluation. It follows that C is forced tc carry the
strong structure of a cartesian closed category. However C is not forced to have
strong Cg-indexed products, simply because the object C§? is not forced to be in
% (compare, however, the result of Pitts in [£5]). Suppose now we wish to model
F, rather than F. Syntactically F, has a generic polymorphic type-forming
operator, and so any internal category € modelling F, will be forced to have
strong Cg-indexed products (and more). More semantically, in order to model F,
we consider the restriction of [C] to &, the cartesian closed subcategory of &
generated by C;. As before we require that [C]s be cartesian closed in each fibre,
that the re-indexing functors preserve this structure, and that [C]y have (strong)
indexed products. There 1s a generic family of second-order type-forming
operators which lives in the fibre of [C] over C§°x C, and is given by the
evaluation map ev: C§° X Cy— C,. If we now consider I ev, where

7w C§' % Co— C§°

is the projection, we obtain an object of [C] in the fibre over C§°, and so a map
C§— C,. This gives the object part of the internal product functor C%— C.
More generally, by considering I1.ev, where now ev maps C& X D to Cy and &
maps C§ X D to Cf, we can show that C has strong D-indexed products for any
De%.

The converse of the above is of course trivial. If C has strong structure, so has
its externalisation. The category P is an example of this. It is strongly complete as
an internal category in Fe., and hence has all the structure needed to give a
model for E,,.

Note that a model arising from a strongly complete internal category in this
way has more exactness properties than one might expect—Beck conditions (may
be taken to) hold on the nose, rather than just up to isomorphism. For example,
let the internal category C in & have strong products indexed by some object A.
Thus we have an internal functor [L,: C*— C giving the A-indexed products. To
check Beck conditions in [C] for A-indexed products we have to look at pullbacks
in € of the form

AXB — AXB

L,

B———F
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The square giving the corresponding Beck condition is then the outer rectangle in

%A X B', C) —> #(A X B, C)

l |

&B', ¢ —— %(B, CY)
“ €B',C) — ¥4(B,0)
In this, the lower square commutes, since it is (8, [I), and the top square
commutes by naturality.

Perhaps it is worth commenting a little further on this. In Pitts’s paper [15] the
fibrations which model the polymorphic lambda calculus (‘27TAC-hyperdoctrines’)
are required to have II-functors which satisfy Beck conditions on the nose. (We
are however somewhat unclear about what precisely Seely [18] demands of his
PL-categories in this respect.) Pitts observes that any theory can be modelled in a
hyperdoctrine for which Beck conditions are strict, and comments that the
condition is necessary for his completeness proof to work, He also remarks that it
has the pleasant side-eifect that the theory of 2TAC-hyperdectrines is algebraic.,

We however would like to enter a caveat about the strictness of Beck

conditions in a general fibrational model. The requirement that Beck conditions
should hold on the nose has been justified on the grounds that it is a manifest

property of syntax. This manifest property perhaps becomes less so if examined

closely with destructive intent. Imtuitively, the Beck conditions say that the
interpretation of IIX. ¢ is unchanged if we regard ¢ as having more free
variables than it actually has. Since pretending that ¢ has extra free variables
does not change the marks on the page, the Beck conditions should hold on the
nose. This last point is debatable. If we decorate (in a syntax-directed way)
expressions with the free variables they are deemed to have, then instead of
identity we obtain a pair of combinators which should be inverses, and so the
Beck conditions hold cnly up to isomorphism. '

Finally, we note that we can use the fact that P is not just a complete internal
category, but a complete internal full subcategory of &/ (or at least o) to
obtain a model for the theory of constructions (cf. Coquand and Huet [4]). This
thecry can be seen as an extension of the full higher-order polymorphic lambda
calculus more or less as follows:

1. the category of types (Coquand’s and Huet’s propositions) is indexed over
itself, as well as over the category of orders (Coquand’s and Huet’s types),
and has the corresponding products;

2. orders are not only closed under function space, but can also be indexed
over both types and orders, and again are closed under these products.

In the model given by P, types become special orders, and soundness follows

from the fact that P is a locally cartesian closed full subcategory of a locally

cartesian closed category, and is closed under all products from the ambient
category.
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